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Abstract

This is a survey of some recent results on hyperbolic scaling limits. In
contract to diffusive models, the resulting Euler equations of hydrodynamics
develop shocks in a finite time. That is why the derivation of the macroscopic
equations from a microscopic model requires a synthesis of probabilistic and
PDE methods. In the case of two-component stochastic models with a hy-
perbolic scaling law the method of compensated compactness seems to be
the only tool that we can apply. Since the associated Lax entropies are
not preserved by the microscopic dynamics, a logarithmic Sobolev inequal-
ity is needed to evaluate entropy production. Extending the arguments of
Shearer (1994) and Serre–Shearer (1994) to stochastic systems, the nonlin-
ear wave equation of isentropic elastodynamics is derived as the hyperbolic
scaling limit of the anharmonic chain with Ginzburg–Landau type random
perturbations. The model of interacting exclusion of charged particles re-
sults in the Leroux system in a similar way. In the presence of an additional
creation-annihilation mechanism the missing logarithmic Sobolev inequality
is replaced by an associated relaxation scheme. In this case the uniqueness
of the limit is also known.

Keywords: Anharmonic chain, Ginzburg–Landau model, interacting exclu-
sions, creation and annihilation, hyperbolic scaling, vanishing viscosity limit,
logarithmic Sobolev inequalities, Lax entropy pairs, compensated compact-
ness, relaxation schemes.

MSC: Primary 60K31, secondary 82C22.

∗Partially supported by Hungarian Science Foundation Grants K-60708 and K-100473.

Annales Mathematicae et Informaticae
39 (2012) pp. 83–108

Proceedings of the Conference on Stochastic Models and their Applications
Faculty of Informatics, University of Debrecen, Debrecen, Hungary, August 22–24, 2011

83



1. Historical notes and references

The idea that the Euler equations of hydrodynamics ought to be derived from
statistical mechanics goes back to Morrey (1955). He proposed a scaling limit to
pass to the hyperbolic system of classical conservation laws when the number of
particles goes to infinity. The natural scaling of mechanical and related asymmetric
systems is hyperbolic: the microscopic time is speeded up at the same rate at which
the size of the system goes to infinity. The theory of diffusive scaling limits seems to
be more or less complete, see Kipnis–Landim (1989) for a comprehensive survey.1
Here we concentrate on the hyperbolic scaling limit of stochastic systems. Various
models are introduced, and the main ideas of several proofs are also outlined in the
next sections. You shall see that progress in this direction is rather slow, there are
many relevant open problems.
Basic principles: In theoretical physics it is commonly accepted that the equi-
librium states of the microscopic system are specified by the Boltzmann–Gibbs
formalism, and the evolved measure can be well approximated by means of such Gibbs
states with space and time dependent parameters. This principle of local equilibrium
is used then to determine the macroscopic flux of the conserved quantities of the
underlying microscopic dynamics; this is the first crucial problem in the theory of
hydrodynamic limits (HDL). However, a rigorous verification of any version of this
principle is problematic because the standard argument is based on a strong form
of the ergodic hypothesis, which amounts to a description of translation invariant
stationary states of the microscopic system as superpositions of the equilibrium Gibbs
random fields. This is certainly one of the hardest open problems of mathematics,
it is much more difficult than the question of metric transitivity of the underlying
stationary process, but it is much weaker than the claim of the principle of local
equilibrium. A second principal difficulty in the theory of hyperbolic scaling limits
comes from the complexity of the resulting macroscopic equations (conservation
laws). The breakdown of the existence of global classical solutions is quite general,
and the surviving weak solutions are usually not unique. The formation of the associ-
ated shock waves results in extremely strong fluctuations at the microscopic level,
too. Concerning terminology and basic facts on HDL we refer to the textbooks
by Spohn (1991) and Kipnis–Landim (1999), while to Hörmander (1997), Bressan
(2000) and Dafermos (2005) on PDE theory.
Deterministic models: Of course, there exist some mechanical systems that
admit explicit computations. However, the exactly solvable models of one-dimensi-
onal hard rods and coupled harmonic oscillators are not ergodic in the traditional
sense. Besides the classical ones these systems admit a continuum of conservation
laws, consequently the scaling limit of such models does not result in a closed
system of a finite set of equations for the classical conservation laws, see the papers
by Dobrushin and coworkers (1980, 1983, 1985). The treatment of more realistic

1More recent information can be found on the web site http://stokhos.shinshu-
u.ac.jp/10thSALSIS/ of the 10-th Symposium on Stochastic Analysis of Large Scale Interacting
System, Kochi (Japan) 2011.
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mechanical systems is out of question, Sinai (1988) is the only scientist who dared
to attack this issue. He claimed that the identification of the macroscopic flux does
not require the strong ergodic hypothesis, the problem is still open.
Attractive systems: To avoid the hopeless issue of strong ergodicity of me-
chanical systems, stochastic models are only considered in the rest of the related
literature on hydrodynamic limits. Appropriately chosen random effects regular-
ize the dynamics, thus there is a good chance to identify the conservation laws
and the associated stationary states of the microscopic system. The first result in
this direction is due to Rost (1981), he managed to derive certain rarefaction wave
solutions to the Burgers equation as HDL of the totally asymmetric simple exclusion
process. Following some preliminary studies by various authors, a few years later
Rezakhanlou (1991) extended his coupling technique for a large class of attractive
models. Several more recent results in this direction are treated or mentioned by
Kipnis–Landim (1989) and Bahadoran (2004). Although the appearance of shocks
is not excluded, effective coupling in attractive models implies the Kruzkov entropy
condition in a natural way, consequently the empirical process converges to the
uniquely specified weak entropy solution of the associated single conservation law.
We are mainly interested in the hydrodynamic limit of microscopic systems with
two conservation laws, these are certainly not attractive.
Entropy and HDL in a smooth regime: Random effects might regularize even
the classical dynamics in such a way that we have a description of stationary mea-
sures: translation invariant equilibrium states of finite specific entropy with respect to
a given stationary measure are all superpositions of the classical equilibrium (Gibbs)
states. As a next step, a fairly general theory of asymptotic preservation of local
equilibrium has been initiated by Yau (1991). This means that if the initial distri-
bution is close to local equilibrium in the sense of specific relative entropy, then this
property remains in force as long as the macroscopic solution is smooth enough. His
method has been extended to Hamiltonian dynamics2 with conservative noise for
continuous particle systems by Olla–Varadhan–Yau (1993). The hyperbolic (Euler)
scaling limit yields the full set of the compressible Euler equations. The basic ideas
of this approach are to be discussed in the next section.
The problem of shocks: In the case of a hyperbolic scaling limit the microscopic
system simply does not have enough time to organize itself, even the asymptotic
preservation of local equilibrium is a problematic issue in a regime of shock waves.
Therefore the separation of the slowly varying conserved quantities from the other,
rapidly oscillating ones is less transparent than in a smooth or diffusive regime.

The existence theory of parabolic equations or systems is based on the associ-
ated energy inequalities, and it is a quite natural idea of PDE theory to construct a
parabolic approximation to the hyperbolic system of conservation laws by adding
elliptic (viscid) terms to the right hand side of the equations under consideration.
Since the related energy inequalities degenerate in this small viscosity limit, the
standard compactness argument has to be replaced by a radically new technique

2The kinetic energy of the model is not the classical one because energy transport can not be
controlled in that case.
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called compensated compactness, see Hörmander (1997) or Dafermos (2005) with
several further references.

The microscopic models of hydrodynamics imitate this approach, thus the situa-
tion is quite similar. The probabilistic a priori bounds we have in a diffusive scaling
limit3 do not work any more in case of a hyperbolic scaling limit. Therefore we have
to extend the theory of compensated compactness to our microscopic systems, see
Fritz (2001, 2004, 2011), Fritz–Tóth (2004), Fritz–Nagy (2006) and Bahadoran–
Fritz–Nagy (2011). In this way we obtain convergence along subsequences to weak
solutions, and the uniqueness of the limit ought to be the consequence of some
additional information. The familiar Lax entropy inequality is only sufficient for
weak uniqueness to a single conservation law. Unfortunately, in the case of systems
the much deeper Oleinik type conditions of Bressan (2000) are required, and these
strictly local bounds are not attainable by our present probabilistic techniques.

2. The anharmonic chain

It is perhaps the simplest mechanical system that exhibits a correct physical be-
havior, it is considered as a microscopic model of one-dimensional elasticity. The
Hamiltonian of coupled oscillators of unit mass on Z reads as

H(ω) :=
∑

k∈Z
Hk(ω), Hk(ω) := p2k/2 + V (qk+1 − qk),

where ω = {(pk, qk) : k ∈ Z} denotes a configuration of the infinite system, pk, qk ∈
R are the momentum (velocity) and position of the oscillator at site k ∈ Z. In
terms of the deformation variables rk := qk+1 − qk, the equations of motion read
as

ṗk = V ′(rk)− V ′(rk−1) and ṙk = pk+1 − pk for k ∈ Z; (2.1)

in this formulation the interaction potential V needs not be symmetric. The exis-
tence of unique solutions in a space of configurations ω := {(pk, rk) : k ∈ Z} with
a sub-exponential growth is quite standard if V ′ is Lipschitz continuous, i.e. if V ′′
is bounded. The related iterative procedure shows also that the solutions of the
infinite system can be well approximated by the solutions of its finite subsystems
when the size of the finite system goes to infinity, see e.g. Fritz (2011) with further
references.

Although (2.1) is a direct lattice approximation to the p-system ∂tu = ∂xV
′(v),

∂tv = ∂xu, its convergence is rather problematic. In PDE theory (2.1) is not
considered as a stable numerical scheme for solving the p-system, thus we can not
believe in its convergence. The right way of its regularization is suggested by the
small viscosity approach, it is certainly not difficult to define stable approximation
schemes in this way. However, the theory of hydrodynamic limits goes beyond
numerical analysis as discussed below.

3See Fritz (1986), and Guo–Papanicolau–Varadhan (1988) for a more perfect treatment.
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2.1. The compressible Euler equations
(2.1) reads as a lattice system of conservation laws for the total momentum P :=∑
pk, and for the total deformation R :=

∑
rk, respectively: ∂tP = ∂tR = 0

are formal identities. Since ∂tHk(ω) = pk+1V
′(rk) − pkV

′(rk−1) is a difference
of currents, the total energy H is also preserved by the dynamics, therefore we
expect to have three hydrodynamic equations: one for momentum, one for the
deformation, and one for energy. In view of the principle of local equilibrium, the
macroscopic fluxes of these conservative quantities are to be calculated by means
of the stationary states of the dynamics.
Stationary states and thermodynamics: These are characterized by∫
L0ϕdλ = 0 for smooth local functions ϕ of a finite number of variables, where

L0ϕ :=
∑

k∈Z

(
(V ′(rk)− V ′(rk−1))

∂ϕ

∂pk
+ (pk+1 − pk)

∂ϕ

∂rk

)
(2.2)

denotes the associated Liouville operator. Assuming limV (x)/|x| = +∞ as |x| →
+∞, it is easy to check that we have a three-parameter family λβ,π,γ of translation
invariant product measures: β > 0 is the inverse temperature, π ∈ R denotes
the mean velocity, and γ ∈ R is a chemical potential. Under λβ,π,γ the marginal
Lebesgue density of any couple (pk, rk) ∼ (y, x) reads as exp(γx − βI(y, x|π) −
F (β, γ)), where I(y, x|π) := (y − π)2/2 + V (x); the normalization

F (β, γ) := log

∫∫

R2

exp (γr − βI(y, x|π)) dy dx (2.3)

is sometimes referred to as the free energy. Indeed, approximating the infinite
system by its finite subsystems, it follows immediately that these product measures
are really equilibrium states of (2.1). It is easy to see that L0 is antisymmetric
with respect to any λβ,π,γ .

Let us remark that there is a one-to-one correspondence between the parameters
(β, π, γ) and the corresponding expected values (h, u, v) of the conservative quan-
tities Hk, pk and rk with respect to λβ,π,γ . It is plain that u :=

∫
pk dλβ,π,γ = π is

the mean velocity. By a direct computation we see also that the equilibrium mean
of the internal energy Ik := I(pk, rk|π) at one site is given by χ :=

∫
Ik dλβ,π,γ =

−F ′β(β, γ), thus the equilibrium mean of the total energy Hk = p2k/2+V (rk) is just
h := χ + π2/2, while v = F ′γ(β, γ) =

∫
rk dλβ,π,γ is the mean deformation. Inte-

grating by parts we obtain
∫
V ′(rk) dλβ,π,γ = γ/β for the equilibrium expectation

of V ′. The parameters β and γ can be expressed in terms of the thermodynamical
entropy

S(χ, v) := sup {γv − βχ− F (β, γ) : β > 0, γ ∈ R} (2.4)

as follows. Since S is the convex conjugate of F , we have γ = S′v(χ, v) and β =
−S′χ(χ, v) if v = F ′γ(β, γ) and χ = −F ′β(β, γ).
The hyperbolic scaling limit: We are interested in the asymptotic behavior
of the empirical processes uε(t, x) := pk(t/ε), vε(t, x) := rk(t/ε) and hε(t, x) :=
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Hk(ω(t/ε)) if |kε − x| < ε/2, as 0 < ε → 0. Of course it is assumed that at time
zero these processes converge, at least in a weak sense to the corresponding initial
values of the hydrodynamic equations.

In view of the physical principle of local equilibrium, the macroscopic cur-
rents of the conservative quantities should be calculated by means of a prod-
uct measure of type λβ,π,γ with parameters depending on time and space. In
this framework γ/β =

∫
V ′(rk) dλβ,π,γ is the mean current of momentum, and

πγ/β =
∫
pkV

′(rk−1) dλβ,π,γ is the mean current of energy, consequently a formal
calculation results in the triplet of compressible Euler equations:

∂tu = ∂xJ(χ, v), ∂tv = ∂xu and ∂th = ∂x(uJ(χ, v)), (2.5)

where J(χ, v) := γ/β = −S′v(χ, v)/S′χ(χ, v) and χ = h− u2/2, see Chen–Dafermos
(1995) and Fritz (2001). Therefore ∂tχ = J(χ, v)∂xu and ∂tS(χ, v) = 0 along
classical solutions, but we have to keep in mind that this system develops shock
waves in a finite time.

2.2. Stochastic perturbations
As we have emphasized before, we are not able to materialize the heuristic deriva-
tion of the compressible Euler equations, the dynamics of the anharmonic chain
should be regularized by a well chosen noise. There are several plausible tricks, we
are going to consider Markov processes generated by an operator L = L0 + σ G,
where L0 is the Liouville operator, while the Markov generator G is symmetric in
equilibrium. Here σ > 0 may depend on the scaling parameter ε > 0, and εσ(ε)
is interpreted as the coefficient of macroscopic viscosity. We are assuming that
εσ(ε)→ 0 as ε→ 0, then the effect of the symmetric component σG diminishes in
the limit. Our philosophy consists in adapting the vanishing viscosity approach of
PDE theory to the microscopic theory of hydrodynamics. In a regime of shocks an
additional technical condition: εσ2(ε)→ +∞ is also needed.
Random exchange of velocities: As far as I understand, this is the weakest
but still effective conservative noise. At the bonds of Z we have independently
running clocks with exponential waiting times of parameter 1, and we exchange
the velocities at the ends of the bond when the clock rings. The generator G = Gep
of this exchange mechanism is acting on local functions as

Gepϕ(ω) =
∑

k∈Z

(
ϕ(ωk,k+1)− ϕ(ω)

)
, (2.6)

where ωk,k+1 denotes the configuration obtained from ω = {(pj , rj)} by exchanging
pk and pk+1, the rest of ω remains unchanged. It is plain that P =

∑
pk, R =

∑
rk

and the total energy H are formally preserved by Gep, and the product measures
λβ,π,γ are all stationary states of the Markov process generated by L := L0 +σ Gep
if σ > 0.

This model was introduced by Fritz–Funaki–Lebowitz (1994), where the strong
ergodic hypothesis is proven for lattice models with two conservation laws. The
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proof applies also in our case without any essential modification, see below. The
relative entropy S[µ|λ] of two probability measures on the same space is defined by
S :=

∫
log f dµ, provided that f = dµ/dλ and the integral does exist; S[µ|λ] = +∞

otherwise.4 Let µn denote the joint distribution of the variables {(pk, rk) : |k| ≤ n}
with respect to µ, as a reference measure we choose λ := λ1,0,0, and fn := dµn/dλ.

Theorem 2.1. Suppose that µ is a translation invariant stationary measure of
the process generated by L = L0 + σGep. If the specific entropy of µ is finite, i.e.
S[µn|λ] = O(n), then µ is contained in the weak closure of the convex hull of our
set {λβ,π,γ} of stationary product measures.

On the ideas of the proof: The basic steps can be outlined as follows, for tech-
nical details see Theorems 2.4 and 3.1 of our paper cited above, or an improved
version of the notes by Bernardin–Olla (2010). Since S[µn|λ] is constant in a sta-
tionary regime,

∫
L log fn dµ = 0. The contribution of L0 consists of two boundary

terms only because L0 is antisymmetric, while −Dn[µ|λ] is the essential part of the
contribution of the symmetric Gep, where Dn := −

∫
fnGep log fn dλ. Due to the

translation invariance of µ we see immediately that (1/n)Dn[µ|λ]→ 0 as n→ +∞.
Moreover, Dn ≥ 0 is a convex functional of µ, thus Dn+m ≥ Dn + Dm, whence
even Dn[µ|λ] = 0 follows for all n ∈ N. Therefore µ is symmetric with respect
to any exchange of velocities, i.e.

∫
Gepϕdµ = 0 is an identity, consequently the

stationary Liouville equation
∫
L0ϕdµ = 0 also holds true.

Let φ(p) and ψ(r) denote local functions depending only on the velocity and
the deformation variables p := {pj}, r := {rj}, respectively. If ϕk and ψk are their
translates by k ∈ Z, then

∫
φk(p)ψk(r) dµ =

∫
φk(p)ψ0(r) dµ =

1

l

l−1∑

j=0

∫
φk+j(p)ψ0(r) dµ

are identities, and the law of large numbers applies to the right hand side. For
instance we see that given r, the conditional distribution of p is exchangeable, and
it does not depend on the individual deformation variables rj , thus the conditional
expectation of any pj is an invariant and tail measurable function u ∼ π. Similarly,
the conditional variance Q of velocities defines our first parameter, the inverse
temperature β by β := 1/Q, it is an invariant function, too. Moreover, the entropy
condition implies β > 0 almost surely.

On the other hand, for ϕ = ψ(r)(pk−u) the stationary Liouville equation yields
∫
ψ(r)(V ′(rk)− V ′(rk−1) dµ =

∑

j∈Z

∫
∂ψ(r)

∂rj
(pk − u)(pj+1 − pj)) dµ.

In view of the De Finetti–Hewitt–Savage theorem, the velocities are conditionally
independent when r is given, consequently

∫
ψ(r) (V ′(rk)− V ′(rk−1)) dµ =

∫
1

β

(
∂ψ

∂rk
− ∂ψ

∂rk−1

)
dµ.

4The entropy inequality
∫
ϕdµ ≤ S(µ|λ) + log

∫
eϕ dλ is used in several probabilistic compu-

tations; ϕ = log f is the condition equality.

Microscopic theory of hydrodynamics 89



Now an obvious summation trick lets the law of large numbers work, whence
∫
ψ(r)(V ′(rk)− γ) dµ =

∫
1

β

∂ψ(r)

∂rk
dµ,

where the parameter γ is again invariant and tail measurable because it is the
limit of the arithmetic averages of the V ′(rj) variables. The stationary Liouville
equation has been separated (localized) in this way, therefore the distribution of
the deformation variables can be identified. Indeed, as β does not depend on rk,
the desired statement reduces to the differential characterization of the Lebesque
measure by integrating by parts. In the case of velocities a similar argument results
in ∫

φ(p)(pk − π) dµ =

∫
1

β

∂φ(p)

∂pk
dµ,

consequently if the tail field is given, then the conditional distribution of ω =
{(pk, rk)} under µ is just λβ,π,γ .

It is interesting to note that Theorem 2.1 is not true for finite systems because
the cited theorem on exchangeable variables applies to infinite sequences only.
Physical viscosity with thermal noise: Another popular model is obtained by
adding a Ginzburg-Landau type conservative noise to the equations of velocities:

dpk = (V ′(rk)− V ′(rk−1)) dt+ σ (pk+1 + pk−1 − 2pk) dt

+
√

2σ (dwk − dwk−1), drk = (pk+1 − pk) dt, k ∈ Z,
(2.7)

where σ > 0 is a given constant, and {wk : k ∈ Z} is a family of independent
Wiener processes. Due to V ′′ ∈ L∞, the existence of unique strong solutions to
this infinite system of stochastic differential equations is not a difficult issue, see
e.g. Fritz (2001) with further references. The generator of the Markov process de-
fined in this way can again be written as L := L0 +σGp, where Gp is now an elliptic
operator. Total energy is not preserved any more, and a thermal equilibrium of
unit temperature is maintained by the noise. It is easy to check that the prod-
uct measures λπ,γ := λ1,π,γ are all stationary, thus (2.5) reduces to the p-system
(nonlinear sound equation) of elastodynamics:

∂tu = ∂xS
′(v) and ∂tv = ∂xu, that is ∂2t v = ∂2xS

′(v) (2.8)

because
∫
V ′(rk) dλπ,γ = γ = S′(v) if

∫
rk dλπ,γ = v = F ′(γ), where

S(v) := sup
γ
{γv − F (γ)}; F (γ) := log

∞∫

−∞

exp(γx− V (x)) dx.

Let us remark that both F and S are infinitely differentiable, and S′′(v) = 1/F ′′(γ)
is strictly positive and bounded.

The verification of the strong ergodic hypothesis is similar, but considerably
simpler than in the previous case:
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Theorem 2.2. Translation invariant stationary measures of finite specific entropy
are superpositions of our product measures λπ,γ .

For a complete proof see Theorem 13.1 in the notes by Fritz (2001). HDL of this
model follows easily by the relative entropy argument of Yau. At a level ε > 0 of
scaling µt,ε,n denotes the true distribution of the variables {(pk(t), rk(t)) : |k| ≤ n},
and λt,ε ∼ λπ,γ is a product measure with parameters π = πk(t, ε) and γ = γk(t, ε)
depending on space and time. We say that asymptotic local equilibrium holds true
on the interval [0, T ] if we have a family {λt,ε : t ≤ T/ε, ε ∈ (0, 1]} such that for all
τ ≤ T

lim
ε→0

sup
n≥1/ε

S[µτ/ε,ε,n|λτ/ε,ε]
2n+ 1

= 0. (2.9)

Postulate this for τ = 0, and suppose also that the prescribed initial values give
rise to a continuously differentiable solution (u, v) to (2.8) on [0, T ], T > 0. Then
the approximate local equilibrium (2.9) remains in force for τ ≤ T , at least if
the parameters πk and γk of λt,ε are chosen in a clever way, namely as they are
predicted by the hydrodynamic equations (2.8). For example, we can put πk(t, ε) :=
u(τ/ε, k/ε) and γk(t, ε) := S′(v(τ/ε, k/ε)) if t = τ/ε, but solutions to a discretized
version of (2.8) can also be used. Therefore the empirical processes uε and vε
converge in a weak sense to that smooth solution of (2.8). Indeed, the entropy
inequality implies − log λ[A]µ[A] ≤ S[µ|λ] + log 2 for any event A, and in an exact
local equilibrium λt,ε the weak law of large numbers holds true with an exponential
rate of convergence. Consequently (2.9) implies

Theorem 2.3. Under the conditions listed above we have

lim
ε→0

∞∫

−∞

ϕ(x)uε(τ, x) dx =

∞∫

−∞

ϕ(x)u(τ, x) dx

and

lim
ε→0

∞∫

−∞

ψ(x)vε(τ, x) dx =

∞∫

−∞

ψ(x)v(τ, x) dx

in probability for all continuous ϕ,ψ with compact support if τ ≤ T , where (u, v)
is the preferred smooth solution to (2.8).

The main ideas concerning the derivation of (2.9) are discussed in the next
subsection, for a complete proof see that of Theorem 14.1 in Fritz (2001). In
contrast to the result of Olla–Varadhan–Yau (1993) and other related papers, see
also Theorem 2.4 below, the statement is not restricted to the periodic setting; the
scaling limit here is considered on the infinite line. Such an extension of the original
argument is based on the observation that the boundary terms of ∂tS[µt,ε,n|λt,ε]
can be controlled by the associated Dirichlet form consisting of the volume terms
of ∂tS. The first proof in this direction is due to Fritz (1990), see also Fritz–Nagy
(2006), Bahadoran–Fritz–Nagy (2011) and Fritz (2011).
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2.3. Derivation of the Euler equations in a smooth regime
Here we are going to outline Yau’s method for the anharmonic chain with random
exchange of velocities. The argument is similar but much more transparent than
that of Olla–Varadhan–Yau (1993). The derivation of (2.8) is easier, its main
steps are also included in the next coming calculations. Since the noise is not
strong enough to control the flux of the relative entropy, we have to formulate the
problem in a periodic setting: pk(0) = pk+n(0) and rk(0) = rk+n(0) for all k with
some n ∈ N. The evolved configuration remains periodic for all times, which means
that the system can be considered on the discrete circle of length n → +∞. The
coefficient σ > 0 can be kept fixed during the procedure of scaling because the only
role of the exchange mechanism is to ensure the strong ergodic hypothesis. At a
level ε = 1/n of scaling let µt,n denote the evolved measure, and consider the local
equilibrium distributions λt,n of type λβ,π,γ with parameters depending on space
and time: β = βk(t, n), π = πk(t, n) and γ = γk(t, n).

Theorem 2.4. Suppose that (1/n)S[µ0,n|λ0,n] → 0 as n → +∞, and the related
initial values determine a smooth solution (u, v, h) to (2.5) on the interval [0, T ] of
time such that β = −S′χ(χ, v) remains strictly positive. Then

lim
n→∞

∞∫

−∞

ψ(x)zn(t, x) dx =

∞∫

−∞

ψ(x)z(t, x) dx

in probability for all continuous ψ with compact support if t ≤ T , where (zn, z)
is any of the couples (un, u), (vn, v), (hn, h), and un(t, x) := pk(tn), vn(t, x) :=
rk(tn), hn(t, x) := Hk(tn) if |k − xn| < 1/2.

In view of the argument we have sketched before Theorem 2.3, we have to show
that if the parameters of λt,n are defined by means of the smooth solution, then
(1/n)S[µτn,n|λτn,n] → 0 as n → +∞ for all τ ≤ T , consequently the empirical
processes converge in a weak sense to that solution of (2.5).
Calculation of entropy: Let ft,n := dµt,n/dλt,n and consider the time evolution
of S[µt,n|λt,n] =

∫
log ft,n dµt,n. In the next coming calculations we are assuming

that the evolved density ft,n(ω) > 0 is a continuously differentiable function. This
hypothesis can be relaxed by means of a standard regularization procedure, see
e.g. Fritz–Funaki–Lebowitz (1994). The required regularity of the parameters is
a consequence of their construction via discretizing the macroscopic system (2.5).
By a formal computation

∂tS[µt,n|λt,n] =

∫
(∂t + L0 + σGep) log ft,n dµt,n ≤

∫
(∂t + L0)ft,n dλt,n

because
∫
ft,n dλt,n ≡ 1, L0 log ft,n = (1/ft,n)L0ft,n, and the contribution of Gep

is certainly not positive. Moreover, as L0 is antisymmetric with respect to the
Lebesgue measure, we have

∫
(∂tft,n + ft,n∂t log gt,n) dλt,n =

∫
(L0ft,n + ft,nL0 log gt,n) dλt,n = 0,
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where gt,n denotes the Lebesgue density of λt,n, consequently

S[µt,n|λt,n] ≤ S[µ0,n|λ0,n]−
t∫

0

∫
(∂s + L0) log gs,n dµs,n ds. (2.10)

On the other hand, as

log gs,n =
n−1∑

k=0

(γkrk − βkIk − F (βk, γk)) ,

where Ik := I(pk, rk|πk) = (pk − πk)2/2 + V (rk), by a direct calculation we obtain
that

∂s log gs,n =

n−1∑

k=0

(
γ̇k(rk − vk) + βkπ̇k(pk − πk)− β̇k(Ik − χk)

)
,

where "dot" indicates differentiation with respect to time.
There is a fundamental relation between the parameters β, π, γ of λn,t, namely

n−1∑

k=0

((γk−1 − γk)πk + (βkπk − βk+1πk+1)Jk + (βk+1 − βk)πk+1Jk) = 0.

As it is explained by Tóth–Valkó (2003), this identity is due to the conservation
of the thermodynamic entropy in a smooth regime, which is a basic feature of all
models with a proper physical motivation. On the other hand, it is a necessary
requirement when we evaluate the rate of production of S in order to conclude
(2.9). Indeed, we get

L0 log gs,n =

n−1∑

k=0

(γk−1 − γk)(pk − πk)

+

n−1∑

k=0

(βkπk − βk+1πk+1)(V ′(rk)− Jk) (2.11)

+

n−1∑

k=0

(βk+1 − βk)(pk+1V
′(rk)− πk+1Jk),

where vk :=
∫
rk dλt,n, πk := uk =

∫
pk dλt,n and χk :=

∫
Ik dλt,n, finally Jk =

J(χk, vk) = γk/βk :=
∫
V ′(rk) dλt,n. Notice that the local equilibrium mean of any

of the last factors on the right hand sides of (2.11) above does vanish: for instance∫
(V ′(rk)− Jk) dλt,n = 0.

The crucial step: The microscopic time t is as big as t = nτ , thus there is a
danger of explosion on the right hand side of (2.10) as n → +∞. However, due
to the smoothness of the macroscopic solution, the nonlinear functions appearing
in the sums above can be substituted by their block averages, and the celebrated
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One-block Lemma, which is the main consequence of strong ergodicity, allows us
to approximate the block averages by their canonical equilibrium expectations, see
Lemma 3.1 in Guo–Papanicolau–Varadhan (1988) or Theorem 3.5 of Fritz (2001).

The wave equation: The case of (2.8) is quite simple because βk ≡ 1 then, thus
V ′k = V ′(rk) is the only nonlinear function we are facing with. Block averages
η̄l,k := (1/l)(ηk + ηk−1 + · · · + ηk−l+1) of size l ∈ N are also periodic functions of
k ∈ Z with period n. Since

∫
V ′k dλ1,π,γ = S′(vk) = Jk if vk is the local equilibrium

mean of rk, V̄ ′l,k ≈ S′(r̄l,k) is the desired substitution, which is valid as l → +∞
after n → ∞. Presupposing |πk+1 − πk| = O(1/n) and |vk+1 − vk| = O(1/n) we
write

n−1∑

k=0

(πk − πk+1)(V ′(rk)− S′(vk)) ≈
n−1∑

k=0

(πk − πk+1)(V̄ ′l,k − S′(vk))

≈
n−1∑

k=0

(πk − πk+1)(S′(r̄l,k)− S′(vk)) ≈
n−1∑

k=0

(πk − πk+1)S′′(vk)(rk − vk).

The remainders including the squared differences coming from the expansion of
S′(r̄l,k) − S′(vk) are estimated by means of the basic entropy inequality and the
related large deviation bound; let us omit these technicalities. Comparing the
leading terms we see that

γ̇ = S′′(vk)(πk+1 − πk) and π̇k = γk − γk−1

is the right choice of the parameters because then there is a radical cancelation
on the right hand side of (2.10). Since γk = S′(vk), this system is just a lattice
approximation to (2.8), thus our conditions on the regularity of the parameters are
also justified. Summarizing the calculations above, we get a bound

S[µτ,n|λt,n] ≤ S[µ0,n|λ0,n] +
K

n

t∫

0

S[µs,n|λs,n] ds+Rn(T, l) (2.12)

such that Rn(T, l) → 0 as n → +∞ and then l → +∞, whence S[µτn,n|λτn,n] =
o(n) follows by the Grönwall inequality if τ ≤ T .
The general case: It is a bit more complicated then the case of the p-system,
the required substitutions read as

V ′(rk) ≈ J(Īl,k, r̄l,k) ≈ Jk + J ′χ(χk, vk)(Īl,k − χk) + J ′v(χk, vk)(r̄l,k − vk),

and

pk+1V
′(rk) ≈ p̄l,k+1J(Īl,k, r̄l,k) ≈ πk+1J(χk, vk)

+ J(χk, vk)(p̄l,k+1 − πk+1)

+ πk+1J
′
χ(χk, vk)(Īl,k − χk) + πk+1J

′
v(χk, vk)(r̄l,k − vk).
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These steps are justified by the strong ergodicity of the dynamics (One-block
Lemma), provided that V ′(rk) and πk+1V

′(rk) can be replaced by their block av-
erages. This second condition turns out to be a consequence of the smoothness of
the macroscopic solution, see the construction below. The second order quadratic
terms of the expansions above are estimated by means of the entropy inequality,
we only need standard large deviation bounds.

To minimize S[µt,n|λt,n], the parameters of λt,n should be defined by means of
a discretized version of the Euler equations. In fact we set

πk = uk, γk = S′v(χk, vk), βk = −S′χ(χk, vk),

where
v̇k = uk+1 − uk, u̇k = J(χk+1, vk+1)− J(χk, vk)

and χ̇k = J(χk, vk)(uk+1 − uk), whence

βkπ̇k = (γk − γk−1) + (βk−1 − βk) Jk−1,

γ̇k = (βk+1πk+1 − βkπk)J ′v(χk, vk) + (βk − βk+1)J ′v(χk, vk),

β̇k = (βkπk − βk+1πk+1)J ′χ(χk, vk) + (βk+1 − βk)J ′χ(χk, vk)

follow by a direct computation.
As a consequence of these calculations, we see the expected cancelation of the

sum of all leading terms on the right hand side of (2.10), while the remainders can be
estimated by means of the entropy inequality. The summary of these computations
results in (2.12), thus the proof can be terminated as it was outlined in the previous
two paragraphs.

3. Compensated compactness via artificial viscosity

As we have already explained, randomness in the above modifications of the anhar-
monic chain implies convergence to a classical solution of the macroscopic system
(2.5) or (2.8) by the strong ergodic hypothesis, but in a regime of shocks much
more information is needed to pass to the hydrodynamic limit. Effective coupling
techniques that we have for attractive models are not available in the case of two-
component systems, compensated compactness seems to be the only tool we can
use. The microscopic dynamics can not admit non-classical conservation laws be-
cause it should be ergodic in the strong sense, therefore a nontrivial Lax entropy
is not conserved by the microscopic dynamics. In general, the flux of a Lax en-
tropy exhibits a non-gradient behavior, but the standard spectral gap estimates of
Varadhan (1994) are not sufficient for its control in this case, a logarithmic Sobolev
inequality (LSI) is needed. The effective LSI is due to the strong artificial viscosity
of our next model, we will consider a Ginzburg–Landau type stochastic system:

dpk = (V ′(rk)− V ′(rk−1)) dt+ σ(ε) (pk+1 + pk−1 − 2pk) dt

+
√

2σ(ε) (dwk − dwk−1)
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and

drk = (pk+1 − pk) dt+ σ(ε) (V ′(rk+1) + V ′(rk−1)− 2V ′(rk)) dt

+
√

2σ(ε) (dw̃k+1 − dw̃k),

where {wk : k ∈ Z} and {w̃k : k ∈ Z} are independent families of independent
Wiener processes. Of course, the macroscopic viscosity εσ(ε) vanishes as ε → 0,
but we also need εσ2(ε)→ +∞ to suppress extreme fluctuations of Lax entropies.
To have a standard existence and uniqueness theory for this infinite system of
stochastic differential equations, we are assuming that V ′′ is bounded. The gener-
ator of the Feller process defined in this way reads as L = L0 + σGp + σGr, where
Gr is also elliptic. Additional conditions on the interaction potential V are listed
below.

3.1. Conditions and main result
Just as in the case of (2.7), the same {λπ,γ : π, γ ∈ R} is the family of stationary
product measures, and the converse statement, i.e. the strong ergodic hypothesis
can be proven in the same way. Therefore again (2.8) is expected to govern the
macroscopic behavior of the system under hyperbolic scaling. The first crucial
problem is the evaluation of L0h when h is a Lax entropy, we have to show that
its dominant part is a difference of currents. These probabilistic calculations are
based on a logarithmic Sobolev inequality. In view of the Bakry–Emery criterion,
see Deuschel–Stroock (1989), we have to assume that V is strictly convex, i.e. V ′′
is bounded away from zero. On the other hand, the existence of weak solutions to
(2.8) requires the condition of genuine nonlinearity: the third derivative S′′′ can
not have more than one root, see DiPerna (1985), Shearer (1994) and Serre–Shearer
(1994). In terms of V this is a consequence of one of the following assumptions.

(i) V ′ is strictly convex or concave on R.
(ii) V is symmetric and V ′(r) is strictly convex or concave for r > 0.
The very same properties of the flux S′ follow immediately by the theory of

total positivity. Of course, small perturbations of such potentials also imply the
required genuine nonlinearity of the macroscopic flux, V (r) := r2/2−a log cosh(br)
is an explicitly solvable example if a > 0 is small enough.

A technical condition: asymptotic normality requires the existence of positive
constants α, V ′′+ , V ′′− and R such that |V ′′(r)−V ′′+ | ≤ e−αr if r ≥ R, while |V ′′(r)−
V ′′− | ≤ eαr if r ≤ −R.

Since we are not able to prove the uniqueness of the hydrodynamic limit, our
only hypothesis on the initial distribution is an entropy bound: S[µ0,ε,n|λ0,0] =
O(n).

Let Pε denote the distribution of the empirical process (uε, vε), then the simplest
version of our main result reads as:

Theorem 3.1. Pε is a tight family with respect to the weak local topology of the
L2 space of trajectories, and its limit distributions are all concentrated on a set of
weak solutions to (2.8).
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The notion of weak convergence changes from step to step of the argument. We
start with the Young measure of the block-averaged process, and at the end we
get tightness in the strong local Lp(R2

+) topology for p < 2; R2
+ := R+ × R. This

strong form of our result is proven for a mollified version (ûε, v̂ε) of the empirical
process, it is defined a bit later, after (3.2). Compensated compactness is the most
relevant keyword of the proofs.

3.2. On the ideas of the proof
We follow the argumentation of the vanishing viscosity approach. In a concise form
(2.8) can be written as ∂tz + ∂xΦ(z) = 0, where z := (u, v), Φ(z) := −(S′(v), u),
and its viscid approximation reads as ∂tzδ + ∂xΦ(zδ) = δ ∂2xzδ. This parabolic
system admits classical solutions if δ > 0, and the original hyperbolic equation can
be solved by sending δ → 0. The argument is not trivial at all, see e.g. Dafermos
(2005). Our task is to extend this technology to microscopic systems.
Energy inequality: Observe first that the space integral of W (z) := u2/2 +S(v)
is constant along classical solutions to the wave equation (2.8), moreover its viscid
approximation satisfiess

∂tW (zδ) = ∂x (uδS
′(vδ)) + δ ∂x (uδ∂xuδ + S′(vδ)∂xvδ)

− δ
(
(∂xuδ)

2 + S′′(vδ)(∂xvδ)
2
)
.

Since S is strictly convex, we have got a standard energy inequality: an L2 bound
for δ1/2 ∂xzδ. In a regime of shocks, however, this bound does not vanish as δ → 0,
consequently a strong compactness argument is not available.
Young family: Nevertheless, a very weak form of compactness holds true at the
level of the Young measure. The approximate solution zδ can be represented by a
measure Θδ on R2

+ × R2 such that dΘδ := dt dx θδt,x(dz), where θδt,x is the Dirac
mass sitting at the actual value zδ(t, x) of zδ. Since zδ is locally bounded in L2(R2

+),
we can select weakly convergent sequences from Θδ as δ → 0. Of course, the Young
family {θt,x : (t, x) ∈ R2

+} of a limiting measure Θ of Θδ needs not be Dirac, thus we
only have convergence to measure valued solutions: ∂tθt,x(z) + ∂x(θt,x(Φ(z))) = 0
in the sense of distributions, where the abbreviation θt,x(ϕ(z)) :=

∫
ϕ(z) θt,x(dz) is

used; we write θt,x(z) if ϕ(z) ≡ z. F The identification of measure valued solutions
as weak solutions is the subject of the theory of compensated compactness, in fact
the Dirac property of the limiting Young measure should be verified.
Compensated factorization: It is crucial that (2.8) admits a rich family of Lax
entropy pairs (h, J), these are characterized by the conservation law: ∂th(z) +
∂xJ(z) = 0 along classical solutions. Let us now turn to the viscid approximation.
We see that entropy production

Xδ := ∂th(zδ) + ∂xJ(zδ) = δ ∂x(h′u∂xuδ + h′v∂xvδ)

− δ
(
h′′uu(∂xuδ)

2 + 2h′′uv∂xuδ ∂xvδ + h′′vv(∂xvδ)
2
)

decomposes as Xδ = Yδ + Zδ, where Yδ vanishes in H−1, while Zδ is bounded in
the space of measures. As a first consequence we get the Lax entropy inequality:
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Xδ ≤ 0 as a distribution if h is convex, but the famous Div-Curl Lemma is more
relevant at this point. Let θt,x denote the Young family of a weak limit point Θ of
the sequence of Young measures Θδ as δ → 0, then for couples (h1, J1) and (h2, J2)
of Lax entropy pairs we have a compound factorization property:

θt,x(h1J2)− θt,x(h2J1) = θt,x(h1)θt,x(J2)− θt,x(h2)θt,x(J1) (3.1)

almost everywhere on R2. In his pioneering papers Ronald DiPerna managed to
show that (3.1) implies the Dirac property of the Young family, at least if the
sequence of approximate solutions is uniformly bounded, see DiPerna (1985) with
further references.
The microscopic evolution: The Ito lemma yields a parabolic energy inequality

∂tEHk (ω(t)) = E (pk+1V
′(rk)− pkV ′(rk−1))

+ σ(ε)E (pk (pk+1 + pk−1 − 2pk))

+ σ(ε)E (V ′(rk)(V ′(rk+1) + V ′(rk−1)− 2V ′(rk)))

at the microscopic level. If εσ(ε) remains positive as ε → 0, then the tightness in
the local topology of L2(R) of the distributions of the time averaged process might
follow from this bound in much the same way as it is done in PDE theory.5 However,
εσ(ε) → 0 as ε → 0, thus the bound degenerates in the limit, consequently there
is no hope to get tightness in L2. That is why we say that a direct compactness
argument does not work, the method of compensated compactness is needed.

In our case a difficult step of the usual non-gradient analysis can be avoided by
considering the Lax entropy pairs (h, J) as functions of the block averaged empirical
process (ûε, v̂ε). Entropy production Xε := ∂th(ûε, v̂ε) + ∂xJ(ûε, v̂ε) is defined as
a generalized function, without the condition εσ2(ε)→ +∞ its fluctuations might
explode in the limit even if we define the empirical processes in terms of block
averages. The main difficulty is to identify the macroscopic flux in the microscopic
expression of L0h, and to show that the remainders do vanish in the limit. This is
achieved by replacing block averages of the microscopic currents of momenta with
their equilibrium expectations, a logarithmic Sobolev inequality plays a decisive
role in the computations. This substitution transforms the evolution equation of h
into a fairly transparent form: we can recover essentially the same structure which
appears when the vanishing viscosity limit for (2.8) is performed. At this point
can we launch the stochastic theory of compensated compactness, and the proof is
terminated by referring to known results from PDE theory. Unfortunately we can
not find bounded, positively invariant regions in stochastic situations as DiPerna
(1985) did at the PDE level, but the results of Shearer (1994) and Serre–Shearer
(1994) on an Lp theory of compensated compactness are applicable.

5In case of the diffusive models of Fritz (1986) and its continuations, an energy inequality
implies this kind of tightness of the process in the space of trajectories. Guo–Papanicolau–
Varadhan (1988) had raised the problem to the level of measures µt, and instead of energy and
the H+1 norm of configurations, the relative entropy and its rate of production (Dirichlet form)
are estimated to get the required a priori bounds including an energy inequality.
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3.3. Stochastic theory of compensated compactness
Most computations involve mesoscopic block averages of size l = l(ε) such that

lim
ε→0

l(ε)

σ(ε)
= 0 and lim

ε→0

εl3(ε)

σ(ε)
= +∞.

For sequences ξk indexed by Z we define two kinds of block averages:

ξ̄l,k :=
1

l

l−1∑

j=0

ξk−j and ξ̂l,k :=
1

l2

l∑

j=−l
(l − |j|) ξk+j . (3.2)

For example, V̄ ′l,k denotes the arithmetic mean of the sequence ξj = V ′(rj). We
start calculations with the “smooth” averages ξ̂l,k, the arithmetic means appear in
canonical expectations. The corresponding empirical process (ûε, v̂ε) and (ūε v̄ε)
are defined according to ûε(t, x) := p̂l,k(t/ε) if |εk − x| < ε/2, and so on. Since ûε
and v̂ε are bounded in a mean sense in L2(dt, dx), the distributions P̂ε of the Young
measure Θ form a tight family; these are now defined as dΘε := dt dx θεt,x(du),
where θεt,x is the Dirac mass at the actual value of (ûε, v̂ε). The Young family
controls the asymptotic behavior of various functions of the empirical processes.

Given a Lax entropy pair (h, J), the associated entropy production is defined
as

Xε(ϕ, h) := −
∞∫

0

∞∫

−∞

(h(ûε, v̂ε)ϕ
′
t(t, x) + J(ûε, v̂ε)ϕ

′
x(t, x)) dx dt,

where the test function ϕ is compactly supported in the interior of R2
+. We

call an entropy pair (h, J) well controlled if its entropy production decomposes
as Xε(ϕ, h) = Yε(ϕ, h) + Zε(ϕ, h), and we have two random functionals Aε(φ, h)
and Bε(φ, h) such that

|Yε(ψφ, h)| ≤ Aε(φ, h)‖ψ‖+ and |Zε(ψ, h)| ≤ Bε(φ, h)‖ψ‖,

where ‖ · ‖ is the uniform norm, while ‖ · ‖+ denotes the norm of the Sobolev space
H+1. Here the test function φ is compactly supported in the interior of R2

+, its role
is to localize the problem. The factors Aε and Bε do not depend on ψ, moreover
limEAε(φ, h) = 0 and lim supEBε(φ, h) < +∞ as ε→ 0.

Proposition 3.2. If (h1, J1) and (h2, J2) are well controlled entropy pairs, then
(3.1) holds true with probability one with respect to any limit distribution of P̂ε that
we obtain as ε→ 0.

This is the stochastic version of the Div-Curl Lemma above. The proof is
not difficult, by means of the Skorohod Embedding Theorem it can be reduced to
the original, deterministic version, see Fritz (2001), Fritz (2004) and Fritz–Tóth
(2004). The main problem is the verification of its conditions, the logarithmic
Sobolev inequality plays an essential role here.

Microscopic theory of hydrodynamics 99



3.4. The a priori bounds
Following Fritz (1990), our a priori bounds are all based on the next inequality that
controls relative entropy and its rate of production. The initial condition implies
that

S[µt,ε,n|λ0,0] + σ(ε)

t∫

0

D[µs,ε,n|λ0,0] ds ≤ C
(
t+
√
n2 + σ(ε)t

)

for all t, n, ε with the same constant C, where D is the Dirichlet form, it is due to
the elliptic perturbation of the anharmonic chain:

D[µt,ε,n|λ0,0] :=
n−1∑

k=−n

∫
(∇1∂k

√
fn)2 dλ+

n−1∑

k=−n

∫
(∇1∂̃k

√
fn)2 dλ,

where ∇lξk := (1/l)(ξk+l − ξk), fn := dµt,ε,n/dλ0,0, ∂k := ∂/∂pk and ∂̃k := ∂/∂rk.
This is the consequence of a system of differential inequalities:

∂tSn + 2σ(ε)Dn ≤ K
(
Sn+1 − Sn + σ(ε)

√
Sn+1 − Sn

√
Dn+1 −Dn

)
,

where Sn := S[µt,ε,n|λ0,0] and Dn := D[µt,ε,n|λ0,0] for brevity. For a proof of this
local entropy bound see Fritz (2011) with further references.
LSI: The logarithmic Sobolev inequality we are going to use, can be stated as
follows. Given r̄l,k = v, let µvl,k and λvl,k denote the conditional distributions of the
variables rk, rk+1, ..., rk+l−1 with respect to µ and λ0,0, and set fvl,k := dµvl,k/dλ

v
l,k,

then ∫
log fvl,k dµ

v
l,k ≤ l2Clsi

k+l−2∑

j=k

∫ (
∇1∂̃k(fvl,k)1/2

)2
dλvl,k

for all µ, v, k, l with a universal constant Clsi depending only on V . Of course, a
similar inequality holds true for the conditional distributions of momenta. Com-
bining this with the standard entropy inequality

∫
ϕdµ ≤ S[µ|λ] + log

∫
eϕ dλ, the

calculation of expectations reduces to large deviation bounds for the canonical dis-
tributions of the equilibrium measure λ0,0. The most important consequence of
the local entropy bound and this LSI is the evaluation of the microscopic current
of momentum as follows:

∑

|k|<n

t∫

0

∫ (
V̄ ′l,k − S′(r̄l,k)

)2
dµs,ε ds ≤ C1

(
nt

l
+
l2
√
n2 + σ(ε)t

σ(ε)

)
.

Similar bounds control the differences r̄l,k+l − r̄l,k and r̂l,k − r̄l,k. Later on the
validity of such a bound will be indicated as V̄ ′l,k ≈ S′(r̄l,k), r̄l,k+l ≈ r̄l,k, and so
on.
Entropy flux: Finally, let us outline the crucial step of the evaluation of entropy
production at a heuristic level. Consider a Lax entropy h = h(u, v) with flux
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J = J(u, v) and expand J . The second order terms of the Lagrange expansion can
be neglected, thus we have

X0,k := L0h(p̂l,k, r̂l,k) + J(p̂l,k+1, r̂l,k+1)− J(p̂l,k, r̂l,k)

≈ h′u(p̂l,k, r̂l,k)(V̂ ′l,k − V̂ ′l,k−1) + h′v(p̂l,k, r̂l,k)(p̂l,k+1 − p̂l,k)

+ J ′u(p̂l,k, r̂l,k)(p̂l,k+1 − p̂l,k) + J ′v(p̂l,k, r̂l,k)(r̂l,k+1 − r̂l,k).

Since h′u(u, v)S′′(v) + J ′v(u, v) = h′v(u, v) + J ′u(u, v) = 0,

X0,k ≈ h′u(p̂l,k, r̂l,k)(V̂ ′l,k − V̂ ′l,k−1)− h′u(p̂l,k, r̂l,k)S′′(r̂l,k)(r̂l,k+1 − r̂l,k).

Observe now that ξ̂l,k+1 − ξ̂l,k = (1/l)(ξ̄l,k+l − ξ̄l,k), thus the substitution V̄ ′l,k ≈
S′(r̄l,k) results in l X0,k ≈ 0 as

l X0,k ≈ h′u(p̂l,k, r̂l,k) (S′(r̄l,k−1+l)− S′(r̄l,k−1)− S′′(r̂l,k)(r̄l,k+l − r̄l,k)) .

Of course, the precise computation is much more complicated because in the
formula Xε of entropy production the terms X0,k have a factor 1/ε. In fact,
(εl(ε)σ(ε))−1 is the order of the replacement error; that is why we need εσ2(ε)→
+∞ and the sharp explicit bounds provided by the logarithmic Sobolev inequality.

4. Relaxation of interacting exclusions

We consider ±1 charges in an electric field, positive charges jump to the right on Z,
negative charges move to the left with unit jump rates in both cases such that two
or more particles can not coexist at the same site. There is an interaction between
these processes: if charges of opposite sign meet, then they jump over each other at
rate 2. The configurations are doubly infinite sequences ωk ∈ {−1, 0, 1} indexed by
Z, ωk = 0 indicates an empty site, and ηk := ω2

k denotes the occupation number.
The generator of the process is acting on local functions ϕ as

L0ϕ(ω) =
1

2

∑

k∈Z
(ηk + ηk+1 + ωk − ωk+1)(ϕ(ωk,k+1)− ϕ(ω));

ω → ωk,k+1 indicates the exchange of ωk and ωk+1. This most interesting model
had been introduced by Tóth–Valkó (2003), where its HDL in a smooth regime is
demonstrated, too. The total charge P =

∑
ωk and particle number R =

∑
ηk

are obviously preserved by the evolution, and the associated family of transla-
tion invariant stationary product measures {λu,ρ} can be parametrized so that∫
ωk dλu,ρ = u and

∫
ηk dλu,ρ = ρ. Conservation of ω and η means that they are

driven by currents, i.e. L0ωk = jωk−1 − jωk and L0η = jηk−1 − jηk, where

jωk := (1/2) (ηk + ηk+1 − 2ωkωk+1 + ωkηk+1 − ηkωk+1 + ηk − ηk+1),

jηk := (1/2) (ωk + ωk+1 − ωkηk+1 − ηkωk+1 + ηk − ηk+1).
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Since
∫
jωk dλu,ρ = ρ−u2 and

∫
jηk dλu,ρ = u−uρ, the principle of local equilibrium

suggests that under hyperbolic scaling a version of the Leroux system:

∂tu+ ∂x(ρ− u2) = 0 and ∂tρ+ ∂x(u− uρ) = 0 (4.1)

governs the macroscopic evolution. The strong ergodic hypothesis can easily be
proven by a standard entropy argument. In a regime of shock waves the method
of compensated compactness is applied to derive the Leroux system; therefore an
additional stirring mechanism:

Geϕ(ω) :=
∑

k∈Z

(
ϕ(ωk,k+1)− ϕ(ω)

)

is needed to regularize the process. The full generator reads as L := L0 + σ(ε)Ge,
and our usual conditions εσ(ε)→ 0 and εσ2(ε)→ +∞ are assumed.

The statement is similar to the case of isentropic elastodynamics, the proof is
based on the logarithmic Sobolev inequality what we have for the stirring gener-
ator Ge, see Fritz–Tóth (2004), where HDL is proven in a periodic setting. The
extension of this result to general initial values is explained by Fritz–Nagy (2006),
the optimal version concerns the mollified empirical processes ûε(t, x) := ω̂l,k(t/ε)
and ρ̂ε(t, x) := η̂l,k(t/ε) if |εk − x| < ε/2, where the block size l = l(ε) is the same
as in Section 3.

Theorem 4.1. The distributions of our empirical processes form a tight family
with respect to the strong local topology of L1(R2

+), and any limit distribution of
(ûε, ρ̂ε) is concentrated on a set of weak solutions to (4.1). These weak solutions
satisfy the Lax entropy condition, too.

A uniqueness theorem for the Leroux system requires only a local bound on the
total variation of the weak solution we have constructed, nevertheless we are not
able to prove the uniqueness of the hydrodynamic limit.

4.1. Creation and annihilation of charges
In the paper Fritz–Nagy (2006) it was shown that an additional spin-flip mechanism
relaxes the Leroux system to the Burgers equation ∂tρ+κ ∂x(ρ−ρ2) = 0 even in the
case of shocks, where κ = 0 in the completely symmetric case. The replacement u ≈
κρ is due to a second logarithmic Sobolev inequality. The following modification of
the above process of interacting exclusions is a caricature of electrophoresis, and it
is interesting also from the point of view of mathematics because the PDE method
of relaxation schemes is reformulated for the microscopic dynamics.
The model: Imagine that when two particles of opposite charge collide, then
instead of jumping over each other, they may kill each other and disappear, while
at two neighboring empty sites a couple (+1,−1) can be created. The action
ω → ωk+ of creation at the bond b = (k, k + 1) means that (ωk, ωk+1) → (1,−1)
if ωk = ωk+1 = 0, while annihilation ω → ωk− is defined by (ωk, ωk+1) → (0, 0)
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if ωk = 1 and ωk+1 = −1; at other sites the configuration is not altered. The
generator of this process of interacting exclusions with creation and annihilation
reads as L∗ = L0 + β(ε)G∗, where

G∗ϕ(ω) :=
∑

k∈Z
(1− ηk)(1− ηk+1)(ϕ(ωk+)− ϕ(ω))

+
1

4

∑

k∈Z
(ηk + ωk)(ηk+1 − ωk+1)(ϕ(ωk−)− ϕ(ω)).

Since we do not want to postulate smoothness of the macroscopic solution, the
process should be regularized by stirring, thus the effective generator becomes
L := L∗ + σ(ε)Ge. The factor σ = σ(ε) is the same as above, and it is natural to
assume that β is a positive constant because it is the parameter of the basic model.

Creation-annihilation violates the conservation of particle number, only total
charge

∑
ωk is preserved by our stochastic dynamics. A product measure λu,ρ

will be stationary if λu,ρ[ωk = 0, ωk+1 = 0] = λu,ρ[ωk = 1, ωk+1 = −1], that is
4(1− ρ)2 = (ρ2 − u2), whence

ρ = F (u) := (1/3)(4−
√

4− 3u2) (4.2)

is the criterion of stationarity because the second root:

F̃ (u) := (1/3)(4 +
√

4− 3u2) ≥ 5/3 > 1.

Therefore our one-parameter family {λ∗u : |u| < 1} of stationary product measures
is defined by λ∗u := λu,F (u). Of course,

∫
ωk dλ

∗
u = u and

∫
ηk dλ

∗
u = F (u), thus∫

jωk dλ
∗
u = F (u) − u2. On the other hand, G∗ωk = jω∗k−1 − jω∗k is a difference of

currents,

jω∗k (ω) := (1/4)(ηk + ωk)(ηk+1 − ωk+1)− (1− ηk)(1− ηk+1), (4.3)

and
∫
jω∗k dλu,ρ = C(u, ρ) := (3/4)(ρ−F (u))(F̃ (u)−ρ), thus the equilibrium expec-

tation of jω∗k does vanish, consequently the principle of local equilibrium predicts

∂tu(t, x) + ∂x(F (u)− u2) = 0 (4.4)

as the result of the hyperbolic scaling limit. Note that the flux is neither convex
nor concave, thus the structure of shock waves may be rather complex.

It is not a surprise that the contribution of the creation-annihilation mecha-
nism does not appear in the limit. The generator G∗ is symmetric in L2(dλ∗u),
consequently a diffusive scaling would be needed to recover its action.
Main result. Assume that the initial distributions satisfy

lim
ε→0

ε
∑

k∈Z
ϕ(εk)ωk(0) =

∞∫

−∞

ψ(x)u0(x) dx
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in probability for all compactly supported ϕ ∈ C(R). We say that a measurable
and bounded u = u(t, x) is a weak entropy solution to (4.4) with initial value u0 if

∞∫

0

∞∫

−∞

(ψ′t(t, x)u(t, x) + ψ′x(t, x)(F (u(t, x))− u2(t, x))) dx dt

+

∞∫

−∞

ψ(0, x)u0(x) dx = 0,

and for all convex entropy pairs (h, J) we have the Lax inequality:

−Xε(ψ, h) =

∞∫

0

∞∫

−∞

(ψ′t(t, x)h(u) + ψ′x(t, x)J(u)) dx dt ≥ 0 (4.5)

whenever 0 ≤ ψ ∈ C1(R2) is compactly supported in the interior of R2
+. Entropy

pairs of (4.4) are characterized by J ′(u) = (F ′(u) − 2u)h′(u), that is ∂th(u) +
∂xJ(u) = 0 along classical solutions. Our effective empirical process ûε is now
defined as ûε(t, x) := ω̂l,k(t/ε) if |εk − x| < ε/2; the mesoscopic block size l = l(ε)
is just as big as it was in the previous section.

In the paper by Bahadoran–Fritz–Nagy (2011) we prove:

Theorem 4.2. The above conditions imply that

lim
ε→0

E

τ∫

0

r∫

−r

|u(t, x)− ûε(t, x)| dx dt = 0

for all r, τ > 0, where u is the uniquely specified weak entropy solution to (4.4) with
initial value u0.

Let us remark that the coefficient β > 0 needs not be a constant, it is sufficient
to assume that σ(ε)β(ε)→ +∞ and εσ2(ε)β−4(ε)→ +∞ as ε→ 0.

4.2. Relaxation in action
The proof follows the standard technology of the stochastic theory of compensated
compactness, the entropy production for entropy pairs of (4.4) has to be evaluated.
Here the uniqueness of the hydrodynamic limit is a consequence of the Lax entropy
inequality, see Chen–Rascle (2000), thus lim supXε(ψ, h) ≤ 0 is also needed for
ψ ≥ 0 and convex h. We are facing with the computation of four basic quantities,
besides jωk , j

η
k and jω∗k ,

G∗ηk = (1− ηk)(1− ηk+1)− (1/4)(ηk + ωk)(ηk+1 − ωk+1)

+ (1− ηk−1)(1− ηk)− (1/4)(ηk−1 + ωk−1)(ηk−1 − ωk−1)
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should also be evaluated. Since G∗ηk = −jω∗k−1 − jω∗k , we have
∫

G∗ηk dλu,ρ = (3/2)(ρ− F (u))(ρ− F̃ (u)) = −2C(u, ρ). (4.6)

The macroscopic flux: The fundamental local bound on relative entropy and its
rate of production holds true also in this case, see Lemma 3.1 of our paper, thus
the logarithmic Sobolev inequality involving the Dirichlet form of Ge applies, too.
In this way we can estimate canonical expectations given ω̄l,k and η̄l,k, see Lemmas
3.3–3.5 in Bahadoran–Fritz–Nagy (2011); the explicit upper bounds are the same
as in Section 3.4. Therefore the replacements

j̄ωl,k ≈ η̄l,k − (ω̄l,k)2, j̄ηl,k ≈ ω̄l,k − ω̄l,kη̄l,k, j̄ω∗l,k ≈ C(ω̄k,l, η̄l,k) (4.7)

and η̄∗l,k ≈ −2C(ω̄k,l, η̄l,k), where η∗j := G∗ηj for convenience, are all allowed,
moreover ω̄l,k+l ≈ ω̄l,k ≈ ω̂l,k and η̄l,k+l ≈ η̄l,k.
Entropy production: Since G∗ is reversible, the critical component of entropy
production is induced by L0. Let us consider now an entropy pair (h, J) of (4.4),
i.e. J ′(u) = (F ′(u) − 2u)h′(u). In view of the asymptotic equivalence relations
listed above, we obtain that

X∗0,k := L0h(ω̂l,k) + J(ω̂l,k+1)− J(ω̂l,k) ≈ h′(ω̂l,k)(̂jωl,k−1 − ĵωl,k)

+ (F ′(ω̂l,k)− 2ω̂l,k)h′(ω̂l,k)(ω̂l,k+1 − ω̂l,k)

≈ (1/l)h′(ω̂l,k)
(
η̄l,k − η̄l,k+l − (ω̄l,k)2 + (ω̄l,k+l)

2
)

+ (1/l)h′(ω̂l,k) (F ′(ω̄l,k)− ω̄l,k − ω̄l,k+l) (ω̄l,k+l − ω̄l,k)

≈ (1/l)h′(ω̂l,k) (η̄l,k − η̄l,k+l + F ′(ω̄l,k)(ω̄l,k+l − ω̄l,k)) ,

whence the required l X∗0,k ≈ 0 would follow by the substitution η̄l,k ≈ F (ω̄l,k).
Since we do not have the appropriate logarithmic Sobolev inequality, another tool
must be found.
Relaxation schemes: Observe that η̄l,k appears with a negative sign in the for-
mula of G∗η̄l,k, see also (4.6), thus there is a hope to experience relaxation, which
results in C(ω̄l,k, η̄l,k)→ 0 as ε→ 0. Although the evolution equations of ω̄l,k and
η̄l,k are rather complicated, the following couple of approximate identities reflects
quite well the underlying structure. Applying the substitution relations (4.7) and
neglecting obviously vanishing terms, we get

dũε + ∂x(ρ̃ε − ũ2ε) dt+ β ∂xC(ũε, ρ̃ε) dt ≈ 0,

dρ̃ε + ∂x(ũε − ũερ̃ε) + (2β/ε)C(ũε, ρ̃ε) dt ≈ 0,

where ũε ∼ ω̄l,k and ρ̃ε ∼ η̄l,k by mollification. Since

(ρ− F (u))C(u, ρ) ≥ Ψ(u, ρ) := (1/2) (ρ− F (u))
2
,

even the trivial Liapunov function Ψ can be applied to conclude that η̄l,k ≈ F (ω̄l,k).
This trick works well if εσ2(ε)β2(ε) → +∞ as ε → 0, a slightly better result can
be proven by replacing Ψ with a clever Lax entropy, see Bahadoran–Fritz–Nagy
(2011).
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5. Concluding remarks

In spite of some progress in the stochastic theory of compensated compactness,
there are many relevant open problems whose solution seems to be hard or even
hopeless at this time.
The Lax inequality: The dominant term of entropy production Xε(ψ, h) is gen-
erated by the elliptic components of L = L0+σ(ε)Gp+σ(ε)Gr. It is bounded in the
space of measures, and the contribution of Gp is obviously not positive if ψ ≥ 0 and
h is convex. Our naive large deviation technique is not strong enough to exploit
that V is convex. The Lax inequality restricts the set of limiting weak solutions,
but in the case of systems it is not a known condition of uniqueness.
Uniqueness of HDL: This is a very hard problem in the case of a couple of
conservation laws because any criterion of uniqueness presupposes a sharp local
bound at fixed times. Unfortunately, in the case of stochastic models we are able
to bound expectations of space-time integrals only. From the point of view of
computations the microscopic systems of statistical physics are more complicated
than the sophisticated numerical schemes of PDE theory.6 For example, even the
existence of positively invariant regions is a problematic issue.
Physical viscosity: It would be nice to materialize the argumentation of Serre–
Shearer (1994) at the microscopic level, that is to consider hyperbolic scaling of the
model L = L0 + σGp in a regime of shocks. This is not easy because the Dirichlet
form of Gp controls the distribution of velocities only, while the most crucial step
consists of the substitution V̄ ′l,k ≈ S′(r̄l,k). The less interesting case of L = L0+σGr
seems to be simpler, but it not trivial at all.
The strength of artificial viscosity: The condition εσ2(ε) → +∞ is not nec-
essary in the case of attractive models, but it is systematically applied in more
general situations.
Euler equations with physical viscosity: HDL of the model L = L0 + (1/ε)Gr
results in the p-system of elastodynamics with artificial viscosity, see Theorem 3 in
Fritz (1990). The derivation of the viscid Euler equations (1.5) of Chen–Dafermos
(1995) is more complicated because then a momentum and energy preserving dif-
fusive noise should be added to the equations of the anharmonic chain. To solve
the resulting non-gradient problem, the spectral gap of the elliptic components of
the generator ought to be determined.
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