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Abstract

This paper considers the visual smoothness of interpolating curves. It
will examine skinning algorithms in detail. Especially the 2D ball skinning
algorithms will be covered. Slabaugh introduced an energy function [1] and
Kunkli defined a process to find the touching points [2] and made an elegant
skinning method with Hoffmann based on classical geometry [3]. I will try to
give a simple metric for visual smoothness based on the number of direction
change of the yielded interpolation curve. Minimizing this metric will give
the best visual result.
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1. Introduction

Skinning algorithms are gaining more and more popularity in industry, engineering,
design and art. They provide an intuitive and effective way to describe complex
shapes.

These complex shapes can include the face and the body of three dimensional
avatars. If an avatar’s face shall be customized, for example to follow the viewer’s
physiognomy, then a skinning surface is needed. This surface can be considered
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better or nicer, if it is smoother. I will investigate this visual smoothness by the
aspect of direction changes among generated curves.

In the following, 2D ball skinning algorithms will be covered. Let’s take a series
of circles. Slabaugh introduced an energy function for making a skinning curve (see
Figure 1).

Figure 1: Slabaugh’s skinning curves for the series of circles
and the zoomed wavy inner part

If the inner part is enlarged, it can be noticed that the inner curve is very wavy.
If we take the same enlarged inner part of the Kunkli-Hoffmann’s algorithm, it can
be noticed that the inner curve is following only one direction (see Figure 2). There
are no inflection points.

It seems that the number of the inflection points of a curve is a good measure
for the visual smoothness.

Figure 2: The result of the Kunkli-Hoffmann interpolation curve
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2. Measurement for Visual Smoothness

Let’s introduce a measure that will sum the inflection points of the Bézier curve
parts that make up the whole curve.

“The algebraic form of a parametric cubic belongs to one of three projective
types, as shown in Figure 4. Any arbitrary cubic curve can be classified as a
serpentine, cusp, or loop. A very old result (Salmon 1852) on cubic curves states
that all three types of cubic curves will have an algebraic representation that can
be written k3− lmn = 0, where k, l, m, and n are linear functionals corresponding
to lines k, l, m, and n as in Figure 3.

k

l m
n

l
mn

k

l m n

k

a) b) c)

Figure 3: All parametric cubic plane curves can be classified as the
parameterization of some segment of one of these three curve types.
a) Serpentine curve. This curve has three collinear inflection points

(on line k) with tangent lines l, m and n at those inflections.
b) Loop curve. This curve has one inflection and one double point
with k the line through them. The lines l and m are the tangents to
the curve at the double point and n is the tangent at the inflection.
c) Cusp curve. This curve has one inflection point and one cusp,
with k the line through them. The line l = m is the tangent at the

cusp and n is the tangent at the inflection. [4]

A cubic Bézier curve in homogeneous parametric form is written

C(s, t) = [(s− t)3 3(s− t)2s 3(s− t)2s2 s3] ·


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where the bi are cubic Bézier control points.
The first step is to compute the coefficients of the function I(s, t) whose roots

correspond to inflection points of C(s, t). An inflection point is where the curve
changes its bending direction, defined mathematically as parameter values where
the first and second derivatives of C(s, t) are linearly dependent. The derivation
of the function I is not needed for the current purposes. For integral cubic curves,

I(s, t) = t(3d1s
2 − 3d2st+ d3t

2),
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where

d1 = a1 − 2a2 + 3a3,

d2 = −a2 + 3a3,

d3 = 3a3

and

a1 = b0 · (b3 × b2),

a2 = b1 · (b0 × b3),

a3 = b2 · (b1 × b1).

The function I is a cubic with three roots, not all necessarily real. It is the number
of distinct real roots of I(s, t) that determines the type of the cubic curve. For
integral cubic curves, [s t] = [1 0] is always a root of I(s, t). This means that the
remaining roots of I(s, t) can be found using the quadratic formula, rather than by
the more general solution of a cubic – a significant simplification over the general
rational curve algorithm.

The cubic curve classification reduces to knowing the sign of the discriminant
of I(s, t), defined as

discr(I) = d21(3d
2
2 − 4d1d3).

If discr(I) is positive, the curve is a serpentine; if negative, it is a loop; and if zero,
a cusp. Although it is true that all cubic curves are one of these three types, not
all configurations of four Bézier control points result in cubic curves. It is possible
to represent quadratic curves, lines, or even single points in cubic Bézier form. The
procedure will detect these cases, and the rendering algorithm can handle them. It
is not needed to consider (or render) lines or points, because the convex hull of the
Bézier control points in these cases has zero area and, therefore, no pixel coverage.
The general classification of cubic Bézier curves is given by Table 1.

Serpentine discr(I) > 0
Cusp discr(I) = 0
Loop discr(I) < 0
Quadratic d1 = d2 = 0
Line d1 = d2 = d3 = 0
Point b0 = b1 = b2 = b3

Table 1: Cubic Curve Classification

If the Bézier control points have exact floating-point coordinates, the classifica-
tion given in Table 1 can be done exactly. That is, there is no ambiguity between
cases, because discr(I) and all intermediate variables can be derived from exact
floating representations.” [5]

A serpentine has three inflection points while a cusp have one inflection point.
Bézier curves of other type will have one inflection point if b0 and b3 are on the
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two different sides of the line defined by b1 and b2. It can be easily determined by
the scalar product of the homogeneous coordinates of the control points and the
equation of the line.

To define an exact measurement for visual smoothness, the number of these
inflection points shall be summarized. This measurement shall be extended by
the inflection points at the joining points of the Bézier curves that make up the
interpolating curves used for skinning the series of circles.

Two joining Bézier curves defined by (b0,b1,b2,b3) and (b3,b4,b5,b6) will
have an inflection point in the joining b3 control point if b1 and b5 are on the
different sides of the line defined by b2, b3 and b4 control points.

The final measurement will be the summarized inflection points inside the Bézier
curves and the inflection points at the joining end points of the curves.

Figure 4 shows that Slabaugh’s algorithm has five, while the Kunkli-Hoffmann’s
curve has only four inflection points on the top skinning curves.

Figure 4: Second example for Slabaugh and Kunkli-Hoffmann
curves for the same series of circles

3. Results

Examining the interpolating inner curves only of the last six inner circles of the
series of Figure 1 and Figure 2 shows that Slabaugh’s curve has five inflection point
among the six circles while Kunkli-Hoffmann’s curve has none. Even on the more
complex Figure 4 this ratio is five to four. Thus, in both cases the second curve is
more smooth.

Testing for further arrangements, Kunkli-Hoffmann’s interpolation curves usu-
ally have fewer inflection points and this way they yield a more smooth interpo-
lating curve. By using these more smooth curves and surfaces, better customized
sulutions can be provided for simulations or avatars’ heads and bodies.
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