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Abstract
Let a, b be nonnegative coprime integers. We call an integer an + b ∈ N

(denoted by B(a,b)
m ) an (a, b)-type balancing number if

(a+ b) + (2a+ b) + · · ·+ (a(n− 1) + b) = (a(n+1)+ b) + · · ·+ (a(n+ r) + b)

for some r ∈ N.
In this paper we consider and give numerical results for the equation

B
(a,b)
m = f(x) where B(a,b)

m is an (a, b)-type balancing number and f(x) is a
polynomial belonging to combinatorial numbers (that is binomial coefficients,
power sums and products of consecutive integers).

Moreover we investigate the equation when an (a, b)-type balancing num-
ber with different parameters are equal to a Fibonacci or a Lucas number.
In this case we use a parallel program to find the solutions of simultaneous
Pell equations.
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1. Introduction

A positive integer n is called a balancing number (see [2] and [4]) if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

for some r ∈ Z+. Here r is called the balancer corresponding to the balancing
number n. Denote by Bm the mth term of the sequence of balancing numbers. For
example 6 and 35 are balancing numbers with balancers 2 and 14, respectively.

K. Liptai [5, 6] proved that there is no Fibonacci and Lucas balancing numbers.
In these proofs the same method were used which is based on the result of Baker
and Davenport (see [1]). Using an other way from L. Szalay [12] got the same
result. This method used a program by Magma [9], but later G. Szekrényesi [13]
made a parallel program which was faster than earlier one and arbitrarily large
coefficients were used. This program used the fast algorithm for finding solutions
of “small solutions” of Thue equations or inequalities. In this case we know about
the integer solutions (x, y) that |y| < 10500. Using this program we investigated
the problem of existence of Fibonacci or Lucas numbers among balancing numbers
(for details see [13]).

To prove one of our main results we need the following lemma of P. E. Ferguson
(see [3]).

Lemma 1.1. The only solutions of the equation

x2 − 5y2 = ±4 (1.1)

are x = ±Ln, y = ±Fn (n = 0, 1, 2, . . .), where Ln and Fn are the nth terms of the
Lucas and Fibonacci sequences, respectively.

Later K. Liptai, F. Luca, Á. Pintér and L. Szalay [7] generalized the balancing
numbers which are called (k, l)-power numerical center.

Let y, k, l be fixed positive integers with y ≥ 4. A positive integer x (x ≤ y− 2)
is called a (k, l)-power numerical center for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

They [7] proved several effective and ineffective finiteness statements for (k, l)-power
numerical center using Baker-type diophantine results and Bilu-Tichy theorem.
There is another generalization of balancing numbers (see [8]).

Let a > 0 and b ≥ 0 be coprime integers. We call an integer an + b ∈ N an
(a, b)-type balancing number if

(a+ b) + (2a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

for some n, r ∈ N. Here r is called the balancer corresponding to the balancing
number an+ b denoted by B(a,b)

m .
T. Kovács, K. Liptai and P. Olajos [8] got a simple proposition for (a, b)-type

balancing numbers.
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Lemma 1.2. If B(a,b)
m is an (a, b)-type balancing number then the following equa-

tion
z2 − 8

(
B(a,b)

m

)2
= a2 − 4ab− 4b2 (1.2)

is valid for some z ∈ Z.

In the case when a = 2 and b = 1 P. Olajos [10] proved that

B
(2,1)
m+2 = 6 ·B(2,1)

m+1 − 1 ·Bm, (m ≥ 1), where B(2,1)
1 = 17, B

(2,1)
2 = 99.

He also considered Fibonacci and Lucas numbers among (2, 1)-type balancing num-
bers.

Let us consider the equation

B(a,b)
m = f(x) (1.3)

where f(x) is a polynomial with integer coefficients.
They [8] proved finiteness results for equation (1.3) in the cases when f(x) is a

monic polynomial or perfect power. The authors proved another finiteness result
also when f(x) is equal to a combinatorial number.

For all k, x ∈ N let

Sk(x) = 1k + 2k + · · ·+ (x− 1)k,

Tk(x) = −1k + 2k − · · ·+ (−1)x−1(x− 1)k,

Πk(x) = x(x+ 1) . . . (x+ k − 1).

Lemma 1.3. Let k ≥ 2 and f(x) be one of the polynomials
(
x
k

)
, Πk(x), Sk−1(x),

Tk(x). Then the solutions of equation (1.3) satisfy max(m, |x|) < c1(a, b, k), where
c1(a, b, k) is an effectively computable constant depending only on a, b and k.

In this paper they also considered all solutions (x, y) ∈ Z2 of equation

B(a,b)
m = f(x)

when a2 − 4ab − 4b2 = 1 and f(x) ∈ {
(
x
2

)
,
(
x
3

)
,
(
x
4

)
}, Π2(x), Π3(x), Π4(x), S1(x),

S2(x), S3(x), S5(x). For more details see [8].
Later Sz. Tengely [14] proved that the equation

Bm = x(x+ 1)(x+ 2)(x+ 3)(x+ 4)

has no solution. The author combined Baker’s method and the so-called Mordell-
Weil sieve to obtain all solutions.

The authors [8] partially solved equation (1.3), because they considered only
the cases when a2−4ab−4b2 = 1. In the following chapter we discuss this problem
with certain conditions and not only for the cases above.
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2. Numerical results

2.1. Results by MAGMA
By Lemma 1.3 we know that there are only finite number of solutions of equation
(1.3). In the cases when a ∈ [1, 9], b ∈ [0, 7], a ≥ b and gcd(a, b) = 1 we get the
following result:

Theorem 2.1. Let 2 ≤ k ≤ 4 and f(x) be one of the polynomials
(
x
k

)
, Πk(x),

Sk−1(x)and a ∈ [1, 9], b ∈ [0, 7] where a ≥ b and gcd(a, b) = 1. Then the solutions
(B(a,b)

m , x) of equation (1.3) are in the following table:

a b B
(a,b)
m f(x) x k

1 0 1
(
x
k

)
2 2

1 0 1
(
x
k

)
3 3

1 0 1
(
x
k

)
4 4

1 0 6
(
x
k

)
4 2

1 0 35
(
x
k

)
7 3

1 0 35
(
x
k

)
7 4

1 1 4
(
x
k

)
4 3

1 0 1 Sk−1(x) 2 2
1 0 6 Sk−1(x) 4 2
1 0 1 Sk−1(x) 2 3
1 0 204 Sk−1(x) 9 3
1 0 1 Sk−1(x) 2 4
1 0 6 Πk(x) 2 2
7 5 600 Πk(x) 24 2
1 0 6 Πk(x) 1 3

Remark 2.2. We mention that in the case k = 1 we get infinitely many solutions
for equation (1.3) since in this case the equation is a Pell-equation.

2.2. Results by a parallel program

In this subsection we consider the cases when B
(a,b)
m = Fl or B(a,b)

m = Lp where
Fl and Lp are Fibonacci and Lucas numbers, respectively. Let us consider the
equation (1.1) and (1.2). In the first case above we get the following simultaneous
Pell equations:

5x2 − y2 = ±4, (2.1)

8x2 − z2 = −1(a2 − 4ab− 4b2), (2.2)

where x = B
(a,b)
m = Fl. In the second case we have to solve the following:

x2 − 5y2 = ±4, (2.3)
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8x2 − z2 = −1(a2 − 4ab− 4b2), (2.4)

where x = B
(a,b)
m = Lp. We use the parallel program from G. Szekrényesi to get the

solutions of the equation systems above. So our numerical results is the following
theorem.

Theorem 2.3. If a ∈ [1, 9], b ∈ [0, 7], a ≥ b and gcd(a, b) = 1 we get the following
“small solutions” of equations B(a,b)

m = Fl or B
(a,b)
m = Lp detailed in the next tables

(that is there is an upper bound for integer unknowns in Thue inequalities which is
equal to 10500):

a b m r B
(a,b)
m = Fl l

1 0 1 0 1 1 or 2
7 1 228 94 1597 17

a b m r B
(a,b)
m = Lp p

1 0 1 0 1 1
1 1 3 1 4 1
1 1 10 4 11 6

3. Proofs

3.1. Proof of Theorem 2.1

Consider the equation (1.3) when f(x) one of polynomials
(
x
2

)
,
(
x
3

)
and

(
x
4

)
. Using

the transformations X = 2x − 1, X = (x − 1)2, X = x2 − 3x + 1 respectively to
the polynomials above then we get the following by Lemma 1.2:

(22z)2 = 2X4 − 4X2 + 2− 16C(a, b),

(6z)2 = X3 − 4X2 + 4X − 36C(a, b),
(
223z

)2
= 2X4 − 4X2 + 2− 144C(a, b),

where C(a, b) denotes the quantity −(a2 − 4ab− 4b2).
These types of equations are solvable by MAGMA (IntegralQuarticPoints

and IntegralPoints), so after testing them we get the solutions above.
Let us consider two example of using MAGMA commands. In the first example

set the parameters as the following: k = 2, a = 2, b = 1. In this case we have to
use the transformations above that is we have to solve the equation

(22z)2 = 2X4 − 4X2 − 126.

The suitable command is IntegralQuarticPoints([2,0,-4,0,-126]). We get
the solutions (5,32),(3,0) for (X, 22z). Using these results we know that no
solutions for B(2,1)

m , because 3 and 1 are not (2, 1)-type balancing numbers. We
used the property that B(2,1)

m ≥ 17.
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Let us consider the second one. In this case let parameters k = 3, a = 2, b = 1.
Our equation is the following:

(6z)2 = X3 − 4X2 + 4X − 288.

Using the commands IntegralPoints(EllipticCurve([0,-4,0,4,-288])) we
get the solution (X, 6z) = (8, 0), that is there is no (2, 1)-type balancing num-
ber with the main property above.

Now let f(x) be equal to Sk−1(x). If k = 2 then S1(x) =
(
x
2

)
that is we get the

solutions.
Using the transformations X = 2(2x−1)2, X =

(
x
2

)
respectively to the equation

(1.2) when f(x) = S2(x) and f(x) = S3(x) we get
(
233z

)2
= X3 − 4X2 + 4X − 576C(a, b),

z2 = 8X4 − C(a, b).

By MAGMA we get the solutions by the commands IntegralQuarticPoints and
IntegralPoints above when f(x) = Sk−1(x).

At last let f(x) = Π2(x), Π3(x), Π4(x) and by using the transformations
X = 2x+ 1, X = 2(x+ 1)2 and x2 + 3x+ 1 we get the following from (1.2)

(2z)2 = 2X4 − 4X2 + 2− 4C(a, b),

z2 = X3 − 4X2 + 4X − C(a, b),

z2 = 8X4 − 16X2 + 8− C(a, b).

By MAGMA we get the solutions above. We have to mention that in the case
a = 2, b = 1 of Π4(x) we get a singular equation, because C(2, 1) = 8 and the
curve z2 = 8X4 − 16X2 is singular. Theres is no problem, because Π4(x) is even,
but all B(2,1)

m are odd that is there is no solution of the equation (1.3).

3.2. Proof of Theorem 2.3

Let us consider first the case when B(a,b)
m = Fl. We have to solve the simultaneous

Pell equations by the parallel program (G. Szekrényesi [13]) or by MAGMA (L.
Szalay [12]). We used the parallel one to determine the “small” (less then 10500)
solutions of system of the equations (2.1) and (2.2). It means that this program
besides others could not find all solutions.

Generally the parallel program have been faster than others (e.g Maple, Magma
or Kant). It uses the fast algorithm for finding the “small” integer solutions of Thue
inequalities in parallel way by the method from Pethő and Schulenberg [11]. The
program also containes a solver for simultaneous Pell equations, which is based on
the algorithm of L. Szalay [12]. The program could use arbitrarily large coefficients
which is inpossible in others.

The results detailed in the next table. I have to mention that the sign + or − in
the table below denotes the correct sign of the right hand side of the first equation
of our Pell system. Denote the expression −(a2 − 4ab− 4b2) by C(a, b) again.
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a b C(a, b) +(x, y, z) −(x, y, z)
1 0 −1 (1,1,3) (0,2,1); (1,3,3)
1 1 7 (2,4,5); (1,1,1) (1,3,1)
2 1 8 (1,1,0) (1,3,0); (3,7,8)
3 1 7 (2,4,5); (1,1,1) (1,3,1)
3 2 31 (2,4,1); (233,521,659); (5,11,13) –
4 1 4 (1,1,2); (5,11,14) (1,3,2)
4 3 68 – (3,7,2)
5 1 −1 (1,1,3) (0,2,1); (1,3,3)
5 2 31 (2,4,1); (233,521,659); (5,11,13) –
5 3 71 – (8,18,21); (3,7,1)
5 4 119 (5,11,9) –
6 1 −8 (1,1,4) (1,3,4)
6 5 184 (5,11,4) –
7 1 −17 (2,4,7);(13,29,37);(1,1,5);(1597,3571,4517) (8,18,23); (1,3,5)
7 2 23 (2,4,3) (3,7,7)
7 3 71 – (8,18,21); (3,7,1)
7 4 127 (13,29,35) –
7 5 191 (5,11,3) –
7 6 263 (13,29,33) –
8 1 −28 (1,1,6) (3,7,10); (1,3,6)
8 3 68 – (3,7,2)
8 5 196 (13,29,34); (5,11,2) –
8 7 356 – –
9 1 −41 (1,1,7) (1,3,7)
9 2 7 (2,4,5); (1,1,1) (1,3,1)
9 4 127 (13,29,35) –
9 5 199 (5,11,1) –
9 7 367 (89,199,251) –

Using tha data from this table, we can get the solutions of Theorem 2.3 for
Fibonacci balancing numbers.

Consider now the cases of Lucas numbers that is the equations (2.3) and (2.4).
We get the following solutions detailed in the table below:
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a b C(a, b) +(x, y, z) −(x, y, z)
1 0 −1 – (1,1,3)
1 1 7 (2,0,5) (4,2,11); (11,5,31); (1,1,1)
2 1 8 (3,1,8) (1,1,0)
3 1 7 (2,0,5) (4,2,11); (11,5,31); (1,1,1)
3 2 31 (2,0,1); (7,3,19) –
4 1 4 – (29,13,82); (1,1,2)
4 3 68 (3,1,2); (7,3,18) (11,5,30)
5 1 −1 – (1,1,3)
5 2 31 (2,0,1); (7,3,19) –
5 3 71 (3,1,1) –
5 4 119 – (4,2,3)
6 1 −8 (7,3,20) (1,1,4)
6 5 184 – (11,5,28)
7 1 −17 (2,0,7); (47,21,133) (76,34,215); (1,1,5)
7 2 23 (3,1,7); (2,0,3) –
7 3 71 (3,1,1) –
7 4 127 – (4,2,1); (11,5,29)
7 5 191 (18,8,49) –
7 6 263 – –
8 1 −28 (3,1,10) (1,1,6)
8 3 68 (3,1,2); (7,3,18) (11,5,30)
8 5 196 (7,3,14) –
8 7 356 (7,3,6) –
9 1 −41 – (4,2,13); (1,1,7)
9 2 7 (2,0,5) (4,2,11); (11,5,31); (1,1,1)
9 4 127 – (4,2,1); (11,5,29)
9 5 199 – –
9 7 367 (7,3,5) –
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