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Abstract

We study limiting properties of a random walk on the plane, when we
have a square lattice on the upper half-plane and a comb structure on the
lower half-plane, i.e., horizontal lines below the x-axis are removed. We
give strong approximations for the components with random time changed
Wiener processes. As consequences, limiting distributions and some laws
of the iterated logarithm are presented. Finally, a formula is given for the
probability that the random walk returns to the origin in 2N steps.
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1. Introduction and main results

The properties of a simple symmetric random walk on the square lattice Z2 have
been extensively investigated in the literature since Dvoretzky and Erdős (1951),
and Erdős and Taylor (1960). For these and further results we refer to Révész
(2005).

Subsequent investigations concern random walks on other structures of the
plane. For example, a simple random walk on the 2-dimensional comb lattice
that is obtained from Z2 by removing all horizontal lines off the x-axis was studied
by Weiss and Havlin (1986), Bertacchi and Zucca (2003), Bertacchi (2006), Csáki
et al. (2009, 2011).

These are particular cases of the so-called anisotropic random walk on the plane.
The general case is given by the transition probabilities

P(C(N + 1) = (k + 1, j)|C(N) = (k, j))

= P(C(N + 1) = (k − 1, j)|C(N) = (k, j)) =
1

2
− pj ,

P(C(N + 1) = (k, j + 1)|C(N) = (k, j))

= P(C(N + 1) = (k, j − 1)|C(N) = (k, j)) = pj ,

for (k, j) ∈ Z2, N = 0, 1, 2, . . . with 0 < pj ≤ 1/2 and minj∈Z pj < 1/2. See Seshadri
et al. (1979), Silver et al. (1977), Heyde (1982) and Heyde et al. (1982). The simple
symmetric random walk corresponds to the case pj = 1/4, j = 0,±1,±2, . . ., while
p0 = 1/4, pj = 1/2, j = ±1,±2, . . . defines random walk on the comb.

In this paper we combine the simple symmetric random walk with random walk
on a comb, when pj = 1/4, j = 0, 1, 2, . . . and pj = 1/2, j = −1,−2, . . ., i.e., we
have a square lattice on the upper half-plane, and a comb structure on the lower
half-plane. We call this model Half-Plane Half-Comb (HPHC) and denote the
random walk on it by C(N) = (C1(N), C2(N)), N = 0, 1, 2, . . ..

For the second component of the HPHC walk a theorem of Heyde et al. (1982)
gives in this particular case, the following strong limit theorem.

Theorem A. On an appropriate probability space one can construct a sequence
C

(N)
2 (·) and a process Y (·) such that

lim
N→∞

sup
0≤t≤M

∣∣∣∣∣
C

(N)
2 ([Nt])√

N
− Y (t)

∣∣∣∣∣ = 0 a.s.,

where Y (·) is an oscillating Brownian motion (Wiener process) and M > 0 is
arbitrary.

Our first result is a strong approximation of both components of the random
walk C(·) by certain time-changed Wiener processes (Brownian motions) with rates
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of convergence. Before stating it, we need some definitions. Assume that we have
two independent standard Wiener processes W1(t),W2(t), t ≥ 0, and consider

α2(t) :=

t∫

0

I{W2(s) ≥ 0} ds,

i.e., the time spent by W2 on the non-negative side during the interval [0, t]. The
process γ2(t) := α2(t) + t is strictly increasing, hence we can define its inverse:
β2(t) := (γ2(t))−1. Observe that the processes α2(t), β2(t) and γ2(t) are defined in
terms of W2(t) so they are independent from W1(t). Moreover, it can be seen that
0 ≤ α2(t) ≤ t, and t/2 ≤ β2(t) ≤ t.

Theorem 1.1. On an appropriate probability space for the HPHC random walk
{C(N) = (C1(N), C2(N));N = 0, 1, 2, . . .} with pj = 1/4, j = 0, 1, 2, . . ., pj =
1/2, j = −1,−2, . . . one can construct two independent standard Wiener processes
{W1(t); t ≥ 0}, {W2(t); t ≥ 0} such that, as N →∞, we have with any ε > 0

|C1(N)−W1(N − β2(N))|+ |C2(N)−W2(β2(N))| = O(N3/8+ε) a.s.

We note that the process W2(β2(t)) is identical with Y (t) of Theorem A, i.e.,
an oscillating Brownian motion. It is a diffusion with speed measure (see Heyde et
al., 1982)

m(dy) =





4 dy for y ≥ 0,

2 dy for y < 0.

For more details on oscillating Brownian motion we refer to Keilson and Wellner
(1978).

2. Preliminaries

First we want to redefine our walk C(·) as follows: On a suitable probability space
consider two independent simple symmetric (one-dimensional) random walks S1(·),
and S2(·). We may assume that on the same probability space we have a sequence
of independent geometric random variables {Gi, i = 1, 2, . . .}, independent from
S1(·), S2(·), with distribution

P(Gi = k) =
1

2k+1
, k = 0, 1, 2, . . .

Now horizontal steps will be taken consecutively according to S1(·), and vertical
steps consecutively according to S2(·) in the following way. Start from (0, 0), take
G1 horizontal steps (possibly G1 = 0) according to S1(·), then take 1 vertical step.
If this arrives to the upper half-plane (S2(1) = 1), then take G2 horizontal steps.
If, however, the first vertical step is on the negative direction (S2(1) = −1), then
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continue with another vertical step, and so on. In general, if the random walk is on
the upper half-plane (y ≥ 0) after a vertical step, then take a random number of
horizontal steps according to the next (so far) unused Gj , independently from the
previous steps. On the other hand, if the random walk is on the lower half-plane
(y < 0) then continue with vertical steps according to S2(·) until it reaches the
x-axis, and so on.

Now we define the local times of a random walk and a Wiener process. Let
{S(n); n = 0, 1, . . .} be a simple symmetric random walk on the line, i.e., S(0) = 0,
S(n) = X1 + . . .+Xn, where {X1, X2, . . .} are i.i.d. random variables with P(Xi =
1) = P(Xi = −1) = 1/2. The local time is defined by

ξ(x, n) :=
n∑

i=0

I{S(i) = x}, x ∈ Z, n = 0, 1, . . . ,

where I{·} is the indicator function. The local time η(x, t) of a Wiener process
W (·) is defined via

∫

A

η(x, t) dx = λ{s : 0 ≤ s ≤ t, W (s) ∈ A}

for any x ∈ R, t ≥ 0, where A ⊂ R is any Borel set and λ is the Lebesgue measure.
Now we state some results needed to prove our Theorem 1.1. First we quote a

result of Révész (1981), that amounts to the first simultaneous strong approxima-
tion of a simple symmetric random walk and that of its local time process on the
integer lattice Z.

Lemma A. On an appropriate probability space for a simple symmetric ran-
dom walk {S(n); n = 0, 1, 2, . . .} with local time {ξ(x, n); x = 0,±1,±2, . . . ; n =
0, 1, 2, . . .} one can construct a standard Wiener process {W (t); t ≥ 0} with local
time process {η(x, t); x ∈ R; t ≥ 0} such that, as n→∞, we have for any ε > 0

S(n)−W (n) = O(n1/4+ε) a.s.

and
sup
x∈Z
|ξ(x, n)− η(x, n)| = O(n1/4+ε) a.s.,

simultaneously.

The following strong invariance principle is given in Horváth (1998).

Lemma B. On the probability space of Lemma A, for any ε > 0, as n → ∞, we
have

∣∣∣∣∣∣

n∑

k=0

g(S(k))−
n∫

0

g(W (t)) dt

∣∣∣∣∣∣
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=

∣∣∣∣∣∣

∞∑

j=−∞
g(j)ξ(j, n)−

∞∫

−∞

g(x)η(x, n) dx

∣∣∣∣∣∣
= O(na/2+3/4+ε) a.s.,

where g(t) ≥ 0, t ∈ R is a function such that for k ∈ Z we have g(t) = g(k),
k ≤ t < k + 1 and

g(t) ≤ C(|t|a + 1)

for some C > 0 and 0 ≤ a.
For n ≥ 1 let

A(n) :=

n−1∑

i=0

I{S(i) ≥ 0} =

∞∑

j=0

ξ(j, n− 1), (2.1)

i.e., the time spent by the random walk S(·) on the non-negative side during the
first n− 1 steps. Let furthermore

α(t) =

t∫

0

I{W (s) ≥ 0} ds =

∞∫

0

η(x, t) dx.

Applying Lemma B with g(t) = I{t ≥ 0}, a = 0, and taking into account that
A(n+ 1)−A(n) ≤ 1, we have the following consequence.

Corollary A. On the probability space of Lemma A, for any ε > 0, as n→∞, we
have almost surely

A(n)− α(n) = O(n3/4+ε).

Concerning the increments of the Wiener process we quote the following result
from Csörgő and Révész (1981).

Lemma C. Let 0 < aT ≤ T be a non-decreasing function of T . Then, as T →∞,
we have almost surely

sup
0≤t≤T−aT

sup
s≤aT

|W (t+ s)−W (t)| = O(a
1/2
T (log(T/aT ) + log log T )).

Put
fv(z, y) dz dy := P(W (v) ∈ dz, α(v) ∈ dy),

the joint density function of (W (v), α(v)). For fv(z, y) the following two formulas
are known in the literature. The first one is due to Karatzas and Shreve (1984), (see
also Borodin and Salminen, 1996), the second one is given in Nikitin and Orsingher
(2000).

Lemma D. For 0 ≤ y ≤ v we have

fv(z, y) =





∫∞
0

s(s+z)
πy3/2(v−y)3/2 exp

(
− s2

2(v−y) −
(s+z)2

2y

)
ds, z ≥ 0,

∫∞
0

s(s−z)
πy3/2(v−y)3/2 exp

(
− s2

2y −
(s−z)2
2(v−y)

)
ds, z < 0,
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fv(z, y) =





∫ v
v−y

z exp
(
− z2

2(v−s)

)

2πs3/2(v−s)3/2 ds, z ≥ 0,

∫ v
y

|z| exp
(
− z2

2(v−s)

)

2πs3/2(v−s)3/2 ds, z < 0.

3. Proof of Theorem 1.1

Start with the construction of HPHC given in Section 2. Let HN and VN , the
number of horizontal and vertical steps, respectively of the two-dimensional ran-
dom walk C(·) during the first N steps, i.e., HN + VN = N . Consider the two
independent simple symmetric random walks S1(·) and S2(·) and the sequence of
i.i.d. geometric random variables, which is indepedent from these two walks, as
it was described in Section 2. Define A2(n) as in (2.1), in terms of S2(·), i.e.,
A2(n) =

∑∞
j=0 ξ2(j, n− 1), where ξ2(·, ·) is the local time of S2(·). Assume further-

more that on the same probability space we have strong approximations of (S1, ξ1)
by (W1, η1) and that of (S2, ξ2) by (W2, η2) as described in Lemma A, where W1

and W2 are two independent Wiener processes on the line, and η1 and η2 are their
respective local times.

Then, with VN = n,

A2(n)∑

j=1

Gj ≤ HN ≤
A2(n)+1∑

j=1

Gj

and since one term in the above sum is O(logN) a.s., and EGj = 1, with finite
variance, we have

HN = A2(n) +O(A2(n)1/2+ε) = A2(n) +O(N1/2+ε) a.s.,

as N →∞. Hence, using Corollary A, we have almost surely, as N →∞,

α2(n) +n = A2(n) +O(N3/4+ε) +VN = HN +VN +O(N3/4+ε) = N +O(N3/4+ε).

Consequently,

VN = n = β2(α2(n) + n) = β2(N +O(N3/4+ε)) = β2(N) +O(N3/4+ε)

and
HN = N − β2(N) +O(N3/4+ε).

Using Lemma C, this gives almost surely, as N →∞,

C1(N) = S1(HN ) = W1(HN ) +O(H
1/4+ε
N ) = W1(N − β2(N)) +O(N3/8+ε)

and
C2(N) = S2(VN ) = W2(β2(N)) +O(N3/8+ε),

proving Theorem 1.1.
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Remark 3.1. In the above argument we used the fact, that for u, v > 0, β(u+ v)−
β(u) ≤ v. To see this recall that β(t) is the inverse of γ(t) = α(t) + t. Hence

v = γ(β(u+v))−γ(β(u)) = α(β(u+v))+β(u+v)−α(β(u))−β(u) ≥ β(u+v)−β(u),

as α(t) is nondecreasing.

4. Limiting densities and consequences

First we give an integral expression for the joint density of the vector (W1(t −
β(t)),W2(β(t))), using Lemma D. Here, and throughout this section, β(t) stands
for β2(t), hence it is independent from W1. The joint density of W1(t − β(t)),
W2(β(t)), β(t) is given by

P(W1(t− β(t)) ∈ du, W2(β(t)) ∈ dz, β(t) ∈ dv)

=
1√

2π(t− v)
exp

(
− u2

2(t− v)

)
fv(z, t− v) du dz dv.

From this we get

Lemma 4.1.

gt(u, z) du dz := P(W1(t− β(t)) ∈ du, W2(β(t)) ∈ dz)

=




t∫

t/2

1√
2π(t− v)

exp

(
− u2

2(t− v)

)
fv(z, t− v) dv


 du dz.

The marginal density of W1(t− β(t)) is given by

Lemma 4.2.

g
(1)
t (u) du : = P(W1(t− β(t)) ∈ du) =

1

π
√

2πt
exp

(
−u

2

2t

)
K0

(
u2

2t

)
du,

where K0(·) is the modified Bessel function of the second kind.

Proof.

P(W1(t− β(t)) ∈ du) =

t∫

t/2

P(W1(t− v) ∈ du, β(t) ∈ dv)

=




t∫

t/2

1√
2π(t− v)

exp

(
− u2

2(t− v)

)
1

π
√

(t− v)(2v − t)
dv


 du
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=
1

π
√

2π
exp

(
−u

2

t

)∞∫

0

1√
y2t+ yu2

e−y dy du =
1

π
√

2πt
exp

(
−u

2

2t

)
K0

(
u2

2t

)
du,

where the substitution
y = u2

(
1

2(t− v)
− 1

t

)

was made and the formula
∞∫

0

e−px dx√
x(x+ a)

= eap/2K0

(ap
2

)

was used (see Gradsteyn and Ryzhik, 1994, 3.364.3).

For the marginal density of W2(β(t)) as follows, we refer to Heyde et al. (1982).

Lemma E.

g
(2)
t (z) dz = P(W2(β(t)) ∈ dz) =





2
√

2
πt (
√

2− 1)e−z
2/t dz, z ≥ 0

√
2
πt (
√

2− 1)e−z
2/2t dz, z < 0.

As a consequence of these Lemmas, we now obtain the joint and marginal
limiting distributions of the HPHC random walk.

Corollary 4.3.

lim
N→∞

P

(
C1(N)√

N
≤ x, C2(N)√

N
≤ y
)

=

x∫

−∞

y∫

−∞

g1(u, z) du dz,

lim
N→∞

P

(
C1(N)√

N
≤ x

)
=

x∫

−∞

g
(1)
1 (u) du,

lim
N→∞

P

(
C2(N)√

N
≤ y
)

=

y∫

−∞

g
(2)
1 (z) dz.

Corollary 4.4. The following laws of the iterated logarithm hold.

(i) lim sup
t→∞

W1(t− β(t))√
t log log t

= lim sup
N→∞

C1(N)√
N log logN

= 1 a.s.,

(ii) lim inf
t→∞

W1(t− β(t))√
t log log t

= lim inf
N→∞

C1(N)√
N log logN

= −1 a.s.,

(iii) lim sup
t→∞

W2(β(t))√
t log log t

= lim sup
N→∞

C2(N)√
N log logN

= 1 a.s.,
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(iv) lim inf
t→∞

W2(β(t))√
t log log t

= lim inf
N→∞

C2(N)√
N log logN

= −
√

2 a.s.

Proof. We give short proofs in the case of W1 and W2. The results for C1 and C2

then follow from Theorem 1.1. In the proof we repeatedly use the inequality

t

2
≤ β(t) ≤ t.

Proof of (i) and (ii). By the law of the iterated logarithm for W1 we have for all
large enough t

W1(t− β(t)) ≤ (1 + ε)(2(t− β(t)) log log(t− β(t)))1/2

≤ (1 + ε)(t log log t)1/2,

which gives an upper bound in (i).
To give a lower bound in (i), for any sufficiently small δ > 0 define the events

An = {W1(un) ≥ (1− δ)(2un log log un)1/2}, Bn = {α(un(1 + δ)) > un},

n = 1, 2, . . . . Then, with some sequence {un} (un = an with sufficiently large a
will do), we have

P(An i.o.) = 1, P(Bn) > c > 0.

It follows from Klass (1976) that

P(AnBn i.o.) ≥ c > 0.

By the 0-1 law this probability is equal to 1. Let tn be defined by

un = tn − β(tn) = α(β(tn)).

Since
Bn = {α(un(1 + δ)) > α(β(tn))},

Bn implies

un ≥
β(tn)

1 + δ
≥ tn

2(1 + δ)
.

Hence AnBn implies

W1(t− β(tn)) ≥ (1− δ)
(
tn log log tn

1 + δ

)1/2

.

Since δ > 0 is arbitrary, this gives a lower bound in (i).

The proof of (ii) follows by symmetry.
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Proof of (iii). We have infinitely often with probability 1

W2(β(t)) ≥ (1− ε)(2β(t) log log t)1/2 ≥ (1− ε)(t log log t)1/2,

giving a lower bound in (iii).
To give an upper bound, we use the formula for the distribution of the supremum

of W2(β(t)) given in Corollary 2 of Keilson and Wellner (1978), which in our case
is equivalent to

P( sup
0≤s≤t

W2(β(s)) > y)

=
2
√

2

1 +
√

2

∞∑

k=0

(
1−
√

2

1 +
√

2

)k(
1− Φ

(
(2k + 1)y

√
2√

t

))
.

From this it is easy to give the estimation

P( sup
0≤s≤t

W2(β(s)) > y) ≤ c exp

(
−y

2

t

)

with some constant c, from which the upper estimation in (iii) follows by the usual
procedure.

Proof of (iv). The lower estimation is easy. Namely we have

W2(β(t)) ≥ −(1 + ε)(2β(t) log log β(t))1/2 ≥ −(1 + ε)(2t log log t)1/2.

It remains to prove an upper estimation in (iv). By the law of the iterated
logarithm for W2

W2(v) ≤ −((2− ε)v log log v)1/2 (4.1)

almost surely for infinitely many v tending to infinity. Let ζ(v) be the last zero of
W2 before v, i.e.,

ζ(v) = max{u ≤ v : W2(u) = 0}.
By Theorem 1 of Csáki and Grill (1988), for large v satisfying (4.1) we have ζ(v) ≤
εv, and hence also α(v) ≤ ζ(v) ≤ εv. Now put v = β(t), i.e., α(v)+v = t ≤ (1+ε)v,
from which v = β(t) ≥ t/(1 + ε). Hence

W2(v) = W2(β(t)) ≤ −
(

(2− ε)t log log t

1 + ε

)1/2

.

Since ε > 0 is arbitrary, this gives an upper bound in (iv).
This completes the proof of Corollary 4.4.

Some related distributions can also be determined. For example, we can obtain
the following result for the supremum of the first component.
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Lemma 4.5.

P( sup
0≤s≤t

|W1(s− β(s))| ≤ u)

=
4

π

∞∑

j=0

(−1)j

2j + 1
exp

(
− (2j + 1)2π2t

32u2

)
I0

(
(2j + 1)2π2t

32u2

)
,

where I0 is the modified Bessel function of the first kind given by

I0(z) =

∞∑

k=0

z2k

4k(k!)2
.

Proof.

P( sup
0≤s≤t

|W1(s− β(s))| ≤ u) =

t∫

t/2

P( sup
z≤t−v

|W1(z)| ≤ u)P(β(t) ∈ dv)

=

t∫

t/2

4

π

∞∑

j=0

(−1)j

2j + 1
exp

(
− (2j + 1)2π2(t− v)

8u2

)
1

π
√

(t− v)(2v − t)
dv,

and using 3.384.2 and 9.235.1 of Gradsteyn and Ryzhik (1994), and some calcula-
tions, we obtain Lemma 4.5.

Corollary 4.6.

lim
N→∞

P

(
sup0≤k≤N |C1(k)|√

N
≤ u

)

=
4

π

∞∑

j=0

(−1)j

2j + 1
exp

(
− (2j + 1)2π2

32u2

)
I0

(
(2j + 1)2π2

32u2

)
,

5. Return probabilities

We give the probability that the random walk returns to the origin in 2N steps.

Theorem 5.1. For N ≥ 1

P(C(2N) = (0, 0))

=
1

24N



(

2N

N

)
+

N∑

n=1

n∑

k=1

k∑

j=1

(
2N − 2n

N − n

)
ajan+1−j (b(n, 2k) + b(n, 2k − 1))


 ,

where for i = 1, 2, . . . , n = 1, 2, . . . , N, ` = 1, 2, . . . ,

ai =
1

2i− 1

(
2i− 1

i

)
, b(n, `) =

(
2N − 2n+ `

`

)
22n−`.
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Proof. For n ≥ 1 let

P (2n, r) = P(S2(2n) = 0, A2(2n) = r), Q(2n, r) = 22nP (2n, r).

Obviously P (2n, r) = 0 if r > 2n or r ≤ 0. Furthermore it is easy to see, that

P (2n, 1) =
1

2n− 1

(
2n− 1

n

)
1

22n
=

1

2(2n− 1)

(
2n

n

)
1

22n
,

P (2n, 2n) =
1

n+ 1

(
2n

n

)
1

22n
.

For n = 1, 2 . . . , r = 2, 3, . . . 2n, we have the following recursion for P (2n, r).

P (2n, r) =
n∑

i=1

P(S(1) < 0, . . . , S(2i− 1) < 0, S(2i) = 0)P (2n− 2i, r − 1)

+
n∑

i=1

P(S(1) > 0, . . . , S(2i− 1) > 0, S(2i) = 0)P (2n− 2i, r − 2i)

=
n∑

i=1

1

2i− 1

(
2i− 1

i

)
1

22i
P (2n− 2i, r − 1)

+
n∑

i=1

1

2i− 1

(
2i− 1

i

)
1

22i
P (2n− 2i, r − 2i),

where we define P (0, 0) = 1.

Now we need the following lemma.

Lemma 5.2. For n = 1, 2, . . . , k = 1, 2, . . . , n, we have

Q(2n, 2k − 1) = Q(2n, 2k) (5.1)

and

Q(2n, 2k) =
k∑

j=1

ajan+1−j

=

k∑

j=1

1

2j − 1

(
2j − 1

j

)
1

2n+ 1− 2j

(
2n+ 1− 2j

n+ 1− j

)
. (5.2)

Remark 5.3. It is obvious that

Q(2n+ 2, 1) = Q(2n, 2n).

Furthermore, we can conveniently reformulate the second statement as

Q(2n, 2k) = Q(2n, 2k − 2) + akan+1−k.

In particular
Q(2n, 2n) = Q(2n+ 2, 2) = an+1.
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Proof. We prove Lemma 5.2 with simultaneous induction. Clearly, for n = 1 and
k = 1 both of our statements are correct. We suppose that (5.1) and (5.2) hold for
all m < n and j ≤ 2k − 2. First we prove (5.1). By our recursion formula and the
induction hypothesis we have

Q(2n, 2k − 1) =
n−k+1∑

j=1

ajQ(2n− 2j, 2k − 2) +
k−1∑

j=1

aj Q(2n− 2j, 2k − 2j − 1)

=
n−k+1∑

j=1

ajQ(2n− 2j, 2k − 2) +
k−1∑

j=1

aj Q(2n− 2j, 2k − 2j).

Moreover,

Q(2n, 2k) =
n−k∑

j=1

ajQ(2n− 2j, 2k − 1) +
k−1∑

j=1

aj Q(2n− 2j, 2k − 2j)

=

n−k∑

j=1

ajQ(2n− 2j, 2k) +

k−1∑

j=1

aj Q(2n− 2j, 2k − 2j).

Then

Q(2n, 2k)−Q(2n, 2k − 1)

=
n−k∑

j=1

aj (Q(2n− 2j, 2k)−Q(2n− 2j, 2k − 2))− an−k+1Q(2k − 2, 2k − 2)

=
n−k∑

j=1

ajakan+1−k−j − an−k+1 ak = ak

n−k∑

j=1

ajan+1−k−j − an−k+1 ak

= akQ(2n− 2k, 2n− 2k)− an−k+1 ak = ak an−k+1 − ak an−k+1 = 0,

which proves (5.1). To prove (5.2), consider

Q(2n, 2k)−Q(2n, 2k − 2) =
n−k∑

j=1

ajQ(2n− 2j, 2k) +
k−1∑

j=1

ajQ(2n− 2j, 2k − 2j)

−



n+1−k∑

j=1

ajQ(2n− 2j, 2k − 2) +

k−2∑

j=1

ajQ(2n− 2j, 2k − 2− 2j)




=

n−k∑

j=1

aj (Q(2n− 2j, 2k)−Q(2n− 2j, 2k − 2))− an+1−kQ(2k − 2, 2k − 2)

+
k−2∑

j=1

aj (Q(2n− 2j, 2k − 2j)−Q(2n− 2j, 2k − 2− 2j)) + ak−1Q(2n− 2k + 2, 2)

Random walk on half-plane half-comb structure 41



=

n−k∑

j=1

ajakan−k+1−j − an+1−kak +

k−2∑

j=1

ajak−jan+1−k + ak−1 an−k+1

= ak

n−k∑

j=1

ajan−k+1−j − an+1−kak + an+1−k

k−2∑

j=1

ajak−j + ak−1an−k+1

= akQ(2n− 2k, 2n− 2k)− an+1−kak + an+1−kQ(2k − 2, 2k − 4) + ak−1an−k+1

= akan−k+1 − an+1−kak + an+1−k (Q(2k − 2, 2k − 2)− a1ak−1) + ak−1an−k+1

= an+1−kak − an+1−kak−1 + ak−1an+1−k = akan+1−k,

proving (5.2).

Returning to the proof of Theorem 5.1, let VN andHN be the number of vertical
and horizontal steps, resp. as in the proof of Theorem 1.1. We have

P(C(2N) = (0, 0)) = P(H2N = 2N,S1(2N) = 0)

+

N∑

n=1

2n∑

r=1

P(H2N = 2N − 2n|S2(2n) = 0, A2(2n) = r)

× P (2n, r)P(S1(2N − 2n) = 0).

For n ≥ 1 we show that

P(H2N = 2N − 2n|S2(2n) = 0, A2(2n) = r) =

(
2N − 2n+ r

r

)
1

22N−2n+r
.

Under the condition S2(2n) = 0, A2(2n) = r, we have

H2N =
r∑

i=1

Gi +G,

where Gi are i.i.d. geometric variables with

P(Gi = k) =
1

2k+1
, k = 0, 1, . . .

and G denotes the number of horizontal steps after the 2n-th vertical step up to
the total number of 2N steps. So

P(H2N = 2N − 2n|S2(2n) = 0, A2(2n) = r) =
2N−2n∑

k=0

P

(
r∑

i=1

Gi = k

)
1

22N−2n−k

=
2N−2n∑

k=0

(
k + r − 1

k

)
1

2k+r
1

22N−2n−k
=

1

22N−2n+r

2N−2n∑

k=0

(
k + r − 1

k

)

=

(
2N − 2n+ r

r

)
1

22N−2n+r
.
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Hence we have

P(C(2N) = (0, 0))

=
1

24N

(
2N

N

)
+

N∑

n=1

2n∑

r=1

P (2n, r)

(
2N − 2n

N − n

)
1

22N−2n

(
2N − 2n+ r

r

)
1

22N−2n+r

=
1

24N

(
2N

N

)
+

N∑

n=1

2n∑

r=1

Q(2n, r)

(
2N − 2n

N − n

)
1

22N

(
2N − 2n+ r

r

)
1

22N−2n+r

and using Lemma 5.2 completes the proof of our Theorem 5.1.
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