
Rotation about an arbitrary axis and
reflection through an arbitrary plane

Emőd Kovács

Department of Information Technology
Eszterházy Károly College

emod@ektf.hu

Submitted April 22, 2012 — Accepted November 7, 2012

Abstract

The aim of this paper is to give a new deduction of Rodrigues’ rotation
formula. An other benefit of the this deduction is to give a transforma-
tion matrix of reflection through an arbitrary plane with the same deduction
method. In our opinion this deduction method is better for students, who
are learning computer graphics.

Keywords: Point transformation, Transformation Matrix, Rotation, Reflec-
tion, Rodrigues’ rotation formula,

MSC: Primary 68U05, Secondary 65D18

1. Introduction

In the theory of three-dimensional (3D) rotation Rodrigues’ rotation formula (see
[7]) is an efficient matrix for rotating an object around arbitrary axis. In this paper
we will deduct the matrix form in a different way from the well known method which
is published in Rodrigues’ paper [7], cited in Johan’s paper [6] and also described in
Wolfram Mathworld site (see [1]). First we give a short introduction of linear point
transformation, then we inroduce a new deduction of reflection about an arbitrary
axis. Next, we will prove, that our matrix is analogous to the original Rodrigues’
formula. In section three, we describe a matrix of reflection through an arbitrary
plane, which is a consequence of our deduction.

Annales Mathematicae et Informaticae
40 (2012) pp. 175–186
http://ami.ektf.hu

175

1.1. Linear Point Transformation
Three dimensional point transformation is one of the well known computer graphics
methods, when we manipulate the points of objects, like rotate, translate and scale.
Based on the advantages of homogeneous coordinates, 3D transformations can be
represented by 4 × 4 matrices (see [2] and [3]). Generally the following matrix
equation describes the point transformation.

p′ = M · p, (1.1)



x
′
1

x
′
2

x
′
3

x
′
4


 =




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44


 ·




x1
x2
x3
x4


 .

When we use more 3D transformations after each other, it is constructed of matrix
multiplications (see [8]), therefore composition of 3D transformation can be repre-
sented by the multiplication of transformation matrices. The order of multiplication
depends on the original form of matrix equation, since the matrix multiplication
was noncommutative operation. If we multiply the point from left with the trans-
formation matrix in Eq. (1.1), then we must multiply the transformation matrices
in reverse order. Lets M1 the first, M2 the second transformation matrix, then

p′ = M1 · p, p′′ = M2 · p′.

Using the associative property it becomes

p′′ = M2 · (M1 · p) = (M2 ·M1) · p.

Therefore we multiply the matrices in reverse order M3 = M2 ·M1, from that

p′′ = M3 · p.

If the point is multiplied by the transformation matrix from the right, then it means
the equivalent system. Some graphics library, e.g. DirectX use the latter method,
in this case these system use the transposed matrices.

In this paper we deal with the general case of rotation about an arbitrary axis
in space. It frequently occurs e. g. in robotics, animation and simulation.

2. Rotation about an arbitrary axis

If we want to construct rotation about an arbitrary axis, then we have a good solu-
tion namely Rodrigues’ rotation formula, see [1] on Wolfram MathWorld site. Lots
of literatures and internet sources give this method. The problem is that the math-
ematical deduction is not suited for the previous section from methodical aspect.
Lots of students could not understand the mathematical deduction of Rodrigues’
formula, which is presented on the Wolfram MathWorld site, and therefore some

176 E. Kovács

of them could not use it. When we teach basic point transformations and we try
to extend it towards the composition of 3D transformations, then it could be a
good example about the rotation about an arbitrary axis. It would be better if we
can give the Rodrigues’ rotation matrix with the composition of basic linear point
transformations, and apply multiplication of transformation matrices. In this pa-
per we deduce the rotation matrix and prove the computed matrix is an equivalent
of the Rodrigues’ formula. Anyone can find the deduction in Rogers’s textbook [8],
but now we continue the computation.

The basic idea is to make the arbitrary rotation axis coincide with one of the
coordinate axis. Assume an arbitrary axis in space passing through the point
P0 (x0, y0, z0) and P1 (x1, y1, z1) .

Figure 1: Rotation about an arbitrary axis

In this case rotation about this axis by some angle θ is accomplished using the
following procedure:

1. Translate the P0 (x0, y0, z0) axis point to the origin of the coordinate system.

2. Perform appropriate rotations to make the axis of rotation coincident with
z-coordinate axis.

3. Rotate about the z-axis by the angle θ.

4. Perform the inverse of the combined rotation transformation.

5. Perform the inverse of the translation.

Rotation about an arbitrary axis and reflection through an arbitrary plane 177

For the simplicity we compute the u =P1 − P0 vector, which after the normal-
ization can give us the direction cosines of axis:

ue :=
u

|u| = (cx, cy, cz) .

In Fig. 2 the direction cosines are satisfied the following equation:

c2x + c2y + c2z = 1,

cosφx = cx, cosφy = cy, cosφz = cz.

Figure 2: Direction cosines

The required translation matrix is

T(−p0) =




1 0 0 −x0
0 1 0 −y0
0 0 1 −z0
0 0 0 1


 .

In the next step the procedure requires two successive rotation about the x-axis
by the angle θx and y-axis by the angle θy. After the rotation around the the x-axis
the original rotation axis will be in the [x, z] coordinate pane. (See Fig. 3).

From the Fig. 3 comes d =
√
c2y + c2z, and we do not calculate explicitly the

angle θx, because we only use its sin and cosine values in the rotation matrix:

sin θx =
cy
d
, cos θx =

cz
d
.

178 E. Kovács

Figure 3: Rotation around x-axis

The rotation matrix is

Rx(θx) =




1 0 0 0
0 cz/d −cy/d 0
0 cy/d cz/d 0
0 0 0 1


 . (2.1)

We can get the second rotation matrix in a similar way, where we rotate around
the y-axis by angle θy.

Figure 4: Rotation around y-axis

Rotation about an arbitrary axis and reflection through an arbitrary plane 179

From the Fig. 4 comes

sin θy = d, cos θy = d.

The rotation matrix is with negative direction

Ry(−θy) =




d 0 −cx 0
0 1 0 0
cx 0 d 0
0 0 0 1


 . (2.2)

The complete transformation is

M = T−1(−p0)R
−1
x (θx)R

−1
y (−θy)Rz(θ)Ry(−θy)Rx(θx)T(−p0), (2.3)

where the upper index −1 means the inverse transformation, so

M = T(p0)Rx(−θx)Ry(θy)Rz(θ)Ry(−θy)Rx(θx)T(−p0), (2.4)

where we used the reverse multiplication order as we mentioned in the previous
section. The computation is finished at this point in Rogers’s textbook [8].

Now we are giving one of our new results, and in the section 2.1 we are proving
the formulas with Maple computer algebra system.

The formula in (2.3) can be enough, if someone only use the basic transformation
matrices in the matrix class of the graphics engine. But methodically for the
better understandability and based on our students searching practice in internet
literature, we must continue the calculation.

Let multiply the inside five matrices

R = Rx(−θx)Ry(θy)Rz(θ)Ry(−θy)Rx(θx), (2.5)

and
M = T(p0)RT(−p0).

Consider that the inverse of rotation matrix equals with the transposed matrix,
we get

R = RT
x (θx)R

T
y (−θy)Rz(θ)Ry(−θy)Rx(θx). (2.6)

In the next section we are going to prove that if we expand the matrix multipli-
cation in Eq. (2.5), then we get the general Rodrigues’ form. In [9] or in [1] we can
find the totally different deduction of the Rodrigues’ form, but as we mentioned
we are not satisfied the authors deduction way, therefor we give a new solution.
The Maple CAS is very robust and efficient tool for calculating multiplication of
transformation matrices.

180 E. Kovács

2.1. Proof with Maple
The main problem of the proof is that multiplication of five matrices in Eq. (2.6).
In order to correct calculation we used Maple computer algebra system (CAS). In
[4] and [5] the author explains why Maple is a useful tool for teaching computer
graphics in higher education. In Eszterházy Károly College we use CAS software in
teaching undergraduate students studiing Software Information Technology bach-
elor course.

We can use the power of the linalg package of Maple, to easily multiply the five
matrices.

The Maple command is
> rod:=simplify(Transpose(RX).Transpose(RY).RZ.RY.RX);
where we used that the transposed rotation matrix equals the inverse of the

rotation matrix, and the “rod” means the Rodrigues’ form. After we used the
built-in simplify function we got the output in Fig. 5.

Figure 5: First result in Maple

The computed formula is extremely complicated. So we must look for other

Rotation about an arbitrary axis and reflection through an arbitrary plane 181

simplification possibilities. We can use the combination of simplify and substitution
functions repeatedly:

for i from 2 to 3 do
for j from 2 to 3 do
rod [i , j] := s imp l i f y (subs ({ cx^2=1−(cy^2+cz ^2)} , rod [i , j])) ;

od ;
od ;

We can see the output in Fig. 6. The collect function was used many times, which

Figure 6: After the simplification

collected coefficients. One of them is the following:

rod [1 , 1] := c o l l e c t (rod [1 , 1] , cos (theta)) ;

After we use the cy2+ cz2 = 1− cx2 equation we get better form. In this paper
we do not give the total Maple worksheet. The reader can download it from the
following link:
http://aries.ektf.hu/˜emod/mapleporoof.html

Finally we got the following result:




cos θ + c2x(1− cos θ) cxcy(1− cos θ)− cz sin θ cxcz(1− cos θ) + cy sin θ 0
cycx(1− cos θ) + cz sin θ cos θ + c2y(1− cos θ) cycz(1− cos θ)− cx sin θ 0
czcx(1− cos θ)− cy sin θ czcy(1− cos θ) + cx sin θ cos θ + c2z(1− cos θ) 0

0 0 0 1


 .

Obviously the result is analogous with the Rodrigues’ formula in the MathWorld
sites. (http://mathworld.wolfram.com/RodriguesRotationFormula.html)

Over 90% of the built-in commands in maple are programmed in Maple’s own
Pascal-like programming language. Beside this Maple also give exporting facilities
to other programming languages. For example the C command translates the Maple
pretty output to ANSI C code. The result was converted to C code in optimized
form. When we develop new application, then with the help of “copy paste method”

182 E. Kovács

we can put the code easily into the our C, C++, C# or Java program code. Maple
command:

C(rod , opt imize) ;

Maple output in C:

t1 = cos (theta) ; t2 = −t1 + 0 .1 e1 ; t3 = cx ∗ cx ;
t7 = t2 ∗ cy ∗ cx ; t8 = s i n (theta) ; t9 = t8 ∗ cz ;
t11 = t2 ∗ cz ; t12 = t11 ∗ cx ; t13 = t8 ∗ cy ;
t16 = cy ∗ cy ; t19 = t11 ∗ cy ; t20 = cx ∗ t8 ;
t24 = cz ∗ cz ;

cg0 [0] [0] = t2 ∗ t3 + t1 ; cg0 [0] [1] = t7 − t9 ;
cg0 [0] [2] = t12 + t13 ; cg0 [0] [3] = 0 .0 e0 ;

cg0 [1] [0] = t7 + t9 ; cg0 [1] [1] = t2 ∗ t16 + t1 ;
cg0 [1] [2] = t19 − t20 ; cg0 [1] [3] = 0 .0 e0 ;

cg0 [2] [0] = t12 − t13 ; cg0 [2] [1] = t19 + t20 ;
cg0 [2] [2] = t2 ∗ t24 + t1 ; cg0 [2] [3] = 0 .0 e0 ;

cg0 [3] [0] = 0 .0 e0 ; cg0 [3] [1] = 0 .0 e0 ;
cg0 [3] [2] = 0 .0 e0 ; cg0 [3] [3] = 0 .1 e1 ;

3. Reflection through an arbitrary plane

It is often necessary to reflect an object through an arbitrary plane other than one
of the coordinate planes like x = 0, y = 0 and z = 0. We can deduct the trans-
formation matrix similar to what was described in the previous section. The basic
idea is to make the arbitrary reflection plane coincide with one of the coordinate
planes. Assuming an arbitrary plane in space is given by three points P0 (x0, y0, z0),
P1 (x1, y1, z1) and P2 (x2, y2, z2), these points are noncollinear.

According to the previous section one possible procedure is:

1. Translate the reflection plane to the origin of the coordinate system with the
help of known P0 (x0, y0, z0) point.

2. Perform appropriate rotations to make the normal vector of the reflection
plane at the origin until it coincides with the +z-axis (see Eqs. (2.1) and
(2.2)); this makes the reflection plane the z = 0 coordinate plane.

3. After that reflect the object through the z = 0 coordinate plane.

4. Perform the inverse of the combined rotation transformation in step 2.

5. Perform the inverse of the translation in step 1.

Rotation about an arbitrary axis and reflection through an arbitrary plane 183

From the three points of the reflection plane is easy to calculate the normal
vector by the crossproduct of a = P1 − P0 and b = P2 − P0 vectors:

n = a× b.

For simplicity we normalize the normal vector, which can give us the direction
cosines similar to the previous section:

ne : =
n

|n| = (cx, cy, cz) .

In step 2 the rotation matrices will be the same that were used during the
rotation about an arbitrary axis. Finally the seven transformation matrices were
multiplied in reverse order:

M = T(p0)Rx(−θx)Ry(θy)R
(x,y)
eflectRy(−θy)Rx(θx)T(−p0).

Similar to the previous section we multiply the five inside matrices:

Reflect = Rx(−θx)Ry(θy)R
(x,y)
eflectRy(−θy)Rx(θx), (3.1)

then
M = T(p0)ReflectT(−p0). (3.2)

The general reflection matrix in Eq. (3.1) has no special name in the textbooks.
Similarly to the previous section we use the Maple computer algebraic system to
give a simplified form of the transformation matrix:

Reflect =




1− 2cxcx −2cycx −2czcx 0
−2cycx 1− 2cycy −2cycz 0
−2czcx −2cycz 1− 2czcz 0

0 0 0 1


 ,

since the inverse of reflection is the same with itself R−1eflect = Reflect. Good choice
to perform the multiplications in Eq. (3.2), because the result is not complicated:

Reflect=




1− 2c2x −2cxcy −2cxcz −2cxd
−2cxcy 1− 2c2y −2cycz −2cyd
−2cxcz −2cycz 1− 2c2z −2czd

0 0 0 1


 , (3.3)

where the d = −cxx0 − cyy0 − czz0. The previous matrix is a good result from the
methodological aspect, because the student also can find the similar version in the
D3DXMatrixReflect function of DirectX:

P = normalize(Plane);



−2 ∗ P.a ∗ P.a+ 1 −2 ∗ P.b ∗ P.a −2 ∗ P.c ∗ P.a 0
−2 ∗ P.a ∗ P.b −2 ∗ P.b ∗ P.b+ 1 −2 ∗ P.c ∗ P.b 0
−2 ∗ P.a ∗ P.c −2 ∗ P.b ∗ P.c −2 ∗ P.c ∗ P.c+ 1 0
−2 ∗ P.a ∗ P.d −2 ∗ P.b ∗ P.d −2 ∗ P.c ∗ P.d 1


 ,

184 E. Kovács

where the matrix equals the matrix in Eq. (3.3) after transposition. The
normalize(Plane) function normalizes the normal vector of the plane. P.a, P.b
and P.c are the coefficients in the plane equation, and obviously the coordinates of
normalized normal vector as well (see [10]):

P.a ∗ x+ P.b ∗ y + P.c ∗ z + P.d = 0,

and P.d contains the one point P (x0, y0, z0) of the plane as we mentioned above:

P.d = −P.a ∗ x0 − P.b ∗ y0 − P.c ∗ z0,

moreover P.d comes from the dot product of the normal vector and P (see [10]).
If our student use the deduction in the section 3, then the D3DXMatrixReflect
DirectX function becomes understandable without difficulties.

4. Conclusion

In this paper we proposed a better deduction of Rodrigues’ rotation formula than
you can find in a lots of literature (e.g see [1]). In other text book you can find
the similar deduction to our method (see [8]), but in this paper we continued the
deduction and demonstrate the equality between the result and the Rodrigues’
form. From the aspect of teaching computer graphics in higher education, our
method is better understandable for the students. Moreover, our deduction comes
naturally from the composition of 3D transformations. An additional benefit is
that our method is a good solution to deduct transformation matrix of reflection
through an arbitrary plane.

References

[1] Belongie, S., Rodrigues’ Rotation Formula, From MathWorld –A Wolfram Web
Resource, created by Eric W. Weisstein.
http://mathworld.wolfram.com/RodriguesRotationFormula.html

[2] Foley, J., van Dam, A.,Feiner, S., Hughes, J., Computer Graphics Principles
and Practice, Addison-Wesley, 1996.

[3] Juhász, I., Számítógépi grafika és geometria, Miskolci Egyetemi Kiadó, 1993.

[4] Kovács, E., Using some mathematical program in computer graphics teaching, 7th
ICECGDG Cracow. International Conference on Engineering Computer Graphics
and Descriptive Geometry July 18–22. 1996. Conference Proceedings Volume 2 p.
546–549.

[5] Kovács, E., Using Maple in teaching of computer graphics, International Conference
on Applied Informatics, Eger 1995. Conference Proceedings, p. 83–92.

[6] Mebius, J. E., Derivation of the Euler-Rodrigues formula for three-dimensional
rotations from the general formula for four-dimensional rotations., arXiv General
Mathematics 2007. http://arxiv.org/abs/math/0701759

Rotation about an arbitrary axis and reflection through an arbitrary plane 185

[7] Rodrigues, O., Des lois géométriques qui régissent les déplacements d’un systéme
solide dans l’espace, et de la variation des coordonnées provenant de ces déplace-
ments considérés indépendamment des causes qui peuvent les produire. Journal de
Mathématiques 5, 1840, 380–440.

[8] Rogers, D. F., Adams, J. A., Mathematical elements for computer graphics,
Second Edition, McGraw-Hill publishing Company, 1990.

[9] Watt, A., Policarpo, F., 3D Games: Real-Time Rendering and Software Tech-
nology, New York : ACM Press, 2001.

[10] Weisstein, Eric W., From MathWorld – A Wolfram Web Resource
http://mathworld.wolfram.com/Plane.html

186 E. Kovács

