Annales Mathematicae et Informaticae 40 (2012) pp. 145–153 http://ami.ektf.hu

The rank of certain subfamilies of the elliptic curve $Y^2 = X^3 - X + T^{2*}$

Petra Tadić†

Institute of Analysis and Computational Number Theory Technische Universität Graz, Graz, Austria tadic@math.tugraz.at

Submitted May 24, 2012 – Accepted October 13, 2012

Abstract

Let E be the elliptic curve over $\mathbb{Q}(T)$ given by the equation

 $E: Y^2 = X^3 - X + T^2.$

It is known that the torsion subgroup is trivial,

rank $_{\mathbb{C}(T)}(E) = 2$ and rank $_{\mathbb{O}(T)}(E) = 2$.

We find a parametrization of rank ≥ 3 over the function field $\mathbb{Q}(a, i, s, n, k, l)$ where $s^2 = i^3 + a^2$. From this we get families of rank ≥ 3 and ≥ 4 over fields of rational functions in four variables and a family of rank ≥ 5 parametrized by an elliptic curve of positive rank. We also found a particular elliptic curve with rank ≥ 11 .

Keywords: parametrization, elliptic surface, elliptic curve, function field, rank, family of elliptic curves, torsion

MSC: 11G05

1. Introduction

Let E be the elliptic curve over $\mathbb{Q}(T)$ given by the equation

$$
Y^2 = X^3 - X + T^2.
$$

[∗]I would like to thank professor Andrej Dujella for his guidance and discussions on the topic of this paper.

[†]The author was supported by the Ministry of Science, Education and Sports, Republic of Croatia, grant 037-0372781-2821 and by the Austrian Science Fund (FWF): P 24574-N26.

In [2, Theorem 1], Brown and Myers proved that if $t \geq 2$ is an integer, the elliptic curve $E_t: Y^2 = X^3 - X + t^2$ has rank at least 2 over Q, with linearly independent points $(0, t)$ and $(-1, t)$. They also prove that there are infinitely many integer values of t for which the elliptic curve E_t over $\mathbb O$ has rank at least 3. In [5], Eikenberg showed that the torsion subgroup is trivial, the rank of the group $E(\mathbb{Q}(T))$ equals 2 as does the rank of $E(\mathbb{C}(T))$, both groups have as generators the points $(0, T)$ and $(1, T)$. These results follow also from the more general result by Shioda (see [14, Theorem A_2]). Eikenberg gives quadratic polynomials $T(n) \in \mathbb{Q}[n]$ for which $E_{T(n)}(\mathbb{Q}(n))$ is of rank at least 3, [5, Theorem 4.2.1.]. He also shows that there are infinitely values of t for which E_t has rank at least 5.

In this paper we find a subfamily of E for which the rank over the function field $\mathbb{Q}(a, i, s, n, k, l)$ where $s^2 = i^3 + a^2$ is ≥ 3 and three independent points are listed. From this we get families of rank ≥ 3 and ≥ 4 over fields of rational functions in four variables and a family of rank ≥ 5 over an elliptic curve of positive rank. We also found a particular elliptic curve with rank > 11 .

In [16], an elliptic curve $Y^2 = X^3 - T^2X + 1$ was analyzed in a similar way, and the results obtained contain some resemblances with the results of this paper.

2. Subfamilies of higher rank

We know that the elliptic curve E observed in this section and defined above, has rank 2 over $\mathbb{O}(T)$ and $\mathbb{C}(T)$, with generators $(0, T)$ and $(-1, T)$. First we give two subfamilies which have generic rank \geq 3 and we give the third independent point. By observing $T(n)$ which are polynomials in the variable n of degree 3 over \mathbb{Q} with an additional point with first coordinate $X(n)$ which is a polynomial in the variable n of degree 2 over $\mathbb Q$ on the elliptic curve $Y^2 = X^3 - X + T(n)^2$ over $\mathbb Q(n)$ (see [13, Theorem 10.10]), we obtain the following.

Theorem 2.1.

$$
For T_{\pm}^{(1)}(a,i,s,n,k,l) =
$$

$$
an^3 + (3ak + sl)n^2 + \left(3ak^2 + 2slk - al^2 \pm \frac{s}{i}\right)n - sl^3 - akl^2 + slk^2 \pm \frac{a}{i}l + ak^3 \pm \frac{s}{i}k,
$$

the elliptic curve $Y^2 = X^3 - X + T_{\pm_3}^{(1)}(a, i, s, n, k, l)^2$ has rank ≥ 3 over the function field $\mathbb{Q}(a, i, s, n, k, l)$ where $s^2 = i^3 + a^2$, with an additional independent point $C^{(1)}_{\pm}(a,i,s,n,k,l)$ with first coordinate

$$
X_{C_{\pm}^{(1)}}(a,i,s,n,k,l) = i(n+k)^2 - il^2.
$$

Proof. For

 $Y_{C_{\perp}^{(1)}}(a,i,s,n,k,l) = sn^3 + (al+3ks)n^2 + \frac{2aikl \pm a - isl^2 + 3isk^2}{i}n + \frac{-iskl^2 \pm ak -ail^3 + isk^3 + aik^2l \pm sl}{i},$ ± we have

$$
X_{C_\pm^{(1)}}(a,i,s,n,k,l)^3-X_{C_\pm^{(1)}}(a,i,s,n,k,l)+T_\pm^{(1)}(a,i,s,n,k,l)^2-Y_{C_\pm^{(1)}}(a,i,s,n,k,l)^2
$$

$$
= (-s2 + i3 + a2)q±(a, i, s, n, k, l) = 0,
$$

where $q_{\pm} \in \mathbb{Q}(a, i, s, n, k, l)$. Here we work over the function field $\mathbb{Q}(a, i, s, n, k, l)$ where $s^2 = i^3 + a^2$.

For the positive case the specialization $(a, i, s, n, k, l) \mapsto (6, -3, 3, 1, 1, 1)$ gives $T^{(1)}_+(6,-3,3,1,1,1) = 41$, and on the curve $E_{T^{(1)}_+(6,-3,3,1,1,1)}$: $Y^2 = X^3 - X + 41^2$ there are three corresponding points $(0, 41)$, $(-1, 41)$, $(-9, 31)$ which are independent points of $E_{41}(\mathbb{Q})$. This shows that the points from the claim of the theorem are independent elements of the group

$$
E_{T_+^{(1)}(a,i,s,n,k,l)}(\{\mathbb{Q}(a,i,s,n,k,l):s^2=i^3+a^2\}).
$$

The proof for $T_{-}^{(1)}$ is analogous, we used the same specialization.

Now we will construct two subfamilies of generic rank ≥ 4 by intersecting the families we have obtained. We try to find the solution to the equation

$$
T_{\pm}^{(1)}(a,i,s,n,k,l) = T_{\pm}^{(1)}\left(a, 2a \frac{a-s}{i^2}, a \frac{4a^2 - 4as + i^3}{i^3}, n, k_2, m\right),\,
$$

where actually $(i_2, s_2) := \left(2a \frac{a-s}{i^2}, a \frac{4a^2 - 4as + i^3}{i^3}\right)$ $\left(\frac{4as+i^3}{i^3}\right) = (i, s) + (0, a)$ on the elliptic curve $Y^2 = X^3 + a^2$. This gives a polynomial $P(n)$ in the variable n of degree two. Now we choose

$$
k_2 := \frac{1}{3} \frac{-4a^3m + 4a^2ms - ami^3 + 3aki^3 + sli^3}{i^3a}
$$

so that the coefficient of the polynomial $P(n)$ of the term n^2 is zero. Now that we have $P(n)$ a linear polynomial in n we can choose $n_{\pm}(a, i, s, k, l, m) := (256a^{10}m^3 1024a^9m^3s + (-288m^2ki^3 + 192m^3i^3 + 1536m^3s^2)a^8 + (864m^2ski^3 - 96m^2sli^3 1024m^3s^3 - 576m^3si^3)a^7 + (256m^3s^4 - 144m^2i^6k + 144i^5m - 96m^3i^6 + 288m^2s^2li^3 +$ $576m^3s^2i^3 - 864m^2s^2ki^3)a^6 + (288m^2i^6ks + 192m^3i^6s \pm 288i^5ms - 192m^3s^3i^3 + 192m^3s^2i^3)$ $288m^2s^3ki^3-48m^2i^6sl-288m^2s^3li^3)a^5+(96m^2s^4li^3\pm 108i^8k\mp 144i^5s^2m-32m^3i^9\mp$ $54li^8 + 72i^8m + 54kl^2i^9 + 96m^2i^6s^2l - 144m^2s^2i^6k - 96m^3s^2i^6 - 72m^2i^9k)a^4 +$ $(72m^2i^9ks-54kl^2i^9s+54sl^3i^9 \pm 72i^8sm \pm 90li^8s+32m^3i^9s \mp 162ski^8-24m^2i^9sl 48m^2s^3i^6l)a^3 + (\pm 54s^2ki^8 \pm 18i^{11}m \mp 36i^8s^2l - 54s^2l^3i^9 \pm 27i^{11}k + 18ki^9s^2l^2 +$ $(24m^2i^9s^2l)a^2 + (2s^3l^3i^9 - 18ki^9s^3l^2 \pm 9i^{11}sl)a - 2s^4l^3i^9)/(9ai^3(32a^7m^2 - 96a^6m^2s + 16s^4l^2l^2)$ $(16m^2i^3 + 96m^2s^2)a^5 + (-32m^2i^3s - 32m^2s^3)a^4 + (\mp 12i^5 + 16m^2s^2i^3 - 6l^2i^6 +$ $8m^2i^6)a^3 + (6l^2i^6s - 8m^2i^6s \pm 18i^5s)a^2 + (\mp 3i^8 \mp 6s^2i^5 - 2s^2l^2i^6)a + 2s^3l^2i^6)$ such that (1)

$$
T_{\pm}^{(1)}(a,i,s,n_{\pm}(a,i,s,k,l,m),k,l)=
$$

$$
=T_{\pm}^{\left(1\right) }\left(a,2 a\frac{a-s}{i^{2}},a\frac{4 a^{2}-4 a s+i^{3}}{i^{3}},n_{\pm} (a,i,s,k,l,m),\frac{1}{3}\frac{-4 a^{3} m+4 a^{2} m s- a m i^{3}+3 a k i^{3}+s l i^{3}}{i^{3} a},m\right) .
$$

 \Box

Proposition 2.2. Let

$$
S_{\pm}^{(1)}(a,i,s,k,l,m) := T_{\pm}^{(1)}(a,i,s,n_{\pm}(a,i,s,k,l,m),k,l),
$$

where n_{\pm} is given above and $T_{\pm}^{(1)}$ is as in Theorem 2.1. The elliptic curve

$$
Y^2 = X^3 - X + S_{\pm}^{(1)}(a, i, s, k, l, m)^2
$$

over the function field $\mathbb{Q}(a, i, s, k, l, m)$ where $s^2 = i^3 + a^2$ has rank ≥ 4 with four independent points, the two generators $(0, S_{\pm}^{(1)}(a,i,s,k,l,m))$, $(-1, S_{\pm}^{(1)}(a,i,s,k,l,m))$ mentioned in the introduction, and two additional points

$$
A^{(1)} \pm (a, i, s, k, l, m) := C_{\pm}^{(1)}(a, i, s, n_{\pm}(a, i, s, k, l, m), k, l)
$$

and

$$
B^{(1)} \pm (a, i, s, k, l, m) :=
$$

$$
C_{\pm}^{(1)}\left(a, 2a\frac{a-s}{i^2}, a\frac{4a^2-4as+i^3}{i^3}, n_{\pm}(a,i,s,k,l,m), \frac{1}{3}\frac{-4a^3m+4a^2ms-ami^3+3aki^3+sli^3}{i^3a}, m\right)
$$

(notation for $C_{\pm}^{(1)}$ from Theorem 2.1).

Proof. With the specialization $(a, i, s, k, l, m) \mapsto (6, -3, 3, 1, 1, 1)$ we prove that the above listed four points on the elliptic curve (over $\mathbb{Q}(a, i, s, k, l, m)$ where $s^2 =$ $i^3 + a^2$) are independent, since the specialization gives the elliptic curve

$$
E_{S_+^{(1)}(6,-3,3,1,1,1)}:Y^2=X^3-X+\left(-\frac{5647}{13122}\right)^2
$$

with the corresponding four independent points with first coordinates $0, -1, -\frac{805}{972}$, $\frac{7084}{729}$.

The proof for $S_{-}^{(1)}$ is analogous, by picking an adequate specialization. \Box

Remark 2.3. The variety (from Theorem 2.1)

$$
s^2 = i^3 + a^2
$$

can be observed as an elliptic curve $Y^2 = X^3 + T^2$ over the field $\mathbb{Q}(T)$. In [12, Corollary 8 it is shown that the torsion subgroup of $s^2 = i^3 + a^2$ over $\mathbb{Q}(a)$ is equal $\{O, (0, a), (0, -a)\}.$ This elliptic curve has rank 0 over $\mathbb{Q}(a)$. For more details see [6, p. 112]. Points on the variety $s^2 = i^3 + a^2$ from Theorem 2.1 can easily be obtained, for example $(a, i, s) = (6, -3, 3)$ is a point on the variety. For $a = 0$ we have $i = u^2$ and $s = u^3$, in this case $T_{\pm}^{(1)}(0, u^2, u^3, n, k, l)$ in Theorem 2.1 is a quadratic polynomial in n . We also have parametrizations of this variety $[3,$ Section 14.2]:

$$
\begin{cases}\n a(t) = 2t^3 - 1, \\
i(t) = 2t, \\
s(t) = 2t^3 + 1,\n\end{cases}
$$

For this parametrization Theorem 2.1 and Proposition 2.2 transform into:

Corollary 2.4.

- (i) Let $T_{\pm}^{(2)}(t, n, k, l) := T_{\pm}^{(1)}(2t^3 - 1, 2t, 2t^3 + 1, n, k, l) = ((4t^4 - 2t)n^3 + ((4l + 12k)t^4 +$ $(2l-6k)t$ $n^2 + ((-4l^2+8lk+12k^2)t^4 \pm 2t^3 + (4lk-6k^2+2l^2)t \pm 1)n + (-4kl^2 4l^3 + 4k^3 + 4lk^2)t^4 \pm (2k+2l)t^3 + (2lk^2 - 2l^3 + 2kl^2 - 2k^3)t \pm (k-l))/(2t).$ The elliptic curve $Y^2 = X^3 - X + T_{\pm}^{(2)}(t, n, k, l)^2$ over $\mathbb{Q}(t, n, k, l)$ has rank ≥ 3 and three independent points have first coordinates $(0, T_{\pm}^{(2)}(t, n, k, l)),$ $(-1, T_{\pm}^{(2)}(t, n, k, l)), C_{\pm}^{(1)}(2t^3 - 1, 2t, 2t^3 + 1, n, k, l).$ Notation for $T_{\pm}^{(1)}$ and $C_{\pm}^{(1)}$ as in Theorem 2.1.
- (ii) Let

$$
S_{\pm}^{(2)}(t,k,l,m) := S_{\pm}^{(1)}(2t^3 - 1, 2t, 2t^3 + 1, k, l, m).
$$

Then the elliptic curve $Y^2 = X^3 - X + S_{\pm}^{(2)}(t, k, l, m)^2$ over the function field $\mathbb{Q}(t, n, k, l)$ is of rank ≥ 4 , with four independent points $(0, S_{\pm}^{(2)}(t, k, l, m)),$ $(-1, S^{(2)}_{\pm}(t, k, l, m)), A^{(1)}_{\pm}(2t^3 - 1, 2t, 2t^3 + 1, k, l, m), B^{(1)}_{\pm}(2t^3 - 1, 2t, 2t^3 +$ $1, k, l, m$. Here the notation is from Proposition 2.2.

Proof.

(i) For the specialization $(t, n, k, l) \mapsto (1, 2, 1, 1)$ on the curve

$$
E_{T_+^{(2)}(1,2,1,1)}: {\cal Y}^2 = {\cal X}^3 - {\cal X} + 53^2
$$

the corresponding points with first coordinates $0, -1, 16$ are independent, so the claim of the corollary is true. The proof for $T_{-}^{(2)}$ is analogous, by picking an adequate specialization.

(ii) The specialization $(t, k, l, m) \mapsto (2, 1, 1, 1)$ gives the elliptic curve

$$
E_{S_+^{(2)}(2,1,1,1)}: Y^2 = X^3 - X + \left(-\frac{49050562229}{10497600}\right)^2
$$

over \mathbb{Q} for which the four listed points with first coordinates $0, -1, \frac{14863849}{72909}$, $-\frac{48719569}{311040}$ are independent. This proves that for the elliptic curve $Y^2 = \tilde{X}^3$ – $X + S^{(2)}_+(t, k, l, m)^2$ over the field $\mathbb{Q}(t, k, l, m)$ the corresponding four points the two generators mentioned in the introduction and the points $A_{\pm}^{(1)}(2t^3 (1, 2t, 2t^3 + 1, k, l, m)$ and $B_{\pm}^{(1)}(2t^3 - 1, 2t, 2t^3 + 1, k, l, m)$ (from Proposition 2.2) are independent. The proof for $S_{-}^{(2)}$ is analogous, by picking an adequate specialization.

3. Subfamily of generic rank > 5

Remark 3.1.

• In [5, Theorem 3.5.1.] a rational function is given

$$
M(m) = \frac{1017m^4 - 8487m^3 + 19298m^2 - 14145m + 2825}{(3m^2 - 5)^2},
$$

with the property that the rank of $E_{M(m)}$ over $\mathbb{Q}(m)$ is ≥ 4 .

• We have two additional points coming from [5, Theorem 3.5.1.], R_3 with first coordinate

$$
-\frac{69m^2 - 414m + 295}{3m^2 - 5}
$$

and the point R_4 with first coordinate

$$
\frac{357m^2 - 410m + 95}{3m^2 - 5}
$$

.

- This rational function $M(m)$ is equal $T^{(1)}_+ (0, 9, 27, n, -\frac{1}{3} \frac{9nm^2 20m^2 + 69m 15n 35}{3m^2 5}, 1)$ in Theorem 2.1. The third point R_3 in [5] is equal $(0, T_+^{(1)}) + (-1, T_+^{(1)}) - C_+^{(1)}$, where $C_{+}^{(1)}$ is the third independent point in Theorem 2.1.
- The rational function $M(m)$ is also equal

$$
T_{+}^{(1)}(0, 25, 125, n, -\frac{1}{25} \frac{75nm^2 - 102m^2 + 205m - 125n - 175}{3m^2 - 5}, 1).
$$

The fourth point R_4 in [5] is equal $(-1, T_+^{(1)}) - C_+^{(1)}$, where $C_+^{(1)}$ is the third independent point in Theorem 2.1.

• In [5] an elliptic surface over a curve is found for which the Mordell-Weil group has rank \geq 5. Here we give another example of an infinite family of elliptic curves of generic rank ≥ 5 .

Theorem 3.2. The elliptic curve

$$
Y^{2} = X^{3} - X + \left(\frac{3723875}{729}n^{2} + \frac{155}{9}n - \frac{3723875}{729}\right)^{2}
$$

over the function field $\mathbb{Q}(m,n)$ where $((3m^2-5)(\frac{48050}{81}n+1))^2$ =

$$
=\frac{2257735321}{729}m^4+584660m^3-\frac{25995527290}{2187}m^2+\frac{2923300}{3}m+\frac{56443383025}{6561},
$$

has rank ≥ 5 with five independent points with first coordinates

$$
0, -1, -\frac{69m^2 - 414m + 295}{3m^2 - 5}, \frac{357m^2 - 410m + 95}{3m^2 - 5}, \frac{24025}{81}n^2 - \frac{24025}{81}.
$$

Proof. Here we will intersect $M(m)$ with $T^{(1)}_+(0, u^2, u^3, n, k, l)$ from Theorem 2.1 to obtain a subfamily of higher rank:

$$
M(m) = T_{+}^{(1)}(0, u^{2}, u^{3}, n, k, l) = u^{3}l(n+k+\frac{1}{2u^{2}l})^{2} - \frac{1}{4}\frac{(2u^{2}l^{2} - 2ul + 1)(2u^{2}l^{2} + 2ul + 1)}{ul}.
$$

This gives $(2u^{2}l(3m^{2} - 5)(n+k+\frac{1}{2u^{2}l}))^{2} =$
= $(9 + 36(ul)^{4} + 4068(ul))m^{4} - 33948(ul)m^{3} + (-30 + 77192ul - 120(ul)^{4})m^{2}$

$$
-56580(ul)m + 25 + 100(ul)4 + 11300(ul).
$$

So, the point $m = 1$ will be the solution of the above equation if $c = ul$ is the first coordinate on

$$
\Box = 16c^4 + 2032c + 4.
$$

The corresponding elliptic curve is of rank five and from one of the generators of the free part we get $c = ul = -\frac{155}{9}$ (chosen such that the specialization $m = 1$) gives the independence of points). So we take $k = 0, l = 1$ and we look at the intersection

$$
M(m) = T_{+}^{(1)} \left(0, \left(-\frac{155}{9} \right)^2, \left(-\frac{155}{9} \right)^3, n, 0, 1 \right) = -\frac{3723875}{729} n^2 - \frac{155}{9} n + \frac{3723875}{729},
$$

and we get that (m, n) lies on

$$
\left((3m^2 - 5) \left(\frac{48050}{81} n + 1 \right) \right)^2 = \frac{2257735321}{729} m^4 + 584660 m^3
$$

$$
- \frac{25995527290}{2187} m^2 + \frac{2923300}{3} m + \frac{56443383025}{6561}. \tag{3.1}
$$

So (m, n) on (3.1) gives five points from the claim of the theorem (where the third and fourth point are from [5] and the last point is from Theorem 2.1).

For the specialization $(m, n) \mapsto (1, -\frac{4753}{4805})$ we get the elliptic curve

$$
E_{M_2(1)} = E_{T_+^{(1)}}\left(0, \left(-\frac{155}{9}\right)^2, \left(-\frac{155}{9}\right)^3, -\frac{4753}{4805}, 0, 1\right) = E_{127} : Y^2 = X^3 - X + 127^2,
$$

with corresponding five independent points with first coordinates 0, −1, −25, −21, − $\frac{6136}{5}$. So the five points from the claim of the theorem are independent. $-\frac{6136}{961}$. So the five points from the claim of the theorem are independent.

Remark 3.3. Points (m, n) in the above theorem can be obtained with the transformation

$$
m = \frac{11602011740X - 139896435555764171800 + 47449Y}{47449Y + 7099196538X - 80704505760225548460},
$$

where (X, Y) is a point on the curve

$$
Y^2 = X^3 - 411900623573078732700X + 3213758699878398237969890146000.
$$

The value of n can be obtained from (3.1) . This curve is of positive rank by [7], so the subfamily of elliptic curves from Theorem 3.2 is infinite.

4. Specializations of high rank

The highest rank found for the elliptic curve E_t : $Y^2 = X^3 - X + t^2$ over $\mathbb Q$ is > 11 and is obtained for $t = 1118245045$. In this case we get the elliptic curve $E_{1118245045}$: $Y^2 = X^3 - X + 1118245045^2$ and eleven independent points

(1, 1118245045),(−1, 1118245045),(−149499, 1116750055),(−187723, 1115283209)

(208403, 1122284857),(−357751, 1097581405),(−369623, 1095433091),

(−398399, 1089604235),(402083, 1146942473),(506597, 1174940551),

(919987, 1424474279).

This was found using the sieve method explained in [4, 8, 10]. Here we observed $t = \frac{t_1}{t_2}$ $(1 \le t_2 \le 10000, 1 \le t_1 \le 100000)$, and elliptic curves E_t with $S(523, E_t) > 23$ for which $S(1979, E_t) > 43.5$. The lower bound was found using the command Seek1 in Apecs [1]. In addition we observed integers $1 \le t \le 1130000000$, and elliptic curves E_t with $S(523, E_t) > 23$ for which $S(1979, E_t) > 41.5$ for the remaining ones. Here is the list of values t which we obtained with rank ≥ 8 :

The greatest rank obtained in [5] was rank 6 for $t = 337$, while the greatest rank obtained in [2] was rank 10 for $t = 765617$.

References

- [1] I. Connell, APECS, ftp://ftp.math.mcgill.ca/pub/apecs/
- [2] E. Brown, B.T. Myers, Elliptic Curves from Mordell to Diophantus and Back, Amer. Math. Monthly, 109, Aug-Sept 2002, 639-648.
- [3] H. Cohen, Number Theory. Volume II: Analytic and Modern Tools, Springer Verlag, Berlin, 2007.
- [4] A. Dujella, On the Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. Ser. III 42 (2007), 3-18.
- [5] E.V.Eikenberg, Rational points on some families of elliptic curves, PhD thesis, University of Maryland, 2004.
- [6] A. Knapp, Elliptic Curves, Princeton University Press, Princeton, NJ, 1992.
- [7] Computational Algebra Group, MAGMA, University of Sydney http://magma.maths.usyd.edu.au/magma/, 2002.
- [8] J.-F. Mestre, Construction de courbes elliptiques sur Q de rang 12, C. R. Acad. Sci. Paris Ser. I 295 (1982) 633-644.
- [9] R. Miranda, An overview of algebraic surfaces, in Algebraic geometry (Ankara,1995), Lecture Notes in Pure and Appl. Math. 193, Dekker, New Yore, 1997, 197-217.
- [10] K. Nagao, An example of elliptic curve over Q with rank ≥ 20 , Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.
- [11] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, The Computer Algebra System PARI - GP, Université Bordeaux I, 1999, http://pari.math.u-bordeaux.fr
- [12] N. F. Rogers, *Elliptic Curves* $x^3 + y^3 = k$ with High Rank, PhD thesis, Harvard University, 2004.
- [13] T. Shioda,On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240.
- [14] T. Shioda,Construction of elliptic curves with high rank via the invariants of the Weyl groups, J. Math. Soc. Japan 43 (1991), no. 4, 673-719.
- [15] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 151, Springer-Verlag, Berlin - New York, 1994.
- [16] P. Tadić, *On the family of elliptic curves* $Y^2 = X^3 T^2X + 1$, Glas. Mat. Ser. III, 47 (2012), 81-93.