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Abstract

In this paper, we establish explicit algebraic relations among infinite prod-
ucts including Fibonacci and Lucas numbers with subscripts in geometric
progressions. The algebraic relations given in this paper are obtained by
using general criteria for the algebraic dependency of such infinite products.

Keywords: Algebraic independence, Infinite products, Fibonacci numbers,
Mahler functions.

MSC: 11J81, 11J85.

1. Introduction

Let α and β be real algebraic numbers with |α| > 1 and αβ = −1. We define

Un =
αn − βn
α− β and Vn = αn + βn (n ≥ 0). (1.1)

If α = (1 +
√

5)/2, we have Un = Fn and Vn = Ln (n ≥ 0), where the sequences
{Fn}n≥0 and {Ln}n≥0 are the Fibonacci numbers and the Lucas numbers defined,

Annales Mathematicae et Informaticae
41 (2013) pp. 107–119

Proceedings of the
15th International Conference on Fibonacci Numbers and Their Applications

Institute of Mathematics and Informatics, Eszterházy Károly College
Eger, Hungary, June 25–30, 2012

107



respectively, by Fn+2 = Fn+1 + Fn (n ≥ 0), F0 = 0, F1 = 1 and by Ln+2 =
Ln+1 + Ln (n ≥ 0), L0 = 2, L1 = 1.

Throughout this paper, we adopt the following notation. Let d ≥ 2 be a fixed
integer and ζm = e2πi/m a primitive m-th root of unity. For τ ∈ C with |τ | = 1,
we define the set Ωj(τ) :=

{
z ∈ C | zdj = τ or zd

j

= τ
}
for j = 0, 1, . . .. Let Sk(τ)

be a subset of Ωk(τ) such that for any γ ∈ Sk(τ) the numbers ζdγ and γ belong
to Sk(τ), where γ indicates the complex conjugate of γ. Namely, Sk(τ) satisfies
Sk(τ) = ζdSk(τ) and Sk(τ) = Sk(τ). For example, if d = 2, τ = 1, and k = 3 we
have Ω3(1) = {ekπi/4 | 0 ≤ k ≤ 7} and so we can choose S3(1) = {±eπi/4,±e3πi/4}.
We define the following sets that are determined depending only on Sk(τ):

Λi(τ) =
{
γd

k−i | γ ∈ Sk(τ)
}

(0 ≤ i ≤ k − 1),

Γi(τ) = {γ ∈ Ωi(τ) | γd ∈ Λi−1(τ)} \ Λi(τ) (1 ≤ i ≤ k − 1).

Then we put

Ek(τ) =

(
k−1⋃

i=1

Γi(τ)

)⋃
Sk(τ) (1.2)

and
Fk(τ) =

{
Ek(τ)

⋃{τ, τ} if τ /∈ Ek(τ),
Ek(τ) \ {τ, τ} otherwise.

In [1] we established necessary and sufficient conditions for the infinite products
generated by each of the sequences in (1.1) to be algebraically dependent over Q
and obtained the following:

Theorem 1.1. Let {Un}n≥0 be the sequence defined by (1.1) and d be an integer
greater than 1. Let a1, . . . , am be nonzero distinct real algebraic numbers. Then the
numbers ∞∏

k=0
U
dk
6=−ai

(
1 +

ai
Udk

)
(i = 1, . . . ,m)

are algebraically dependent if and only if d is odd and there exist distinct τ1, τ2 ∈ C
with |τ1| = |τ2| = 1 and Fk1(τ1),Fk2(τ2) for some k1, k2 ≥ 1 such that Fk1(τ1) ∩
Fk2(τ2) ⊂ {τ1, τ1, τ2, τ2} and {a1, . . . , am} contains

− 1

α− β (γ + γ)

for all γ ∈ (Fk1(τ1)
⋃Fk2(τ2)) \ {±

√
−1}.

Theorem 1.2. Let {Vn}n≥0 be the sequence defined by (1.1) and d be an integer
greater than 1. Let a1, . . . , am be nonzero distinct real algebraic numbers. Then the
numbers ∞∏

k=0
V
dk
6=−ai

(
1 +

ai
Vdk

)
(i = 1, . . . ,m)
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are algebraically dependent if and only if at least one of the following properties is
satisfied:

1. d = 2 and the set {a1, . . . , am} contains b1, . . . , bl (l ≥ 3) with b1 < −2
satisfying

b2 = −b1, bj = b2j−1 − 2 (j = 3, . . . , l − 1), bl = −b2l−1 + 2.

2. d = 2 and there exist τ ∈ C with |τ | = 1 and Fk(τ) for some k ≥ 1 such that
{a1, . . . , am} contains

−(γ + γ)

for all γ ∈ Fk(τ) \ {±
√
−1}.

3. d ≥ 4 is even and there exist distinct τ1, τ2 ∈ C with |τ1| = |τ2| = 1
and Fk1(τ1),Fk2(τ2) for some k1, k2 ≥ 1 such that Fk1(τ1) ∩ Fk2(τ2) ⊂
{τ1, τ1, τ2, τ2} and {a1, . . . , am} contains

−(γ + γ)

for all γ ∈ (Fk1(τ1)
⋃Fk2(τ2)) \ {±

√
−1}.

Note that Theorems 1.1 and 1.2 above are generalizations of [2, Theorems 1 and
2], respectively.

Corollary 1.3 (cf. [3]). Let d ≥ 2 be a fixed integer and a 6= 0 a real algebraic
number. Then the numbers

∞∏

k=1
U
dk
6=−a

(
1 +

a

Udk

)
and

∞∏

k=1
V
dk
6=−a

(
1 +

a

Vdk

)

are transcendental, except for only two algebraic numbers

∞∏

k=1

(
1− 1

V2k

)
=

α4 − 1

α4 + α2 + 1
,

∞∏

k=1

(
1 +

2

V2k

)
=
α2 + 1

α2 − 1
. (1.3)

Corollary 1.4. Let a be a nonzero real algebraic number with a 6= −V2k−2 (k ≥ 1).
Then the number ∞∏

k=1

(
1 +

a

V2k + 2

)

is transcendental, except when a = −3,−2; indeed

∞∏

k=1

(
1− 2

V2k + 2

)
=
α2 − 1

α2 + 1
,

∞∏

k=1

(
1− 3

V2k + 2

)
=

(α2 − 1)2

α4 + α2 + 1
. (1.4)
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Proof. Using the equality

1 +
a

V2k + 2
=

(
1 +

a+ 2

V2k

)(
1 +

2

V2k

)−1

and the second equality in (1.3), we have

∞∏

k=1

(
1 +

a

V2k + 2

)
=
α2 − 1

α2 + 1

∞∏

k=1

(
1 +

a+ 2

V2k

)
. (1.5)

By Corollary 1.3 we see that the infinite product in the right-hand side of (1.5) is
algebraic only if a = −3,−2. The equalities (1.4) follow immediately from (1.5)
with (1.3).

Applying Corollary 1.4 with α = (1 +
√

5)/2, we obtain the transcendence of

∞∏

k=1

(
1 +

a

L2k + 2

)

for any nonzero algebraic number a 6= −3,−2,−L2k − 2 (k ≥ 1), and the equalities

∞∏

k=1

(
1− 2

L2k + 2

)
=

1√
5
,

∞∏

k=1

(
1− 3

L2k + 2

)
=

1

4
. (1.6)

It should be noted that Corollaries 1.3 and 1.4 hold even if the number a is a
nonzero complex algebraic number (see [3]).

2. Algebraic dependence relations

Theorems 1.1 and 1.2 in the introduction are useful to obtain the explicit algebraic
dependence relations among the infinite products generated by the Fibonacci and
Lucas numbers as well as their transcendence degrees. We exhibit such examples
in this section and their proofs in the next section.

Example 2.1. Let a be a nonzero real algebraic number. The transcendental
numbers

s1 =
∞∏

k=0
F
3k
6=−a

(
1 +

a

F3k

)
, s2 =

∞∏

k=0
F
3k
6=a

(
1− a

F3k

)

are algebraically dependent if and only if a = ±1/
√

5. If a = 1/
√

5, then

s1s
−1
2 = 2 +

√
5.

110 T. Kurosawa, Y. Tachiya, T. Tanaka



Example 2.2. The transcendental numbers

s1 =
∞∏

k=0

(
1 +

a1
F5k

)
, s2 =

∞∏

k=0

(
1 +

a2
F5k

)
,

s3 =

∞∏

k=0

(
1− a1

F5k

)
, s4 =

∞∏

k=0

(
1− a2

F5k

)

with a1 = (−5 +
√

5)/10, a2 = (5 +
√

5)/10 satisfy

s1s2s
−1
3 s−14 = 2 +

√
5,

while trans.degQ Q(s1, s2, s3, s4) = 3.

Remark 2.3. The infinite products
∏∞
k=0 (1 + ai/Fdk) for odd d and∏∞

k=1 (1 + ai/Ldk) for even d are easily expressed as the values at an algebraic
number of Φi(z) defined by (3.2) with b = 1, which will be shown in (3.3) of
Section 3. Hence, for simplicity, we take k ≥ 1 in the following examples.

Example 2.4. Let a 6= 2,−1 be a real algebraic number. The transcendental
numbers

s1 =
∞∏

k=1
L
2k
6=−a

(
1 +

a

L2k

)
, s2 =

∞∏

k=1
L
2k
6=a

(
1− a

L2k

)

are algebraically dependent if and only if a = ±
√

2. If a = ±
√

2, using the relation
L2
2k = L2k+1 + 2 (k ≥ 1) and the first equality in (1.6), we have

s1s2 =
∞∏

k=2

(
1− 2

L2k + 2

)
=

5

3
· 1√

5
=

√
5

3
.

Example 2.5. The transcendental numbers

s1 =

∞∏

k=1

(
1−
√

3

L4k

)
, s2 =

∞∏

k=1

(
1 +

√
3

L4k

)
,

s3 =
∞∏

k=1

(
1− 1

L4k

)
, s4 =

∞∏

k=1

(
1 +

2

L4k

)

satisfy

s1s2s3s
−1
4 =

5

8
,

while trans.degQ Q(s1, s2, s3, s4) = 3.

Example 2.6. The transcendental numbers

s1 =
∞∏

k=1

(
1− 1

L6k

)
, s2 =

∞∏

k=1

(
1 +

1

L6k

)
, s3 =

∞∏

k=1

(
1 +

2

L6k

)
,
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s4 =
∞∏

k=1

(
1 +

√
3

L6k

)
, s5 =

∞∏

k=1

(
1−
√

3

L6k

)

satisfy

s1s2s3s
−1
4 s−15 =

√
5

2
,

while trans.degQ Q(s1, s2, s3, s4, s5) = 4.

Example 2.7. The transcendental numbers

si =
∞∏

k=1

(
1 +

ai
L4k

)
(i = 1, . . . , 8),

where

a1 = −(ζ116 + ζ1516 ), a2 = −(ζ516 + ζ1116 ), a3 = −(ζ716 + ζ916), a4 = −(ζ364 + ζ6164 ),

a5 = −(ζ1364 + ζ5164 ), a6 = −(ζ1964 + ζ4564 ), a7 = −(ζ2964 + ζ3564 ), a8 = 2,

satisfy

s1s2 · · · s7s−28 =
25

7(7−
√

2−
√

2)
.

Example 2.8. The transcendental numbers

si =

∞∏

k=1

(
1 +

ai
L4k

)
(i = 1, . . . , 10),

where

a1 = −3

2
, a2 =

√
7

2
, a3 =

3

2
, a4 = −

√
7

2
, a5 =

31

16
,

a6 = − 4√
5
, a7 =

2√
5
, a8 =

4√
5
, a9 = − 2√

5
, a10 =

14

25
,

satisfy

s1s2s3s4s
−1
5 s−16 s−17 s−18 s−19 s10 =

3024

3575
,

while trans.degQ Q(s1, s2, . . . , s10) = 9.

3. Proofs of the examples

Let {Rn}n≥0 be the sequence {Un}n≥0 or {Vn}n≥0 defined by (1.1). Let d ≥ 2 be
a fixed integer and a1, . . . , am nonzero real algebraic numbers. Define

(pi, b) :=

{
((α− β)ai,−(−1)d) if Rn = Un,

(ai, (−1)d) if Rn = Vn,
(3.1)
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and

Φi(z) :=

∞∏

k=0

(
1 +

piz
dk

1 + bz2dk

)
(i = 1, . . . ,m). (3.2)

Taking an integer N ≥ 1 such that |Rdk | > max{|a1|, . . . , |am|} for all k ≥ N , we
have

Φi(α
−dN ) =

∞∏

k=N

(
1 +

piα
−dk

1 + bα−2dk

)

=

∞∏

k=N

(
1 +

pi

αdk + b(−1)dkβdk

)
=

∞∏

k=N

(
1 +

ai
Rdk

)
(i = 1, . . . ,m),

so that

∞∏

k=0
R

dk
6=−ai

(
1 +

ai
Rdk

)
= Φi(α

−dN )
N−1∏

k=0
R

dk
6=−ai

(
1 +

ai
Rdk

)
(i = 1, . . . ,m). (3.3)

We note that (3.3) is valid also for N = 0 only if d is odd and Rdk 6= −ai (k ≥ 0).

Proof of Example 2.1. First we show that s1 and s2 are algebraically dependent
only if a = ±1/

√
5, using the case of m = 2 in Theorem 1.1. If s1 and s2 are

algebraically dependent, then {τ1, τ2} = {1,−1}, since Fk(τ) consists of at least
four elements if τ 6= ±1. If d = 3, m = 2, and {τ1, τ2} = {1,−1}, it is easily seen
that F1(τ1)

⋃F1(τ2) = {ζ3, ζ3,−ζ3,−ζ3} and so {a1, a2} = {1/
√

5,−1/
√

5}.
Next we show the equality s1s−12 = 2 +

√
5 by proving a general relation which

holds for the functions Φi(z) (1 ≤ i ≤ d − 1) defined by (3.2), where d ≥ 3 is an
odd integer. Put

p1 = −(ζd + ζd), p2 = −(ζ2d + ζd
2
), . . . , p d−1

2
= −(ζ

d−1
2

d + ζd
d−1
2 )

in the equation (3.2) with b = 1. Then we have

Φ1(z) · · ·Φ d−1
2

(z)

=
∞∏

k=0

(
1

(1 + z2dk)
d−1
2

1− zdk+1

1− zdk

)
=

1

1− z
∞∏

k=0

1

(1 + z2dk)
d−1
2

.

Moreover, putting

p d−1
2 +1 = ζd + ζd, p d−1

2 +2 = ζ2d + ζd
2
, . . . , pd−1 = ζ

d−1
2

d + ζd
d−1
2 ,

we get

Φ d−1
2 +1(z) · · ·Φd−1(z)
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=
∞∏

k=0

(
1

(1 + z2dk)
d−1
2

1 + zd
k+1

1 + zdk

)
=

1

1 + z

∞∏

k=0

1

(1 + z2dk)
d−1
2

.

Hence, we have

Φ(z) :=
Φ1(z) · · ·Φ d−1

2
(z)

Φ d−1
2 +1(z) · · ·Φd−1(z)

=
1 + z

1− z . (3.4)

If d = 3, then p1 = −(ζ3 + ζ3) = 1, p2 = ζ3 + ζ3 = −1, and so

a1 =
1

α− β p1 =
1√
5
, a2 =

1

α− β p2 = − 1√
5

by (3.1). Then, by the equation (3.3) with N = 0, we have

Φ(α−1) = s1s2
−1 =

α+ 1

α− 1
= 2α+ 1 = 2 +

√
5.

Proof of Example 2.2. We consider the case of d = 5 in (3.4). Then

p1 = −(ζ5 + ζ5) =
1−
√

5

2
, p2 = −(ζ25 + ζ25 ) =

1 +
√

5

2
,

p3 = ζ5 + ζ5 =
−1 +

√
5

2
, p4 = ζ25 + ζ25 = −1 +

√
5

2
.

By (3.1) we have

a1 =
−5 +

√
5

10
, a2 =

5 +
√

5

10
, a3 =

5−
√

5

10
, a4 = −5 +

√
5

10
.

Then, by the equation (3.3) with N = 0 and (3.4), we have

Φ(α−1) =
s1s2
s3s4

=
α+ 1

α− 1
= 2 +

√
5.

Finally, we prove that trans.degQ Q(s1, s2, s3, s4) = 3, using Theorem 1.1. Let
τ1 = 1, τ2 = −1, S1(τ1) = E1(τ1) = {ζ5, ζ5, ζ25 , ζ25 , 1}, and S1(τ2) = E1(τ2) =

{−ζ5,−ζ5,−ζ25 ,−ζ25 ,−1}. Then F1(τ1) = {ζ5, ζ5, ζ25 , ζ25} and F1(τ2) =

{−ζ5,−ζ5,−ζ25 ,−ζ25}. It is enough to show that s1, s2, and s3 are algebraically
independent, which is equivalent to the fact that a1, a2, and a3 do not satisfy The-
orem 1.1 with m = 3. By (1.2) with S1(τi) = E1(τi) (i = 1, 2), considering the
number of the elements of Sk(τi) with k ≥ 2 satisfying Sk(τi) = ζ5Sk(τi) and
Sk(τi) = Sk(τi), we see that {a1, a2, a3, a4} is the minimal set of −(γ+γ)/

√
5 with

γ ∈ Fk1(τ1) ∪ Fk2(τ2) \ {±
√
−1} satisfying Theorem 1.1 with m = 4.

Proof of Example 2.4. First we prove directly that s1s2 =
√

5/3 if a = ±
√

2. Let
τ =
√
−1 and S1(τ) = E1(τ) = {ζ8, ζ8,−ζ8,−ζ8} in the property 2 of Theorem 1.2.

Then F1(τ) = {ζ8, ζ8,−ζ8,−ζ8,
√
−1,−

√
−1}. Putting

p1 = −(ζ8 + ζ8) = −
√

2, p2 = ζ8 + ζ8 =
√

2
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in the equation (3.2) with b = 1, we have

Φ1(z)Φ2(z) =

∞∏

k=0

(z2
k − ζ8)(z2

k − ζ8)(z2
k

+ ζ8)(z2
k

+ ζ8)
1

(1 + z2·2k)2

=
∞∏

k=0

1 + z2
k+2

(1 + z2k+1)2
=
∞∏

k=0

1 + z2
k+2

1 + z2k+1

1− z2k+1

1− z2k+2 =
1− z2
1 + z2

.

By the equation (3.3) with N = 1 and α = (1 +
√

5)/2, we get

s1s2 = Φ1(α−2)Φ2(α−2) =
α4 − 1

α4 + 1
.

Hence, noting that α4 = (α+ 1)2 = 3α+ 2, we have

s1s2 =
1

3
· 3α+ 1

α+ 1
=

1

3
(2α− 1) =

√
5

3
.

Conversely, if s1 and s2 are algebraically dependent for some algebraic number
a, then by the property 2 of Theorem 1.2 with m = 2 the set Fk(τ) \ {±

√
−1}

must consist of four elements, which is achieved only if τ = ±
√
−1 and k = 1.

Proof of Example 2.5. We use the property 3 of Theorem 1.2. Let τ1 = ζ3,
τ2 = 1, S1(τ1) = E1(τ1) = {ζ12, ζ12, ζ412, ζ412, ζ512, ζ512, ζ212, ζ212}, and S1(τ2) = E1(τ2) =

{1,−1,
√
−1,−

√
−1}. Then F1(τ1) = {ζ12, ζ12, ζ512, ζ512, ζ212, ζ212} and F1(τ2) = {−1,√

−1,−
√
−1}. Putting

p1 = −(ζ12 + ζ12) = −
√

3, p2 = −(ζ512 + ζ512) =
√

3, p3 = −(ζ212 + ζ212) = −1,

and p4 = 2 in the equation (3.2) with b = 1, we have

Φ1(z)Φ2(z)Φ3(z)

=

∞∏

k=0

(z4
k − ζ12)(z4

k − ζ12)(z4
k − ζ512)(z4

k − ζ512)(z4
k − ζ212)(z4

k − ζ212)
1

(1 + z2·4k)3

=

∞∏

k=0

(z4
k+1 − ζ412)(z4

k+1 − ζ412)

(z4k − ζ412)(z4k − ζ412)

1

(1 + z2·4k)3

=
1

(z − ζ412)(z − ζ412)

∞∏

k=0

1

(1 + z2·4k)3
,

and

Φ4(z) =
∞∏

k=0

1 + 2z4
k

+ z2·4
k

1 + z2·4k
=
∞∏

k=0

(1 + z4
k

)2(1 + z2·4
k

)2

(1 + z2·4k)3

=
∞∏

k=0

1

(1 + z2·4k)3

(
1− z4k+1

1− z4k

)2

=
1

(1− z)2
∞∏

k=0

1

(1 + z2·4k)3
. (3.5)
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Hence, we get

Φ(z) := Φ1(z)Φ2(z)Φ3(z)Φ−14 (z) =
(1− z)2

1 + z + z2
.

By the equation (3.3) with N = 1 and α = (1 +
√

5)/2, we have

s1s2s3s
−1
4 = Φ(α−4) =

α8 − 2α4 + 1

α8 + α4 + 1
=

7α4 − 2α4

7α4 + α4
=

5

8
,

since
α8 + 1 = (3α+ 2)2 + 1 = 21α+ 14 = 7α4. (3.6)

To prove that trans.degQ Q(s1, s2, s3, s4) = 3, it is enough to show that s2, s3,
and s4 are algebraically independent, which is equivalent to the fact that p2, p3,
and p4 do not satisfy the property 3 of Theorem 1.2 with m = 3. By (1.2) with
S1(τi) = E1(τi) (i = 1, 2), considering the number of the elements of Sk(τi) with k ≥
2 satisfying Sk(τi) = ζ4Sk(τi) and Sk(τi) = Sk(τi), we see that {−

√
3,
√

3,−1, 2}
is the minimal set of −(γ + γ) with γ ∈ Fk1(τ1)∪Fk2(τ2) \ {±

√
−1} satisfying the

property 3 of Theorem 1.2 with m = 4.

Proof of Example 2.6. We use the property 3 of Theorem 1.2. Let τ1 = 1, τ2 =
−1, S1(τ1) = E1(τ1) = {ζ6, ζ26 ,−1, ζ46 , ζ

5
6 , 1}, and S1(τ2) = E1(τ2) = {ζ12,

√
−1, ζ512,

ζ712,−
√
−1, ζ1112}. Then F1(τ1) = {ζ6, ζ26 ,−1, ζ46 , ζ

5
6} and F1(τ2) = {ζ12,

√
−1, ζ512,

ζ712,−
√
−1, ζ1112 ,−1}.

We show the equality s1s2s3s−14 s−15 =
√

5/2 by proving a general relation among
the functions Φi(z) defined by (3.2). Let d ≥ 6 be an even integer. Putting

p0 = −2, p1 = −(ζd + ζd), p2 = −(ζ2d + ζd
2
), . . . , p d

2
= −(ζ

d
2

d + ζd
d
2 ) = 2

in the equation (3.2) with b = 1, we have
(

Φ0(z) · Φ2
1(z)Φ2

2(z) · · ·Φ2
d
2−1

(z) · Φ d
2
(z)
)
· Φ−10 (z)

=
∞∏

k=0

(
1

(1 + z2dk)d−1
(zd

k+1 − 1)2

(zdk − 1)2

)
=

1

(z − 1)2

∞∏

k=0

1

(1 + z2dk)d−1
.

In the same way, putting

p d
2+1 = −(ζ2d + ζ2d), p d

2+2 = −(ζ32d + ζ2d
3
), . . . , pd = −(ζd−12d + ζ2d

d−1
),

we get

Φ2
d
2+1

(z)Φ2
d
2+2

(z) · · ·Φ2
d(z) · Φ−1d

2

(z)

=
∞∏

k=0

(
1

(1 + z2dk)d−1
(zd

k+1

+ 1)2

(zdk + 1)2

)
=

1

(z + 1)2

∞∏

k=0

1

(1 + z2dk)d−1
.
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Hence, noting that Φi(0) = 1 (1 ≤ i ≤ d), we have

Φ(z) :=
Φ1(z)Φ2(z) · · ·Φ d

2
(z)

Φ d
2+1(z)Φ d

2+2(z) · · ·Φd(z)
=

1 + z

1− z . (3.7)

Now assume that d = 6 in (3.7). Noting that p5 = 0 and putting

a1 = p1 = −1, a2 = p2 = 1, a3 = p3 = 2, a4 = p4 = −
√

3, a5 = p6 =
√

3

in the equation (3.3) with N = 1 and α = (1 +
√

5)/2, we have

Φ(α−6) =
s1s2s3
s4s5

=
α6 + 1

α6 − 1
.

Since α6 = 8α+ 5, we get

s1s2s3
s4s5

=
α6 + 1

α6 − 1
=

1

2
(2α− 1) =

√
5

2
.

The transcendence degree is obtained in the same way as in the proof of Exam-
ple 2.5.

Proof of Example 2.7. We use the property 3 of Theorem 1.2. Let τ1 =
√
−1,

τ2 = 1,
S2(τ1) = {ζ364, ζ1364 , ζ1964 , ζ2964 , ζ3564 , ζ4564 , ζ5164 , ζ6164},

and
S1(τ2) = E1(τ2) = {1,−1,

√
−1,−

√
−1}.

Then

Λ1(τ1) = {ζ316, ζ1316}, Γ1(τ1) = {ζ116, ζ516, ζ716, ζ916, ζ1116 , ζ1516}, Λ0(τ1) = {
√
−1,−

√
−1},

and so

F2(τ1) = {ζ364, ζ1364 , ζ1964 , ζ2964 , ζ3564 , ζ4564 , ζ5164 , ζ6164 , ζ116, ζ516, ζ716, ζ916, ζ1116 , ζ1516 ,
√
−1,−

√
−1},

F1(τ2) = {−1,
√
−1,−

√
−1}.

Putting

p1 = −(ζ116 + ζ1516 ), p2 = −(ζ516 + ζ1116 ), p3 = −(ζ716 + ζ916),

p4 = −(ζ364 + ζ6164 ), p5 = −(ζ1364 + ζ5164 ), p6 = −(ζ1964 + ζ4564 ), p7 = −(ζ2964 + ζ3564 )

in the equation (3.2) with b = 1, we get

Φ1(z)Φ2(z) · · ·Φ7(z)

=
∞∏

k=0

(
1

(1 + z2·4k)6
(z4

k+1 − ζ316)(z4
k+1 − ζ1316 )

(z4k − ζ316)(z4k − ζ1316 )

z2·4
k+1

+ 1

z2·4k + 1

)
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=
1

(z2 + 1)(z − ζ316)(z − ζ1316 )

∞∏

k=0

1

(1 + z2·4k)6
.

Letting p8 = 2 and using (3.5) in the proof of Example 2.5, we have

Φ(z) :=
Φ1(z)Φ2(z) · · ·Φ7(z)

Φ2
8(z)

=
(z − 1)4

(z2 + 1)(z − ζ316)(z − ζ1316 )
.

Putting ai = pi (1 ≤ i ≤ 8) in the equation (3.3) with N = 1 and α = (1 +
√

5)/2
and using (3.6), we obtain

s1 · · · s7
s28

= Φ(α−4) =
(α4 − 1)4

(α8 + 1)(α8 + 1− (ζ316 + ζ1316 )α4)

=
(7α4 − 2α4)2

7α4(7α4 − (ζ316 + ζ1316 )α4)

=
25

7(7−
√

2−
√

2)
,

since ζ316 + ζ1316 = 2 cos(3π/8) =
√

2−
√

2.

Proof of Example 2.8. Let d ≥ 2 be an integer. Let γ and η be complex numbers
with |γ| = |η| = 1. We show a general relation which holds for the functions
Φi(z) (1 ≤ i ≤ 2d+ 2) defined by (3.2). Putting

p1 = −(γ + γ), p2 = −(γζd + γζd), . . . , pd = −(γζd−1d + γζd−1d ),

and pd+1 = −(γd + γd) in the equation (3.2) with b = 1, we have

Φ1(z) · · ·Φd(z)Φ−1d+1(z)

=
∞∏

k=0

(
1

(1 + z2dk)d−1
1(

1 + pd+1zd
k + z2dk

)
d∏

i=1

(1 + piz
dk + z2d

k

)

)

=

∞∏

k=0

(
1

(1 + z2dk)d−1(zdk − γd)(zdk − γd)

d−1∏

i=0

(zd
k − γζid)(zd

k − γζid)
)

=
1

(z − γd)(z − γd)

∞∏

k=0

1

(1 + z2dk)d−1
.

Moreover, putting

pd+2 = −(η + η), pd+3 = −(ηζd + ηζd), . . . , p2d+1 = −(ηζd−1d + ηζd−1d ),

and p2d+2 = −(ηd + ηd), we get

Φ(z) :=
Φ1(z) · · ·Φd(z)

Φd+1(z)
· Φ2d+2(z)

Φd+2(z) · · ·Φ2d+1(z)
=

(z − ηd)(z − ηd)
(z − γd)(z − γd) . (3.8)
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Substituting z = α−4 into (3.8) and using (3.6), we get

Φ(α−4) =
α8 + p2d+2α

4 + 1

α8 + pd+1α4 + 1
=

7 + p2d+2

7 + pd+1
. (3.9)

For Example 2.8, we take d = 4 and

γ =
3 +
√
−7

4
, η =

2 +
√
−1√

5
.

Noting that γ4 6= η4 and taking τ1 = γ4 and τ2 = η4 in the property 3 of Theo-
rem 1.2, we have

S1(τ1) = E1(τ1) = {γ,
√
−1γ,−γ,−

√
−1γ, γ,

√
−1γ,−γ,−

√
−1γ},

S1(τ2) = E1(τ2) = {η,
√
−1η,−η,−

√
−1η, η,

√
−1η,−η,−

√
−1η},

and so

F1(τ1) = {γ,
√
−1γ,−γ,−

√
−1γ, γ,

√
−1γ,−γ,−

√
−1γ, γ4, γ4},

F1(τ2) = {η,
√
−1η,−η,−

√
−1η, η,

√
−1η,−η,−

√
−1η, η4, η4},

since γ and η are not roots of unity. Then we have

p1 = −3

2
, p2 =

√
7

2
, p3 =

3

2
, p4 = −

√
7

2
, p5 =

31

16
,

p6 = − 4√
5
, p7 =

2√
5
, p8 =

4√
5
, p9 = − 2√

5
, p10 =

14

25
,

since

γ4 = −31− 3
√
−7

32
, η4 = −7− 24

√
−1

25
.

Using (3.9), we get

s1 · · · s4
s5

· s10
s6 · · · s9

=
7 + 14/25

7 + 31/16
=

3024

3575

by the equation (3.3) with N = 1. The transcendence degree is obtained in the
same way as in the proof of Example 2.5.
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