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Abstract

In this paper, we establish explicit algebraic relations among infinite prod-
ucts including Fibonacci and Lucas numbers with subscripts in geometric
progressions. The algebraic relations given in this paper are obtained by
using general criteria for the algebraic dependency of such infinite products.
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1. Introduction

Let o and f be real algebraic numbers with |a| > 1 and a8 = —1. We define

a — ﬂ"

U, = P

If a = (1++/5)/2, we have U,, = F,, and V,, = L,, (n > 0), where the sequences
{Fy}n>0 and {L, },>0 are the Fibonacci numbers and the Lucas numbers defined,

and V,=a"+8" (n>0). (1.1)
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respectively, by Fy4yo = Foi1 + F, (n > 0), Fp = 0, F; = 1 and by L, =
Lyi1+L, (n > O), Lo=2,1,=1.

Throughout this paper, we adopt the following notation. Let d > 2 be a fixed
integer and (,, = €2>™*/™ a primitive m-th root of unity. For 7 € C with |7| = 1,
we define the set Q;(7) := {z €C|z¥ =7orz¥ =7 forj=0,1,.... Let Si(7)
be a subset of Q(7) such that for any v € Sk(7) the numbers {4y and 7 belong
to Sk(7), where 7 indicates the complex conjugate of . Namely, Si(7) satisfies
Sk(7) = (4Sk(7) and Sk(7) = Sk(7). For example, if d =2, 7 =1, and k = 3 we
have Q3(1) = {e*™¥/* | 0 < k < 7} and so we can choose S3(1) = {#e™/4 4e3m/41,
We define the following sets that are determined depending only on Sk (7):

Ai(r) = {7

Li(r) ={v € Q(r) | ¥ € Aia(m)}\ Ni(r) (1<i<k—1).
Then we put

’YGSk(T)} 0<i<k—1),

k—1
Ep(r) = <U Fi(7)> USk(T) (1.2)

A - { SOUED e,

Ex(T)\ {r,7} otherwise.

and

In [1] we established necessary and sufficient conditions for the infinite products
generated by each of the sequences in (1.1) to be algebraically dependent over Q
and obtained the following;:

Theorem 1.1. Let {U,}n>0 be the sequence defined by (1.1) and d be an integer

greater than 1. Let aq,...,a, be nonzero distinct real algebraic numbers. Then the
numbers
11 <1+ : ) (i=1,...,m)
Pt Ugr
Ugk#—ai

are algebraically dependent if and only if d is odd and there exist distinct 71, 79 € C
with |11| = |r2| = 1 and Fy, (1), Fi, (12) for some ki,ka > 1 such that F, (m1) N
Fip(12) C {11,771, 72,72} and {a1,...,an} contains

1 _
*ai_ﬁ(’YJr’Y)

for all v € (Fi, (1) U Fiy (72)) \ {£V/ -1}

Theorem 1.2. Let {V,},>0 be the sequence defined by (1.1) and d be an integer

greater than 1. Let aq, ..., an be nonzero distinct real algebraic numbers. Then the
numbers

0 .

H (1—|—‘;lz> (i=1,...,m)

k=0 d*

Vgk #—aq
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are algebraically dependent if and only if at least one of the following properties is
satisfied:

1. d = 2 and the set {a1,...,am} contains by,..., b (I > 3) with by < —2
satisfying

by=—b1, bj=b_,-2 (j=3,....,01-1), b =-b,+2

2. d =2 and there exist T € C with || =1 and Fi (1) for some k > 1 such that

{a1,...,am} contains
-(v+7)
for all v € Fp(1) \ {£v—-1}.

3.d > 4 is even and there exist distinct 71, 2 € C with |n| = || =
and Fi, (11), Fry (12) for some ki,ka > 1 such that Fi, (1) N Fr,(72) C
{m,71, 72,72} and {a1,...,amn} contains

—(r+7)

for all v € (Fpy (11) U Fep (2)) \ {1}

Note that Theorems 1.1 and 1.2 above are generalizations of [2, Theorems 1 and
2], respectively.

Corollary 1.3 (cf. [3]). Let d > 2 be a fized integer and a # 0 a real algebraic
number. Then the numbers

ﬁ <1+Udk) and ﬁ <1+v§k>

k=1 k=1
Udkyé—a desﬁ—a

are transcendental, except for only two algebraic numbers

at—1 a?+1
1—— | = 14+ — . 1.3
H( ng) at+a+1’ H< JrVQk) a?z—1 (13)

Corollary 1.4. Let a be a nonzero real algebraic number with a # —Vor —2 (k > 1).

Then the number
T (1+ %)

is transcendental, except when a = —3, —

.':l

- indeed

7

i 2 -1 0o 3 (a® —1)?
1— = ]_— == . ]..4
H( V2k+2) a?+1’ H( V2k+2> at+a?+1 (14)

k=1 k=1
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Proof. Using the equality

a a-+2 2\ !
=(1 1+ —
+V2k+2 ( + V2k>< +V2k>

and the second equality in (1.3), we have

a a a? -1 a+2
1 = 1 . 1.5
H(+‘/v2k+2) a2+1]€1:{<+ ng) (15)

k=1

By Corollary 1.3 we see that the infinite product in the right-hand side of (1.5) is
algebraic only if @ = —3,—2. The equalities (1.4) follow immediately from (1.5)
with (1.3). O

Applying Corollary 1.4 with o = (1 + v/5)/2, we obtain the transcendence of

(%)

for any nonzero algebraic number a # —3, —2, —Lqox — 2 (k > 1), and the equalities

M(-22s)-% H(-2%) -+ oo

It should be noted that Corollaries 1.3 and 1.4 hold even if the number «a is a
nonzero complex algebraic number (see [3]).

2. Algebraic dependence relations

Theorems 1.1 and 1.2 in the introduction are useful to obtain the explicit algebraic
dependence relations among the infinite products generated by the Fibonacci and
Lucas numbers as well as their transcendence degrees. We exhibit such examples
in this section and their proofs in the next section.

Example 2.1. Let a be a nonzero real algebraic number. The transcendental

numbers - -
a
s I () == 1 (-7

k=0 k=0
ng#fa F3k #a

are algebraically dependent if and only if a = +1/4/5. If a = 1/+/5, then

5152_1:24—\/5.
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Example 2.2. The transcendental numbers

81:1_[(14-;}1)6)7 SQZH(1+Far2k)7

k=0 2 k=0 2
a a
1 2
— | I 1 - — — | I 1—
83 ( l 5k ) ’ 84 ( l 5k )
k=0 k=0

with a; = (=5 + v/5)/10, az = (5 ++/5)/10 satisfy

8182551821 =2+ \/5,
while trans. degg Q(s1, 52,53, 54) = 3.

Remark 2.3. The infinite products [[.=,(1+a;/Fs) for odd d and
[Tre, (1 +ai/Ls) for even d are easily expressed as the values at an algebraic
number of ®;(z) defined by (3.2) with b = 1, which will be shown in (3.3) of
Section 3. Hence, for simplicity, we take k > 1 in the following examples.

Example 2.4. Let a # 2,—1 be a real algebraic number. The transcendental

numbers - o
s1 = H 1+ a 8o = H 12
L2k ’ sz

k=1 k=1
Ly #—a Lok #a

are algebraically dependent if and only if a = +/2. If a = ++/2, using the relation
L2, = Lor+1 +2 (k > 1) and the first equality in (1.6), we have

Ss_ﬁl_ 2 \_5 1 _ 5
12 = Lon+2) 3 V5 3°

k=2

Example 2.5. The transcendental numbers

satisfy
515283321 =3,
while trans. degQ Q(s1, s2, 53, 54) = 3.

Example 2.6. The transcendental numbers
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el 00

V5
27

51525355155_ =

V3
Lk
satisfy

while trans. degg Q(s1, 52, 53, 84, 85) = 4.

Example 2.7. The transcendental numbers

si= ][ <1+L4k> (i=1,...,8),

k=1
where
ar=—(Cle +Cig)y a2 = (G +Cle)s a3 =—(Cle +C)s  aa=—(Cs + ¢,
as = —(C63 +C01)s  as = —(G5d +G50),  ar = —(GG + ), as =2,
satisfy

25
(7T —V2—-2)

Example 2.8. The transcendental numbers

5189 "‘S7Sg2 =

) a;
i = 1 =1, ,10),
i H < * L4k> (Z )
k=1
where
3 V7 3 V7 31
a1 =—=, Gp=-—, a3=—, QG4=——, a5= —,
1 9’ 2 9’ 3 2’ 4 9’ 16
4 2 4 2 14
ag = — y @ , ag = y a9 = — ,  a10 = 55
6 \/5 7 \/5 8 \/5 9 \/5 10 25
satisfy
121 1 1 - 3024
5152535455 186 187 188 189 1510 = ﬁ’

while trans. degg Q(s1, s2, ..., 810) = 9.

3. Proofs of the examples

Let {R,}n>0 be the sequence {U,}n>0 or {V;,}n>0 defined by (1.1). Let d > 2 be
a fixed integer and aq, ..., a,, nonzero real algebraic numbers. Define

a—Ba;, —(—1)4) i =
ety s={ G U RV 2
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and
[e%e) p'de
®,(2) = 14+ P2 i=1,....m). 3.2
@0 (1425 ) Gt 2
Taking an integer N > 1 such that |Rgx| > max{|ai|,...,|am|} for all & > N, we
have

[e%} —dk
—aV¥y pix

— Di _ - ;i .

k=N

so that

ﬁ <1+ de> = (") ]ﬁl (1+ de) (i=1,...,m). (3.3

k=0 k=0
R, #—a; Rk #—a4

We note that (3.3) is valid also for N = 0 only if d is odd and Rz # —a; (k > 0).

Proof of Example 2.1. First we show that s; and s are algebraically dependent
only if a = +1/+/5, using the case of m = 2 in Theorem 1.1. If s; and s, are
algebraically dependent, then {7, 72} = {1,—1}, since Fi(7) consists of at least
four elements if 7 # +1. If d = 3, m = 2, and {7, 2} = {1, —1}, it is easily seen
that Fy(11) U Fi(72) = {¢3, G, —Cs, —Cs} and so {a1, a2} = {1/v/5, -1//5}.

Next we show the equality s1s5 1= 24+ /5 by proving a general relation which
holds for the functions ®;(z) (1 < i < d — 1) defined by (3.2), where d > 3 is an
odd integer. Put

d—1 d—1

_ _9 d—1 __d—1
pr=—(Ca+C) p2=—(G+0 ),...,p%:—(gcﬁ +Ci ?)
in the equation (3.2) with b = 1. Then we have

1(2) - Dai(2)

1— 4" JR—- 1
H(l—'—ZQdk 1_de _]_—ZH(I-i-ZQdk)%

k=0

Moreover, putting

da—1

— —2
Paziyy = Ca+Ca, p%.ﬁ,_Q:Cch—"_Cd seey Pd— 1—Cd +Cd

we get

Busyy(2) Baa(2)
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B ﬁ 1 14 24" ﬁ
= (1+22dk)dz;l 1+de 1—|—Z P 1_|_22d7"

k=0
Hence, we have
P1(2) - Paa(2) 1
D(2) == z _ .tz (3.4)
Par, 1(2) - @ai(2) 11—z
If d =3, then p; = —({34+(3) =1, p2 = (3 + {3 = —1, and so
U S T SRR
1—a_ﬁpl—\/5, 2_a—6p2_ 75
by (3.1). Then, by the equation (3.3) with N = 0, we have
1
@(a‘l)zslsg_lzzjl:2a+1:2+\/5. O

Proof of Example 2.2. We consider the case of d =5 in (3.4). Then

—  1-5 1+\f
—(G+¢5) = 5 p2=—(G+ Cs)
—_ 1+ = 1+\/5
P3=C5+C5=T, Pa=CG+E=- 5
By (3.1) we have
-5+/5 5++/5 5-+5 5+5
a1 = ——~ a2 = ’ as = ’ ay = — .
10 10 10 10

Then, by the equation (3.3) with N = 0 and (3.4), we have

_ 5182 a+1
Plat) = 2= = =2
(@) $354 a—1 V5.

Finally, we prove that trans. degg Q(s1, 82, 83, 84) = 3, using Theorem 1.1. Let
T = 1, To = —1,751(7'1) = 51(7'1) = {<5,<75,C52,<§,1}, ancLSl(Tg) = 51(7’2)
{_C5a_<_53_<527_§7_1}' Then ]:1(7—1) - {C53C57<527<§} and ]:1(7—2) -
{5, —C5, —C2, —(2}. Tt is enough to show that si,s2, and s3 are algebraically
independent, which is equivalent to the fact that ai, a2, and a3 do not satisfy The-
orem 1.1 with m = 3. By (1.2) with S1(r) = &1(m) (¢ = 1,2), considering the
number of the elements of Si(7;) with k& > 2 satisfying Si(7;) = (5Sk(7:) and
Si(1i) = S(7i), we see that {a,az, as,as} is the minimal set of —(y+7)/v/5 with
v € Fi, (11) U Fi, (12) \ {£v/—1} satisfying Theorem 1.1 with m = 4. O

Proof of Example 2.4. First we prove directly that sisy = V5/3 if a = +v/2. Let
7=+/—1and Si(7) = &(7) = {G, (s, —Cg, —(Cg} in the property 2 of Theorem 1.2.
Then Fi(7) = {(s, (s, —Cs, —Cs, V—1, —/—1}. Putting

~(G+3G&)=—V2, p2=CG+i=V2
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in the equation (3.2) with b = 1, we have

=) -GG GG +G)

:]8

By (2)Po(z) = A+ 272

1—2?

e R BT 1422

=~
Il
o

k+1
22

142 ok+2 ) 1+Z2k+21_
L(1+ 222 - H
k

I
8

;~
||

By the equation (3.3) with N =1 and a = (1 + v/5)/2, we get

§182 = (I)l( )@2(0[_2) =

Hence, noting that a* = (o + 1)? = 3a + 2, we have

1 3a+1 1 V5
. = @ = .
3 a+1 3 3
Conversely, if s; and sy are algebraically dependent for some algebraic number

a, then by the property 2 of Theorem 1.2 with m = 2 the set Fi(7) \ {£V—1}
must consist of four elements, which is achieved only if 7 = +v/—1 and k=1. O

8182 =

Proof of Example 2.5. We use the property 3 of Theorem 1.2. Let 7'1 = (3,
T =1, 81(m) = &i(n) = {C127C127C127§127<127C127C12,C12} and S1(72) = &1(72)

T2
{17 -1, \/jv 7\/771} Then ]:1(7.1) - {Cl27(127412741274127412} and fl(TQ) {
V=1, —+y/—1}. Putting

(G2 +Ci2) = =V3, pr= () =V3, pi=—(+ ) =1,
and py = 2 in the equation (3.2) with b =1, we have

1,

@1(2)@2(2)(1)3(2)
= 1" -6~ Gt — )"~ - e - &)

4k+1

G G —¢h) 1
bt Z4k _ C4 )(z4k _ C4 ) (1 + 22~4k)3

(o}

= H 1+224k

(z = Clz)(z - 412 k:O

and

H1+2z fp2dt ﬁ 1+ 2% (1—i—z24)2

1+ 22:4F o 1—|—z24k)

2
= 1— 24" 15 1
- = . (35
,}]O 1—1—224’“ <1—z4k (1—z)2l€1;[0(1+22'4")3 (3:3)
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Hence, we get

(1—2)°

B(2) 1= D1 (2)Pa(2)P3(2)P; ' (2) = Ti 12

By the equation (3.3) with N =1 and o = (1 + v/5)/2, we have

8 4 4 4
-1 40" —2a"+1 Ta®—2a" 5
s128985 = Bla) = B+at+1 Tat+at 8§

since
A4+ 1=0Ba+2)?+1=21a+14="7a" (3.6)

To prove that trans. degg Q(s1, 82, 83, 84) = 3, it is enough to show that s, s3,
and sy are algebraically independent, which is equivalent to the fact that po,ps,
and p4 do not satisfy the property 3 of Theorem 1.2 with m = 3. By (1.2) with
S1(m;) = &1(;) (i = 1,2), considering the number of the elements of Sy (7;) with k >
2 satisfying Si(7;) = C4Sk(7;) and Si(7;) = Sk(7;), we see that {—+v/3,v/3, 1,2}
is the minimal set of — (v +7) with v € Fy, (11) U Fi, (12) \ {££v/—1} satisfying the
property 3 of Theorem 1.2 with m = 4. L]

Proof of Example 2.6. We use the property 3 of Theorem 1.2. Let 1y =1, 75 =
—1, Si(11) = &i(m1) = {G6, 65, —1,¢4, €3, 1}, and Sy (72) = E1(72) = {C12, V=1, (]y,
<1727 _\/TL <1121} Then ]:1(7_1) = {Cﬁv <627 -1, <g7<65} and ]:1(72) = {C12> \/jlv Cir)27
<1727 _\/jla 411217 _1}'

We show the equality sq 528382185?1 = 1/5/2 by proving a general relation among
the functions ®;(z) defined by (3.2). Let d > 6 be an even integer. Putting

=2 1=+ o)y 2= (G +G) s py = =G+ G =2

in the equation (3.2) with b = 1, we have

(®0(2)- B3B3 -+ 9% _,(2)- @4 () - 95" (2)
B %) 1 (zdk+1 B 1)2 - 1 o )
_kl_[o<(1+z2dk)d1 (de71)2 > - (2—1)21_[0(1+22dk)d71'

In the same way, putting

P —3 _ —d—1
Py = —(Caa + Caa), Payo = (i +Ca )y pa= (G +0d ),

we get

.

k=0

<I>2d+1(z)<1>2d+2(z) e B2(2) - @%1@)

2

1 G i T ﬁ 1
(14 224°)d-1 (@ 4 1)2 (z+1)% 1L (14 z2a0)aT
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Hence, noting that ®;(0) =1 (1 < i < d), we have

- il(z)@z(z)---@%(z) 14z
= Day(2)Payp(2) - Pal2) I 30

Now assume that d = 6 in (3.7). Noting that p5; = 0 and putting
ar=pr=-1, ax=py=1, az=ps=2, az=ps=-V3, as=ps=V3
in the equation (3.3) with N =1 and a = (1 + v/5)/2, we have

S$18983 ab+1

B(a0) = 2152% _ .
(@) 8485 o —1
Since af = 8a + 5, we get
641 1 5
sispsg _ o041 1o gy V5
5485 ab—-1 2

The transcendence degree is obtained in the same way as in the proof of Exam-
ple 2.5. O

Proof of Example 2.7. We use the property 3 of Theorem 1.2. Let 7 = v/—1,

To = 1,
29 35 ~45 »51 ~61
(Tl)*{C64a 64a 64a 641 5647 5647 564 64}a

and
S1(r2) = &) = {1, —1,vV/—1,—V~1}.
Then
Ai(m) = {ClﬁaCllg} i(m) = {<167<167C167C167 167 } Ao(m1) = {\/7 *\/7}
and so

(Tl)_{€64)€ 64 6227 (:5327 éliv giv 647<167<167<167C16, 11617 167 V—5HL TV }
-7:1(7'2):{—17\/— y VT }

Putting
—(Cle +Gig)y p2=—(Cls +Cig)s  p3 = —(Cls + (o)
pa=—(CGa+Goa), ps=—(Gi + 1), po = (G +Cai)s pr=—(G31 +CED)
in the equation (3.2) with b = 1, we get
D, (2)Pa(2 )"~<I>7( )
-1 e BT ) 2
e 8 [P T

k=0
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B 1 ﬁ 1
S Ere-age-an L araee
Letting pg = 2 and using (3.5) in the proof of Example 2.5, we have

) e D1 (2)P2(2) - Pr(2) (z—1)4
= ®3(=) (2 )z - (R)

Putting a; = p; (1 <4 < 8) in the equation (3.3) with N =1 and o = (1 + v/5)/2
and using (3.6), we obtain

10087 L (a* —1)4
g T @ T (G )
_ (Ta* — 2a)?
- Tad(Tat — (¢ + ¢ig)at)
-
(7T—V2-2)
since (75 + (18 = 2cos(37/8) = V2 — V2. O

Proof of Example 2.8. Let d > 2 be an integer. Let v and 7 be complex numbers
with |y| = |n| = 1. We show a general relation which holds for the functions
®,(2) (1 <i<2d+ 2) defined by (3.2). Putting

pr=—(+7), pr=—(1Ca+7Ca), - pa=—(2¢§ T+,

and pgy1 = — (7% +7%) in the equation (3.2) with b = 1, we have

D1 (2) - Pa(2) Py} (2)

d
1
a 1+ ; d +Z2d
((1—&-22‘“)511 (1 +pd+12’d ZQdk };[1 piz )

I
13

k=0
00 1 dfl _

1 a 1
(z =) (z =7 H (14 22d%)d=1

k=0
Moreover, putting
Pat2 = —(M+7), pats = —(0Ca +1Ca), -+ Paar1 = —(nCSH +n¢E ),
and pogio = f(nd + ﬁd), we get

. (PI(Z)--"I)d(Z) . (I)2d+2(25) _ (z_nd)(Z—ﬁd)
b)) B oDz
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Substituting z = a~* into (3.8) and using (3.6), we get

o® + poaroat +1 T+ pagio

Ol = = .
(™) a® + paprat+1 7+ pa+1

(3.9)

For Example 2.8, we take d = 4 and
3+ VT _24+/-1
4 ) /r] \/g *

Noting that v* # n* and taking 7, = 7* and 7 = n* in the property 3 of Theo-
rem 1.2, we have

Sl (Tl) = gl (Tl) = {,Ya \/_717? - _\/_717777 \/_7177 -, _\/_717},
St (7—2) =& (’7—2) {77’ \/jlna -, _\/jlnvﬁa \/j]-ﬁa -1, _\/jlﬁ}v

and so

‘Fl(Tl) = {’Ya V _17a -~V _17777 Vv _17a =, —V _lia 74574}v
]:1(7-2) = {77a \% _1777 -1, =V _lnvﬁu \% _1ﬁ7 _ﬁa Y _1ﬁ7 n47ﬁ4}a

since v and n are not roots of unity. Then we have

3 VT3 VT3
b1 = 9’ b2 = 2 p3s = 9’ yZ D) y D5 = 16’
4 2 4 2 14

Pe = _ﬁa pr = 77 Ps = \/57 P9 = %7 P1o = %7

. 31-3V/=7 o T—24y7T
v 32 25

since

Using (3.9), we get

8184 S10 . 7+ 14/25 . 3024
s5 sg---S9 T+31/16 3575

by the equation (3.3) with N = 1. The transcendence degree is obtained in the
same way as in the proof of Example 2.5. O
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