Annales Mathematicae et Informaticae
40 (2012) pp. 25-35
http://ami.ektf.hu

On k-periodic binary recurrences

Nurettin Irmak®, Laszl6 Szalay®

“Department of Mathematics, University of Nigde
nirmak@nigde.edu.tr

*Institute of Mathematics, University of West Hungary
laszalay@emk.nyme.hu

Submitted November 2, 2012 — Accepted November 28, 2012

Abstract

We apply a new approach, namely the fundamental theorem of homo-
geneous linear recursive sequences, to k-periodic binary recurrences which
allows us to determine Binet’s formula of the sequence if k is given. The
method is illustrated in the cases k = 2 and k = 3 for arbitrary parameters.
Thus we generalize and complete the results of Edson-Yayenie, and Yayenie
linked to & = 2 hence they gave restrictions either on the coefficients or on
the initial values. At the end of the paper we solve completely the constant
sequence problem of 2-periodic sequences posed by Yayenie.
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1. Introduction

Let a,b,c,d, and qg,q; denote arbitrary complex numbers, and consider the fol-
lowing construction of the sequence (g,). For n > 2, the terms ¢, are defined
by

(1.1)

) agn—1+bgn_2, if nis even;
= CQn_1 + dg,_o, if nis odd.

The sequence (gy,) is called 2-periodic binary recurrence, and it was described
first by Edson and Yayenie [2]. The authors discussed the specific case ¢y = 0,
g1 = 1 and b = d = 1, gave the generating function and Binet-type formula of
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(gn), further they proved several identities among the terms of (g,). In the same
paper the sequence (g, ) was investigated for arbitrary initial values gy and ¢, but
b =d =1 were still assumed.

Later Yayenie [6] took one more step by determining the Binet’s formula for
(gn), where b and d were arbitrary numbers, but the initial values were fixed as
go=0and ¢; = 1.

The main tool in the papers [2, 6] is to work with the generating function. In
this paper we suggest a new approach, namely to apply the fundamental theorem
of homogeneous liner recurrences (see Theorem 1.1). This powerful method allows
us to give the Binet’s formula of (g, ) for any b and d and for arbitrary initial values.
Moreover, we can also handle the case when the zeros of the quadratic polynomial

p2(z) = 2% — (ac + b+ d)x + bd

coincide. Note, that ps(x) plays an important role in the aforesaid papers, but the
sequence (¢, ) has not been discussed yet when po(z) has a zero with multiplicity 2.
We will see that the application of the fundamental theorem of linear recurrences
is very effective and it can even be used at k-periodic sequences generally. At the
end of the paper we solve an open problem concerning constant subsequences (see
2.2.2 in [6]).

The k-periodic second order linear recurrence

aoqn—1 + bodn—2, if n =0 (mod k);

01Gqn—1 + b1gn—2, if n =1 (mod k);
qn = . . (12)

Ak—1Gn_1 +bp_1qn_2, ifn=~k—1 (InOd k)

was introduced by Cooper in [1], where mainly the combinatorial interpretation
of the coefficients Ay and B appearing in the recurrence relation ¢, = Arqn_r +
By.qp—or, was discussed. Note that Lemma 4 of the work of Shallit [4] also describes
an approach to compute the coefficients for ¢,. Edson, Lewis and Yayenie [3| also
studied the k-periodic extension, again with ¢y = 0, g = 1 and with the restrictions
bp=by=---=b_1=1.

At the end of the first section we recall the fundamental theorem of linear
recurrences. A homogeneous linear recurrence (Gy,)22, of order k (k > 1,k € N)
is defined by the recursion

Gn = Alanl + A2Gn72 + -+ Aan,k (n > k)7 (13)

where the initial values Go,...,Gr_1 and the coefficients A1,..., Ay are complex
numbers, Ay # 0 and |Go| + - - - +|Gr—1| > 0. The characteristic polynomial of the
sequence (G,) is the polynomial

g(x) =a% — At —... — Ay,
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Denote by ay, ..., a; the distinct zeros of the characteristic polynomial g(z), which
can there be written in the form
9(x) = (z—an)™ -+ (x —ap)™. (1.4)

The following result (see e.g. [5]) plays a basic role in the theory of recurrence
sequences, and here in our approach.

Theorem 1.1. Let (G,) be a sequence satisfying the relation (1.3) with Ay # 0,
and g(x) its characteristic polynomial with distinct roots aq,...,c¢. Let K =
Qlar, ... aq, A1, ..., Ak, Go, ... ,Gi—1) denote the extension of the field of ratio-
nal numbers and let g(x) be given in the form (1.4). Then there exist uniquely
determined polynomials g;(x) € K[x] of degree less than e; (i =1,...,t) such that

Gn=gi(n)al + -+ g:(n)ay (n>0).

2. k-periodic binary recurrences

Let & > 2 be an integer, further let qg, ¢; and a;,b;, i =0, ..., k—1 denote arbitrary
complex numbers with |go| + |¢1]| # 0 and bgb; - - - bg—1 # 0.
Counsider the sequence (g,,) defined by (1.2). By [1] it is known that the terms

of (gn,) satisfy the recurrence relation

G = Ak — (1) boby . .. br_1n—2n (2.1)
of order 2k, where the coefficient Ay is also described in [1]. Put D = A7 —
4(=1)"boby ... by_1, and let

pe(x) = 22 — Agz + (—=1)Fboby - - b1

denote the polynomial determined by the characteristic polynomial z2* — Ay 2* +
(=1)Fbgby - - - by of the recurrence (2.1) by the substitution z = 2*. The not
necessarily distinct zeros of pi(x) are

Ay + VD A, —VD
k=———— and pu=-——.
2 2
At this point we would like to use Theorem 1.1, therefore we must distinguish two
cases.

2.1. Case D #0

If D is nonzero, then x and p are distinct. From Theorem 1, we deduce that there

exist complex numbers k; and u; (j =1,...,k) such that
k k
In = ijE(J_l)"n"/k+Z,uj5(]_1)"n"/k, (2.2)
Jj=1 j=1

K’Vlr MTL
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where ¢ = exp(2mi/k) is a primitive root of unity of order k. If one claims to
determine the coeflicients x; and pi;, it is sufficient to replace n by 0, 1, ..., 2k—1
in (2.2) and, after evaluating ga, ..., g2x—1 by (1.2), to solve the system of 2k linear
equations. Instead, we can shorten the calculations since, as we will see soon, only
certain linear combinations of k1,...,kx; and uq, ..., g are needed, respectively.
Now, by (2.2), for any non-negative integer ¢, we have ¢; = K; + M;. Moreover,

k k
Grok = 3 RpeUmDER) G0k 4 S G100 (B0 e, 4 . (2.3)

j=1 j=1
Since the determinant p — x of the system of two linear equations

Ky + My =q
KKy + puMy = gk

is non-zero, therefore (2.4) possesses the unique solution

K, = Qt+k_MQt, M, — itk T RO
K— U K— U

To give the explicit formula for the term of the sequence (g,), we use the
technique described in (2.3) for n = sk +t and t with 0 < t < k. It is easy to see
that ¢, = qsg+t = K° K + p*M,;. Hence we proved the following theorem.

Theorem 2.1. In the case D # 0, the n'" term of the sequence (q,) satisfies

_ Qk+(n mod k) — MGn mod kHL”/kJ _ Gk+(n mod k) — KGn mod kﬂln/kj.
K= K=

n

2.2. Case D =0
If D is zero, then k and p coincide with Ay /2. By Theorem 1, there exist complex

numbers u; and v;, j = 1,...,k such that
k
@0 = Y (uyn + 070 = U, £V, (2.5)
j=1
where
k k
U, = Zujs(]_l)"/@"/k, V, = Zvje(j_l)"fi”/k. (2.6)
j=1 j=1

Then ¢q; = tU; 4+ V4, together with (2.5) and (2.6) provides ¢4 = c((t+ k&)U + V5).
The unique solution of the system

U+ Vi=aq
K(t+ k) U + kV: = gy
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is

_ Gk — KOGt tqr — (E+ k)Ra

N kk kk '

Consequently, if n = sk 4+t with 0 < t < k then, clearly, ¢, = k*(Un + V;), and
by the notation

U Vi =

W= Gtk — kG, V=1tqpr — (t+k)kg,

the following theorem holds.

Theorem 2.2. If D =0 then
1 [n/k]—-1
an = 5 (wn -+ ) R/,
where w = qk+(n mod k) — RGn mod k and v = — (n mod k) Qk+(n mod k) + (k +

(nmod k))Kdn mod k-

Note, that the application of Theorems 2.1 and 2.2 results a more precise for-
mula for the term ¢, if &k is fixed. In the next two sections, we go into details in the
cases k = 2 and k = 3. We derive Theorem 5 in [2] as a corollary of Theorem 2.1
with k = 2.

3. The 2-periodic binary recurrences

Suppose that bd # 0 and |go| + |g1| # 0 hold in (1.1). It is known, that the terms
of the recurrence (g,,) satisfy the recurrence relation

gn = (ac+ b+ d)gn—2 — bdgn_g, n >4

of order four, where the initial values are, obviously, qo, q1, g2 = aq1 + bgy and
g3 = (ac+ d)q1 + bego. Put D = (ac + b+ d)* — 4bd. Thus the zeros of the
polynomial ps(z) = 22 — (ac + b+ d)x + bd are

ac+b+d++D ac+b+d—+D
= 3 and 0= 5 .

3.1. Case D # 0

First assume that n is even, i.d., ¢ = (n mod 2) = 0 holds in Theorem 2.1. Thus
we obtain
_ 92— M0 cln/2] _ 42 — k4o ,LLL”/ZJ.
K— U K— [
Clearly, g2 — pqo = aq + (b — £)qo, further g2 — kqo = aq1 + (b — £)qo-
Suppose now, that n is odd, i.d., t = 1. Now Theorem 2.1 results

an

_ 33— rn ln/2l _ 43 — ka1 Mtn/%-
K= K=

n
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Obviously, g3 — pq1 = (ac +d — p)q1 + (bc)go = (k — b)q1 + (be)qo, similarly
g3 — rqL = (1= b)a1 + (be)go-
To join the even and odd cases together, we introduce
en = a' " M (k — 1) Mgy + (b — 1) 75 (be) M gq
and
ey = a' ¢ (1 — ) M gy 4 (b — &) E) (be) M g,
where £(n) = (nmod 2) is the parity function. Thus
e kM2 — e, uln/2l
K— '
Observe that (3.1) returns with the explicit formula given in Theorem 5 of
[2] if b =d =1and g = 0, ¢t = 1. Indeed, now e, = a' ¢ (x — 1)),
e, = a8 (1 — 1)) which together with ack = (k — 1) and acp = (u — 1)?
provide

Qn = (3.1)

@S (5 1)t (1)
T @l =) = (= 1)
Clearly, by « = k—1 and § = u—1, (3.2) coincides with the statement of Theorem 5
in [2].

(3.2)

3.2. Case D =0

Note, that neither [2] nor [6] worked this subcase out. Observe, that D = 0 is
possible, for example, let b = rs2, d = rt?, further ¢ = r and ¢ = 4st — 5% — ¢,
Clearly, k = p = (ac+ b+ d)/2.

Assume first that n is even, or equivalently ¢ = 0. Then w = ¢ — kqy =
aqi + (b — K)qo, while v = 2rqp.

Supposing t = 1, it gives w = g3—kq1 = (ac+d—k)q1+(bc)go = (k—b)g1+(bc)qo
and v = —(g3 — 3kq1) = (k + b)g1 — (bc)qo.

Henceforward,

1
I =35 (wn 4 v)rlV/2-1

describes the general case, where w = a'=¢(") (k — b)) gy 4 (b — k)16 (be)E(M g
and v = £(n)(k +b)gr + (=1)51 (26)' 50 (be) =M go.

4. The 3-periodic binary recurrences

This section follows the structure of the previous one. Let a,b,c,d, e, f and qo, g1
are arbitrary complex numbers with bdf # 0 and |qo| + |q1| # 0. For n > 2, the
terms of the sequence (g,,) are defined by

agn-1 + bgn—2, if n=0(mod 3);
Gn = § Cqn-1 + dgn—2, if n=1(mod 3);
eqn—1~+ fqn—2, if n=2(mod 3).
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It is known, that recurrence (g, ) satisfies the recurrence relation
gn = (ace +bc+de +af) qn—3 + bdf gn—¢

of order six, where the initial values are

90, 41,92 = €q1 + fqo,
q3 = (ae +b) q1 +afqo,
qa = (ace + be + de) 1 + (acf + df) qo,

g5 = (ace2 + bee + de? +aef+bf) q + (acef+def+af2) qo-
Put D = (ace + be + de + af)2 + 4bdf. Thus, the roots of the polynomial
p3 () = 22 — (ace + be + de + af) x — bdf
are

K_(ace—i—bc—i—de—l—af)—l—\/ﬁ and ~ (ace +be+de+af) — VD

2 H= 2

In the sequel, we need the sequence (a,) defined by a,, = 1 if 3 divides n, and
a, = 0 otherwise.

4.1. Case D # 0
The consequence of Theorem 2.1 is the nice formula

enrl/3] ¢ pln/3]

dn = 3
K=t
where
e = (ae+b)"" (k —af)*** (ek + fb)"" ' 1
+(af — )" (f (ac+d)*** (f (k= be)) ™" qo,
and

ey = (ae —+ b)an (,u . af)an+2 (e# + fb)awd @
(af = )™ (F (ae+ )" (F (1= b)) gp.

Indeed, for t =0,1,2

(ae +b)q1 + (af — p)qo,  ift=0;
Giyz — g =< (k—af)q1 + (ac+d)fqo, ift=1; (4.1)
(er + fb)ar + (K = be) fqo, ift =2,

and ¢;y3 — kg; can similarly be obtained from (4.1) by switching x and p.
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4.2. Case D =0

When ¢t = 0 we obtain w = (ae 4+ b)q1 + (af — K)qo, ¥ = 3kqo. Secondly, t = 1

yields w = (k — af)q1 + (ac + d) fqo and v = (2k + af)q1 — (ac + d) fqo. Finally,

w=(ke+bf)q1 + (k —bc)fqo and v = (ke — 2bf)q1 + (k + 2bc) fgo when t = 2.
So, we obtain

an = % (wn + v) kW31
where
w = (ae+b)"" (k — af)*"*? (ke — bf)*"*' ¢
+ (af = 5)"" ((ac+d) )" (5 = be) £)*** qo
and

v=_1-ap) (26 +af)" " (ke —2bf)"" " ¢
+(31)™ (=(ac+ d) )"+ ((k + 20) )" go.

5. Constant subsequences in 2-periodic binary re-
currences

In the last section we solve the problem posed in 2.2.2 of [6]. There, after pointing

on few examples, the author claim a general sufficiency condition for the sequence

(1.1) to be constant from a term ¢, (actually, v = 1 was asked in [6]). The
forthcoming theorem describes the complete answer.

Theorem 5.1. The sequence (q,) takes the constant value ¢ € C from the vth
terms (v > 0) if and only if one of the following cases holds.

1. gqo = ¢1 =0, further a, b, ¢, d are arbitrary, (v =0, ¢=0),
2. QOZQ1ZQ#O;a+b:1;C+d:1; (VZO; Q%O)}

3. qo # 0 is arbitrary, ¢ = 0, b = 0, moreover a, ¢, d are arbitrary, (v = 1,
q=0),

4. qo # q is arbitrary and ¢ = q with q # 0, anda =1, b =0, c+d =1,
(v=1,q#0),

5. qo and 1 # 0 are arbitrary, b, ¢ are arbitrary, a = —bqo/q1, d =0, (v =2,
q=0),

6. qo and q1 # q are arbitrary with ¢1 # qo and ¢ = aq1 + bqy, where a +b =1,
a#1l,¢c=1,d=0, (v=2,q+#0),

7. qo and q1 # 0 are arbitrary, a # 0 and ¢ are arbitrary, b = 0, d = —ac,
(V = 3; q= 0)’
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8. qo and q1 # cqo are arbitrary, where a # 0 and ¢ # 0 are arbitrary, b = —ac,
d=0, (v=4,q=0).

Proof. Obviously, each of the conditions appearing in Theorem 5.1 is sufficient.
We are going to show that one of them is necessary. Suppose that the sequence
(¢n) takes the constant value ¢ € C from the v terms.

I. First assume that v > 5 is an integer. We introduce the notation (u,v) =
(a,b) and (u,0) = (¢,d) if v is odd, while (u,v) = (¢,d) and (@,0) = (a,bd) if v is
even. Then the equations

Qu—3 = UQy_4 +Vq,_5 qQv—2 = aqufi% + {)QV74
Qu—1 = Uqy—2 +Vq,_3 q = Uqy,—1+0q,—2
q = uq+vqy—1 q = uq + 0q
q = ug+vq

hold, where ¢ # g, —1. The last two equations in the left column imply v(g,—1—¢q) =
0. Therefore v = 0 follows, and it simplifies the whole left column.

If ¢ # 0 then v = 1 and @ + ¢ = 1 fulfill. Hence ¢q,—1 = ¢,_2, consequently
q = Uqy_1 + Vq,_o leads to ¢ = q,,_1 and we arrived at a contradiction.

Consider now the case ¢ = 0. Thus ¢, _1 # 0, and then we have the system

qv—-3 = UQy—4 Qu—2 = Uqy—3 + Vqy—4
qv—-1 = Uqp—2 0= Uqy—1 + 0qy—2

to examine. Clearly, ug,_2 # 0. The equalities in the second row provide 0 =
uilqy—2 4 0q,—2, subsequently (ut 4 0)q,—2 = 0, and then ui + 0 = 0. Insert it to
Gu—2 = UlqG,—4 +0G,—4 (coming from the first row), and we obtain ¢, _» = 0, which
is impossible.

Hence, we have shown that if the constant subsequence of (g,) starts at the
term g, then necessarily v < 4.

II. In the second place we assume that v < 4 and distinguish five cases. Note,
that for the subscript k > v the equalities gx12 = aqrr1 + bqk, qr+2 = cqrr1 + dgx
simplify to

q=aq+bq, q=cq+dg, (5.1)

respectively.
v=0. If ¢ =0 then ¢ = ¢ = 0 and, trivially, all the coefficients a,b,c and d

are arbitrary. If ¢ # 0 then ¢y = ¢1 = ¢ and (5.1) must hold. Consequently,
a+b=1and c+d=1 follow.

v =1. Here qo # q. Further, ¢ = aq+ bqo, together with the first equality of (5.1)
provides b(go — ¢) = 0. Thus b = 0.

Clearly, ¢ = 0 satisfies both (5.1) and ¢ = aq+bqp without further restrictions
on a,b and c.

If ¢ is non-zero, then (5.1) and b =0 imply a =1 and ¢+ d = 1.



34 N. Irmak, L. Szalay

v =2. Besides (5.1), we also have
q=aq +bg, q=cqg+dp (5.2)

with g1 # ¢. The last equality and the second property of (5.1) give d = 0
via d(¢1 —q) = 0.

Assume first ¢ = 0. Then, except 0 = aq; + bqo, all the equalities in (5.1) and
(5.2) are fulfilled. Since g1 # 0, we can write a = —bqp/q1. Obviously b and
c are arbitrary.

If ¢ % 0 then ¢ = 1 and a + b = 1 follow. The value of the constant ¢ is
aqi + bgg. Observe, that a # 1 otherwise b = 0, and then ¢; = ¢ would come.

v =3. Now ¢z # ¢q. The conditions g2 = aqi +bqg, ¢ = cq2 + dq1, ¢ = ag+ bgs and
(5.1) are valid. Thus b(g2 — ¢) vanish, i.e. b = 0. Hence we obtain the system

G2 = aq q = cq+dq
g = aq g = cq+dq

Suppose first that ¢ = 0. Then g2 = agq; and 0 = c¢qg2 + dg; provide 0 =
(ac + d)q1. Since ¢ = 0 would give go = 0 therefore ac + d must be zero,
so d = —ac. Also a # 0 holds, otherwise g = 0 leads to a contradiction.
Clearly, c is arbitrary.

Assume now that ¢ is non-zero. Thus, from the last system above, we
conclude ¢ = 1, ¢+ d = 1 and ¢2 = ¢q1.- Hence, the remaining equation
q = cqz2 + dq1 becomes ¢ = cqz + (1 — ¢)gz2, and we arrived at a contradiction
by q¢ # g2. Subsequently, ¢ # 0 does not provide a constant sequence from
the third term.

v = 4. The technique we apply resembles us to the previous cases. Here g3 # q.
We have g2 = aq1 +bqo, g3 = cq2 +dq1, ¢ = ags +bga, ¢ = cq +dgs and (5.1).
Similarly, d(gs — ¢) implies d = 0. Thus

g2 = aqi + bqo g3 = cqo
q = aqz + bgo q=cq
q = aq+bq

If ¢ = 0 then g3 = ¢q2 # 0, further 0 = ags +bge and g3 = cqo yield ac+b = 0.
Clearly, ¢ # 0. Moreover a # 0 holds, otherwise b =0 and go =0 and ¢3 =0
follow. Finally, q1 # cqo since go # 0.

The assertion g # 0, similarly to the case v = 3, leads to a contradiction. [J
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