
The rank of certain subfamilies of the
elliptic curve Y 2 = X3 − X + T 2∗

Petra Tadić†

Institute of Analysis and Computational Number Theory
Technische Universität Graz, Graz, Austria

tadic@math.tugraz.at

Submitted May 24, 2012 — Accepted October 13, 2012

Abstract
Let E be the elliptic curve over Q(T ) given by the equation

E : Y 2 = X3 −X + T 2.

It is known that the torsion subgroup is trivial,

rankC(T )(E) = 2 and rankQ(T )(E) = 2.

We find a parametrization of rank ≥ 3 over the function field Q(a, i, s, n, k, l)
where s2 = i3 + a2. From this we get families of rank ≥ 3 and ≥ 4 over fields
of rational functions in four variables and a family of rank ≥ 5 parametrized
by an elliptic curve of positive rank. We also found a particular elliptic curve
with rank ≥ 11.

Keywords: parametrization, elliptic surface, elliptic curve, function field,
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1. Introduction

Let E be the elliptic curve over Q(T ) given by the equation

Y 2 = X3 −X + T 2.
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In [2, Theorem 1], Brown and Myers proved that if t ≥ 2 is an integer, the elliptic
curve Et : Y

2 = X3−X + t2 has rank at least 2 over Q, with linearly independent
points (0, t) and (−1, t). They also prove that there are infinitely many integer
values of t for which the elliptic curve Et overQ has rank at least 3. In [5], Eikenberg
showed that the torsion subgroup is trivial, the rank of the group E(Q(T )) equals
2 as does the rank of E(C(T )), both groups have as generators the points (0, T )
and (1, T ). These results follow also from the more general result by Shioda (see
[14, Theorem A2]). Eikenberg gives quadratic polynomials T (n) ∈ Q[n] for which
ET (n)(Q(n)) is of rank at least 3, [5, Theorem 4.2.1.]. He also shows that there are
infinitely values of t for which Et has rank at least 5.

In this paper we find a subfamily of E for which the rank over the function field
Q(a, i, s, n, k, l) where s2 = i3 + a2 is ≥ 3 and three independent points are listed.
From this we get families of rank ≥ 3 and ≥ 4 over fields of rational functions in
four variables and a family of rank ≥ 5 over an elliptic curve of positive rank. We
also found a particular elliptic curve with rank ≥ 11.

In [16], an elliptic curve Y 2 = X3 − T 2X + 1 was analyzed in a similar way,
and the results obtained contain some resemblances with the results of this paper.

2. Subfamilies of higher rank

We know that the elliptic curve E observed in this section and defined above, has
rank 2 over Q(T ) and C(T ), with generators (0, T ) and (−1, T ). First we give two
subfamilies which have generic rank ≥ 3 and we give the third independent point.
By observing T (n) which are polynomials in the variable n of degree 3 over Q with
an additional point with first coordinate X(n) which is a polynomial in the variable
n of degree 2 over Q on the elliptic curve Y 2 = X3−X+T (n)2 over Q(n) (see [13,
Theorem 10.10]), we obtain the following.

Theorem 2.1.
For T (1)

± (a, i, s, n, k, l) =

an3+(3ak+ sl)n2+
(
3ak2 + 2slk − al2 ± s

i

)
n− sl3−akl2+ slk2± a

i
l+ak3± s

i
k,

the elliptic curve Y 2 = X3−X+T
(1)
± (a, i, s, n, k, l)2 has rank ≥ 3 over the function

field Q(a, i, s, n, k, l) where s2 = i3 + a2, with an additional independent point
C

(1)
± (a, i, s, n, k, l) with first coordinate

X
C

(1)
±

(a, i, s, n, k, l) = i(n+ k)2 − il2.

Proof. For
Y
C

(1)
±

(a, i, s, n, k, l) = sn3 + (al + 3ks)n2 + 2aikl±a−isl2+3isk2

i n + −iskl2±ak−ail3+isk3+aik2l±sl
i ,

we have

X
C

(1)
±

(a, i, s, n, k, l)
3 − X

C
(1)
±

(a, i, s, n, k, l) + T
(1)
± (a, i, s, n, k, l)

2 − Y
C

(1)
±

(a, i, s, n, k, l)
2
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= (−s
2
+ i

3
+ a

2
)q±(a, i, s, n, k, l) = 0,

where q± ∈ Q(a, i, s, n, k, l). Here we work over the function field Q(a, i, s, n, k, l)
where s2 = i3 + a2.

For the positive case the specialization (a, i, s, n, k, l) 7→ (6,−3, 3, 1, 1, 1) gives
T

(1)
+ (6,−3, 3, 1, 1, 1) = 41, and on the curve E

T
(1)
+ (6,−3,3,1,1,1)

: Y 2 = X3 −X + 412

there are three corresponding points (0, 41), (−1, 41), (−9, 31) which are indepen-
dent points of E41(Q). This shows that the points from the claim of the theorem
are independent elements of the group

E
T

(1)
+ (a,i,s,n,k,l)

({Q(a, i, s, n, k, l) : s2 = i3 + a2}).

The proof for T (1)
− is analogous, we used the same specialization.

Now we will construct two subfamilies of generic rank ≥ 4 by intersecting the
families we have obtained. We try to find the solution to the equation

T
(1)
± (a, i, s, n, k, l) = T

(1)
±

(
a, 2a

a− s
i2

, a
4a2 − 4as+ i3

i3
, n, k2,m

)
,

where actually (i2, s2) :=
(
2aa−s

i2 , a 4a2−4as+i3

i3

)
= (i, s)+(0, a) on the elliptic curve

Y 2 = X3 + a2. This gives a polynomial P (n) in the variable n of degree two. Now
we choose

k2 :=
1

3

−4a3m+ 4a2ms− ami3 + 3aki3 + sli3

i3a

so that the coefficient of the polynomial P (n) of the term n2 is zero. Now that we
have P (n) a linear polynomial in n we can choose n±(a, i, s, k, l,m) := (256a10m3−
1024a9m3s + (−288m2ki3 + 192m3i3 + 1536m3s2)a8 + (864m2ski3 − 96m2sli3 −
1024m3s3−576m3si3)a7+(256m3s4−144m2i6k∓144i5m−96m3i6+288m2s2li3+
576m3s2i3 − 864m2s2ki3)a6 + (288m2i6ks + 192m3i6s ± 288i5ms − 192m3s3i3 +
288m2s3ki3−48m2i6sl−288m2s3li3)a5+(96m2s4li3±108i8k∓144i5s2m−32m3i9∓
54li8 ∓ 72i8m + 54kl2i9 + 96m2i6s2l − 144m2s2i6k − 96m3s2i6 − 72m2i9k)a4 +
(72m2i9ks−54kl2i9s+54sl3i9±72i8sm±90li8s+32m3i9s∓162ski8−24m2i9sl−
48m2s3i6l)a3 + (±54s2ki8 ± 18i11m ∓ 36i8s2l − 54s2l3i9 ± 27i11k + 18ki9s2l2 +
24m2i9s2l)a2+(2s3l3i9−18ki9s3l2±9i11sl)a−2s4l3i9)/(9ai3(32a7m2−96a6m2s+
(16m2i3 + 96m2s2)a5 + (−32m2i3s − 32m2s3)a4 + (∓12i5 + 16m2s2i3 − 6l2i6 +
8m2i6)a3+(6l2i6s− 8m2i6s± 18i5s)a2+(∓3i8∓ 6s2i5− 2s2l2i6)a+2s3l2i6)) such
that

T
(1)
± (a, i, s, n±(a, i, s, k, l,m), k, l) =

= T
(1)
±


a, 2a

a − s

i2
, a

4a2 − 4as + i3

i3
, n±(a, i, s, k, l,m),

1

3

−4a3m + 4a2ms − ami3 + 3aki3 + sli3

i3a
,m


 .
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Proposition 2.2. Let

S
(1)
± (a, i, s, k, l,m) := T

(1)
± (a, i, s, n±(a, i, s, k, l,m), k, l),

where n± is given above and T (1)
± is as in Theorem 2.1. The elliptic curve

Y 2 = X3 −X + S
(1)
± (a, i, s, k, l,m)2

over the function field Q(a, i, s, k, l,m) where s2 = i3 + a2 has rank ≥ 4 with four
independent points, the two generators (0, S

(1)
± (a, i, s, k, l,m)), (−1, S

(1)
± (a, i, s, k, l,m))

mentioned in the introduction, and two additional points

A(1)
±(a, i, s, k, l,m) := C

(1)
± (a, i, s, n±(a, i, s, k, l,m), k, l)

and
B(1)

±(a, i, s, k, l,m) :=

C
(1)
±

(
a, 2a

a − s

i2
, a

4a2 − 4as + i3

i3
, n±(a, i, s, k, l,m),

1

3

−4a3m + 4a2ms − ami3 + 3aki3 + sli3

i3a
,m

)

(notation for C(1)
± from Theorem 2.1).

Proof. With the specialization (a, i, s, k, l,m) 7→ (6,−3, 3, 1, 1, 1) we prove that the
above listed four points on the elliptic curve (over Q(a, i, s, k, l,m) where s2 =
i3 + a2) are independent, since the specialization gives the elliptic curve

E
S

(1)
+ (6,−3,3,1,1,1)

: Y 2 = X3 −X +

(
− 5647

13122

)2

with the corresponding four independent points with first coordinates 0, −1, − 805
972 ,

7084
729 .

The proof for S(1)
− is analogous, by picking an adequate specialization.

Remark 2.3. The variety (from Theorem 2.1)

s2 = i3 + a2

can be observed as an elliptic curve Y 2 = X3 + T 2 over the field Q(T ). In [12,
Corollary 8] it is shown that the torsion subgroup of s2 = i3 + a2 over Q(a) is
equal {O, (0, a), (0,−a)}. This elliptic curve has rank 0 over Q(a). For more
details see [6, p. 112]. Points on the variety s2 = i3 + a2 from Theorem 2.1 can
easily be obtained, for example (a, i, s) = (6,−3, 3) is a point on the variety. For
a = 0 we have i = u2 and s = u3, in this case T (1)

± (0, u2, u3, n, k, l) in Theorem 2.1
is a quadratic polynomial in n. We also have parametrizations of this variety [3,
Section 14.2]: 




a(t) = 2t3 − 1,
i(t) = 2t,
s(t) = 2t3 + 1,

For this parametrization Theorem 2.1 and Proposition 2.2 transform into:
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Corollary 2.4.

(i) Let
T

(2)
± (t, n, k, l) := T

(1)
± (2t3−1, 2t, 2t3+1, n, k, l) = ((4t4−2t)n3+((4l+12k)t4+

(2l−6k)t)n2 +((−4l2+8lk+12k2)t4±2t3+(4lk−6k2+2l2)t±1)n+(−4kl2−
4l3 + 4k3 + 4lk2)t4 ± (2k + 2l)t3 + (2lk2 − 2l3 + 2kl2 − 2k3)t± (k − l))/(2t).
The elliptic curve Y 2 = X3 − X + T

(2)
± (t, n, k, l)2 over Q(t, n, k, l) has rank

≥ 3 and three independent points have first coordinates (0, T
(2)
± (t, n, k, l)),

(−1, T (2)
± (t, n, k, l)), C

(1)
± (2t3 − 1, 2t, 2t3 + 1, n, k, l). Notation for T (1)

± and
C

(1)
± as in Theorem 2.1.

(ii) Let
S
(2)
± (t, k, l,m) := S

(1)
± (2t3 − 1, 2t, 2t3 + 1, k, l,m).

Then the elliptic curve Y 2 = X3−X+S
(2)
± (t, k, l,m)2 over the function field

Q(t, n, k, l) is of rank ≥ 4, with four independent points (0, S
(2)
± (t, k, l,m)),

(−1, S(2)
± (t, k, l,m)), A(1)

± (2t3 − 1, 2t, 2t3 + 1, k, l,m), B(1)
± (2t3 − 1, 2t, 2t3 +

1, k, l,m). Here the notation is from Proposition 2.2.

Proof.

(i) For the specialization (t, n, k, l) 7→ (1, 2, 1, 1) on the curve

E
T

(2)
+ (1,2,1,1)

: Y 2 = X3 −X + 532

the corresponding points with first coordinates 0, −1, 16 are independent, so
the claim of the corollary is true. The proof for T (2)

− is analogous, by picking
an adequate specialization.

(ii) The specialization (t, k, l,m) 7→ (2, 1, 1, 1) gives the elliptic curve

E
S

(2)
+ (2,1,1,1)

: Y 2 = X3 −X +

(
−49050562229

10497600

)2

over Q for which the four listed points with first coordinates 0, −1, 14863849
72900 ,

− 48719569
311040 are independent. This proves that for the elliptic curve Y 2 = X3−

X + S
(2)
+ (t, k, l,m)2 over the field Q(t, k, l,m) the corresponding four points

the two generators mentioned in the introduction and the points A(1)
± (2t3 −

1, 2t, 2t3 + 1, k, l,m) and B
(1)
± (2t3 − 1, 2t, 2t3 + 1, k, l,m) (from Proposition

2.2) are independent. The proof for S(2)
− is analogous, by picking an adequate

specialization.
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3. Subfamily of generic rank ≥ 5

Remark 3.1.

• In [5, Theorem 3.5.1.] a rational function is given

M(m) =
1017m4 − 8487m3 + 19298m2 − 14145m+ 2825

(3m2 − 5)2
,

with the property that the rank of EM(m) over Q(m) is ≥ 4.

• We have two additional points coming from [5, Theorem 3.5.1.], R3 with first
coordinate

−69m2 − 414m+ 295

3m2 − 5

and the point R4 with first coordinate

357m2 − 410m+ 95

3m2 − 5
.

• This rational functionM(m) is equal T (1)
+

(
0, 9, 27, n,− 1

3
9nm2−20m2+69m−15n−35

3m2−5
, 1
)

in Theorem 2.1. The third point R3 in [5] is equal (0, T (1)
+ )+(−1, T (1)

+ )−C(1)
+ ,

where C(1)
+ is the third independent point in Theorem 2.1.

• The rational function M(m) is also equal

T
(1)
+ (0, 25, 125, n,− 1

25

75nm2 − 102m2 + 205m− 125n− 175

3m2 − 5
, 1).

The fourth point R4 in [5] is equal (−1, T (1)
+ )− C(1)

+ , where C(1)
+ is the third

independent point in Theorem 2.1.

• In [5] an elliptic surface over a curve is found for which the Mordell-Weil
group has rank ≥ 5. Here we give another example of an infinite family of
elliptic curves of generic rank ≥ 5.

Theorem 3.2. The elliptic curve

Y 2 = X3 −X +

(
3723875

729
n2 +

155

9
n− 3723875

729

)2

over the function field Q(m,n) where
(
(3m2 − 5)

(
48050
81 n+ 1

))2
=

=
2257735321

729
m4 + 584660m3 − 25995527290

2187
m2 +

2923300

3
m+

56443383025

6561
,

has rank ≥ 5 with five independent points with first coordinates

0, −1, −69m2 − 414m+ 295

3m2 − 5
,
357m2 − 410m+ 95

3m2 − 5
,
24025

81
n2 − 24025

81
.
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Proof. Here we will intersect M(m) with T
(1)
+ (0, u2, u3, n, k, l) from Theorem 2.1

to obtain a subfamily of higher rank:

M(m) = T
(1)
+ (0, u2, u3, n, k, l) = u3l(n+k+

1

2u2l
)2− 1

4

(2u2l2 − 2ul + 1)(2u2l2 + 2ul + 1)

ul
.

This gives (2u2l(3m2 − 5)(n+ k + 1
2u2l ))

2 =

= (9 + 36(ul)4 + 4068(ul))m4 − 33948(ul)m3 + (−30 + 77192ul − 120(ul)4)m2

−56580(ul)m+ 25 + 100(ul)4 + 11300(ul).

So, the point m = 1 will be the solution of the above equation if c = ul is the
first coordinate on

� = 16c4 + 2032c+ 4.

The corresponding elliptic curve is of rank five and from one of the generators of
the free part we get c = ul = − 155

9 (chosen such that the specialization m = 1
gives the independence of points). So we take k = 0, l = 1 and we look at the
intersection

M(m) = T
(1)
+

(
0,

(
−155

9

)2

,

(
−155

9

)3

, n, 0, 1

)
= −3723875

729
n2 − 155

9
n+

3723875

729
,

and we get that (m,n) lies on
(
(3m2 − 5)

(
48050

81
n+ 1

))2

=
2257735321

729
m4 + 584660m3

− 25995527290

2187
m2 +

2923300

3
m+

56443383025

6561
. (3.1)

So (m,n) on (3.1) gives five points from the claim of the theorem (where the third
and fourth point are from [5] and the last point is from Theorem 2.1).

For the specialization (m,n) 7→ (1,− 4753
4805 ) we get the elliptic curve

EM2(1) = E
T

(1)
+

(
0,(− 155

9 )
2
,(− 155

9 )
3
,− 4753

4805 ,0,1
) = E127 : Y 2 = X3 −X + 1272,

with corresponding five independent points with first coordinates 0, −1, −25, −21,
− 6136

961 . So the five points from the claim of the theorem are independent.

Remark 3.3. Points (m,n) in the above theorem can be obtained with the trans-
formation

m =
11602011740X − 139896435555764171800 + 47449Y

47449Y + 7099196538X − 80704505760225548460
,

where (X,Y ) is a point on the curve

Y 2 = X3 − 411900623573078732700X + 3213758699878398237969890146000.

The value of n can be obtained from (3.1). This curve is of positive rank by [7], so
the subfamily of elliptic curves from Theorem 3.2 is infinite.
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4. Specializations of high rank

The highest rank found for the elliptic curve Et : Y 2 = X3 − X + t2 over Q is
≥ 11 and is obtained for t = 1118245045. In this case we get the elliptic curve
E1118245045 : Y 2 = X3 −X + 11182450452 and eleven independent points

(1, 1118245045), (−1, 1118245045), (−149499, 1116750055), (−187723, 1115283209)

(208403, 1122284857), (−357751, 1097581405), (−369623, 1095433091),
(−398399, 1089604235), (402083, 1146942473), (506597, 1174940551),

(919987, 1424474279).

This was found using the sieve method explained in [4, 8, 10]. Here we ob-
served t = t1

t2
(1 ≤ t2 ≤ 10000, 1 ≤ t1 ≤ 100000), and elliptic curves Et with

S(523, Et) > 23 for which S(1979, Et) > 43.5. The lower bound was found using the
command Seek1 in Apecs [1]. In addition we observed integers 1 ≤ t ≤ 1130000000,
and elliptic curves Et with S(523, Et) > 23 for which S(1979, Et) > 41.5 for the
remaining ones. Here is the list of values t which we obtained with rank ≥ 8:

rank t

≥ 8
1567
3025 , 7247

7688 , 23618
9025 , 14809

4800 , 32971
9072 , 22069

5329 , 23581
3481 , 18353

2197 , 4882
529 , 88745

8496 , 74227
6859 , 47059

3698 ,
6913
242 , 17489

343 , 53708
529 , 11689

50 , 29689
2 , 78560, 2011060, 14083286,

14083286, 21717559, 35498230, 38998023, 45321449, 58235977, 67190943,
67292109, 83402041, 86010677, 96384349, 101940616, 122421035, 159056061,
171981307, 200300248, 217135540, 230684707, 266349308, 307253369,
329132909, 331903387, 342825543, 349640440, 391942721, 423787655,
436687265, 484259053, 484594343, 566328793, 586597025, 594744835,
594782908, 594869501, 598442638, 620933242, 631151494, 747946597,
781809427, 787815289, 836422595, 851738165, 919540903, 1015597721,
1029670387, 1111072411

≥ 9
20155
7442 , 90719

9248 , 36749
1225 , 51691

1089 , 83351
1521 , 70313

845 , 423515, 829999, 1741033, 2650019,
7030799, 11180651, 53958107, 70808669, 76758473, 97399947, 101469425,
154523221, 197903551, 281137843, 300361741, 304354681, 352968853,
355308367, 599768545, 863227439, 911227325, 1040969455

≥ 10
765617, 17708315, 64232534, 77799653, 236076508, 269371865, 337557943,
450112831, 808983247

≥ 11
1118245045

The greatest rank obtained in [5] was rank 6 for t = 337, while the greatest
rank obtained in [2] was rank 10 for t = 765617.
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