
Tiling approach to obtain identities for
generalized Fibonacci and Lucas numbers

Hacène Belbachir, Amine Belkhir

USTHB, Faculty of Mathematics
P.B. 32, El Alia, 16111, Bab Ezzouar, Algeria

hbelbachir@usthb.dz
ambelkhir@gmail.com

Abstract

In Proofs that Really Count [2], Benjamin and Quinn have used “square
and domino tiling” interpretation to provide tiling proofs of many Fibonacci
and Lucas formulas. We explore this approach in order to provide tiling
proofs of some generalized Fibonacci and Lucas identities.
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1. Introduction

Let Un and Vn denote the generalized Fibonacci and Lucas numbers defined, re-
spectively, by

Un = aUn−1 + bUn−2 (n ≥ 2) , (1.1)

with the initial conditions U0 = 1, U1 = a, and by

Vn = aVn−1 + bVn−2 (n ≥ 2) , (1.2)

with the initial conditions V0 = 2, V1 = a, where a and b are non-negative integers.
In [1], the generalized Fibonacci number Un is interpreted as the number of

ways to tile a 1×n board with cells labeled 1, 2, . . . , n using colored squares (1× 1
tiles) and dominoes (1 × 2 tiles), where there are a different colors for squares
and b different colors for dominoes. In fact, there is one way to tile a empty board
(U0 = 1), since a board of length one can be covered by one colored square (U1 = a),
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so this satisfy the initial Fibonacci conditions. Now for n ≥ 2, if the first tile is
a square, then there are a possibilities to color the square and Un−1 ways to tile
1 × (n − 1) board. If the first tile is a domino, then there are b choices for the
domino and Un−2 ways to tile 1× (n− 2) board. This gives the relation (1.1).

Figure 1: Tilings of length 1, 2 and 3 using squares and dominoes

Similarly, the generalized Lucas numbers count the number of ways to tile a
circular 1 × n board with squares and dominoes (termed 1 × n bracelet). We call
a 1 × n bracelet in-phase if there is no domino occupying cells n and 1, and out-
of phase if there is a domino occupying cells n and 1. The empty bracelet can
be either in-phase or out-of phase, then V0 = 2. Since a 1 × 1 bracelet can be
tiled only by a square V1 = a. For n ≥ 2, a 1 × n bracelet can be obtained from
a 1 × (n − 1) bracelet by adding a square to the left of the first tile or from a
1× (n− 2) bracelet by adding a domino to the left of the first tile. Then for n ≥ 2
we have the relation (1.2).

Benjamin and Quinn, have used this approach to provide tiling proofs of many
Fibonacci relations. Our goal is to use this interpretation to provide tiling proofs
for the following two identities:

Un −
m−1∑

k=0

(
n− k

k

)
bkan−2k = bm

∑

0≤j≤k≤n−2m
Un−k−2m

ak

k!

[
k

j

]
mj , (1.3)

where
[
k
j

]
are the Stirling numbers of the first kind.

2Un+m−1 = VmUn−1 + VnUm−1. (1.4)

To prove these identities we need the following Lemma.

Lemma 1.1 ([2]). The number of 1×n tilings using exactly k colored dominoes is
(
n− k

k

)
bkan−2k, (k = 0, 1, . . . , bn/2c) . (1.5)

2. Combinatorial identities

Our first identity generalizes identity (1) given in [3]. It counts the number of ways
to tile a 1× (n+ 2) board with at least one colored domino

Un+2 − an+2 = b
n∑

k=0

Uka
n−k (n ≥ 0) . (2.1)
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Note that for a = b = 1, relation (2.1) gives the well known Lucas identity

fn+2 − 1 =
n∑

k=0

fk,

where fn is the shifted Fibonacci number defined recurrently by

fn = fn−1 + fn−2 (n ≥ 2) , (2.2)

with the initials f0 = f1 = 1.

The following identity counts the number of 1×n tilings with at least m colored
dominoes.

Identity 1. For m ≥ 1 and n ≥ 2m, we have

Un −
m−1∑

k=0

(
n− k

k

)
bkan−2k = bm

∑

0≤j≤k≤n−2m
Un−k−2m

ak

k!

[
k

j

]
mj .

Proof. The left hand side counts the number of tilings of length n excluding the
tilings with exactly 0, 1, . . . ,m−1 dominoes. Now, let k+1, k+2 (0 ≤ k ≤ n− 2m)
be the position of the m-th (from the right to the left) domino (see figure 2), then
there are Uk ways to tile the first k cells, b ways to color the domino at position
k+1, k+2, and there are

(
n−m−k−1

m−1
)
bm−1an−2m−k ways to tiles cells from k+3 to

n with exactly m−1 dominoes. Hence there are
(
n−m−k−1

m−1
)
Ukb

man−2m−k possible
ways to tile an 1 × n board with the m-th domino at the positions k + 1, k + 2.
Summing over all 0 ≤ k ≤ n− 2m, we obtain

bm
n−2m∑

k=0

Uka
n−k−2m

(
n− k −m− 1

m− 1

)
= bm

n−2m∑

k=0

Un−k−2mak
(
k +m− 1

m− 1

)
. (2.3)

Now, we express the binomial coefficient in terms of Stirling numbers of the first
kind:

(
k+m−1
m−1

)
= (m+k−1)···(m+1)m

k! =
∑k

j=0

[
k
j

]
mj

k! , this gives the right hand side
of the identity.

1 2 . . . k+1 k+2 . . . n

Figure 2: A 1× n tiling with the m-th domino at cells k+1, k+2

Remark 2.1. We can consider the intermediate identity (2.3), as given in the proof
without using Stirling numbers.
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Corollary 2.2. Let a = b = 1, using relation (2.3) we have for m = 1, 2, 3
respectively

n∑

k=0

fk = fn+2 − 1 (E. Lucas, 1878)

n∑

k=0

kfk = nfn+2 − fn+3 + 3 (Brother. U. Alfred, 1965)

n∑

k=0

k2fk = (n2 + 2)fn+2 − (2n− 3)fn+3 − 13 (Brother. U. Alfred, 1965)

Now, we give tiling proof for the relation (1.4), for an algebraic proof, see for
instance (V16a, pp 26, [5]).

Identity 2. For m ≥ 1 and n ≥ 1, we have

2Un+m−1 = VmUn−1 + VnUm−1.

Proof. The left hand side counts the number of ways to tile a 1×(n+m−1) board.
For the right hand side we suppose that we have a 1× (n+m− 1) tiling. There is
two cases:

Case 1. The 1 × (n + m − 1) tiling is breakable at m-th cell (there is not a
domino covering positions m and m+1), then the 1×(n+m−1) tiling can be split
into a 1×m tiling and a 1×(n−1) tiling. Now we attach the right side of the m-th
cell to the left side of the first cell of the 1×m tiling, thus we form a in-phase 1×m
bracelet. We denote the number of ways to tile an in-phase m-bracelet by V ′m.

Case 2. The 1 × (n +m − 1) tiling is not breakable at the m-th cell (there is
a domino covering positions m and m+ 1), then it is breakable at (m− 1)-th cell.
In this case, we create a 1× (m− 1) tiling and an out-of phase 1× n bracelet. We
denote the number of ways to tile an out-phase 1× n bracelet by V ′′n .

Now, we apply the same approach for the n-th cell, by considering either 1 ×
(n+m− 1) tiling is breakable at n-th cell or not. So, we obtain

2Un+m−1 = V ′mUn−1 + Um−1V
′′
n + V ′nUm−1 + Un−1V

′′
m

= Un−1(V
′
m + V ′′m) + Um−1(V

′
n + V ′′n ).

We conclude by the fact that V ′m + V ′′m = Vm and V ′n + V ′′n = Vn.
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