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Abstract
This paper reviews recent developments of robust estimation in linear

time series models, with short and long memory correlation structures, in the
presence of additive outliers. Based on the manuscripts Fajardo, Reisen &
Cribari-Neto 2009 [7] and Lévy-Leduc, Boistard, Moulines, Taqqu & Reisen
2011 [19], the emphasis in this paper is given in the following directions; the
influence of additive outliers in the estimation of a time series, the asymptotic
properties of a robust autocovariance function and a robust semiparametric
estimation method of the fractional parameter d in ARFIMA(p, d, q) models.
Some simulations are used to support the use of the robust method when a
time series has additive outliers. The invariance property of the estimators
for the first difference in ARFIMA model with outliers is also discussed. In
general, the robust long-memory estimator leads to be outlier resistent and
is invariant to first differencing.

Keywords: Additive outliers, ARFIMA model, long-memory, robustness.

1. Introduction

Let {Xt}t∈Z be a stationary time series with spectral density that behaves like

fX(ω) ∼ h(ω) | ω |−2d, as ω → 0 (1.1)

where the spectral density h(ω) is a nonvanishing and continuously differentiable
function with bounded derivative for −π ≤ ω ≤ π, and d < 0.5.

A well-known stationary parametric model with the above spectral density is
the ARFIMA(p, d, q) process, which is the solution of the equation

Xt − µ = (1−B)−dηt, t ∈ Z, (1.2)
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where ηt = Θ(B)
Φ(B) εt is an ARMA(p, q) process, µ is the mean (here it is assumed that

µ = 0), Φ(B) ≡ 1 −∑p
j=1 φjB

j , Θ(B) ≡ 1 −∑q
i=1 θiB

i and p and q are positive
integers (Hosking 1981 [11]). Φ(z) and Θ(z), with a scalar z, are the autoregressive
and moving average polynomials with all roots outside the unit circle and share
no common factors. d is the parameter that holds the memory of the process,
that is, when d ∈ (−0.5, 0.5) the ARFIMA(p, d, q) process is said to be invertible
and stationary. Besides, for d 6= 0, its autocovariance decays at a hyperbolic rate
(γ(j) = O(j−1+2d)). For d = 0, d ∈ (−0.5, 0) or d ∈ (0, 0.5), the process is
said to be short-memory, intermediate-memory or long-memory, respectively. The
long-memory property is related to the behavior of the autocovariances, which
are not absolutely summable and the spectral density becomes unbounded at zero
frequency. In the intermediate-memory region, the autocovariances are absolutely
summable and, consequently, the spectral density is bounded.

The spectral density function of {Xt}t∈Z is given by

fX(ω) = fη(ω)
[
2 sin

(ω
2

)]−2d

, ω ∈ [−π, π]. (1.3)

fX(ω) is continuous except for ω = 0 where it has a pole when d > 0. A recent
review of the ARFIMA model and its properties can be found in Palma 2007 [23]
and Doukhan, Oppenheim & Taqqu 2003 [6].

Many estimators for the fractional parameter d in long-memory time series have
already been proposed in the literature. Among them are the semiparametric pro-
cedures, a group which includes a wide variety of estimators based on the Ordinary
Least Square (OLS) method. These procedures require the use of the spectral den-
sity parameterized within a neighborhood of zero frequency. Some references on
this subject include the works of Geweke & Porter-Hudak 1983 [10], Reisen 1994
[26] and Robinson 1995 [27], among others. An overview of long-range dependence
processes can be found in Beran 1994 [1] and Doukhan et al. 2003 [6].

Time series with outliers or atypical observations is quite common in any area
of application. In the case where the data is time-dependent, several authors such
as Ledolter 1989 [17], Chang, Tiao & Chen 1988 [4] and Chen & Liu 1993 [5] have
studied the effect of outliers in a time series that follows ARIMAmodels. In general,
they have concluded that the parameter estimates of ARMA models become more
biased when the data contains outliers. Similar conclusion is also observed when
estimating the fractional parameter in ARFIMA models. The outliers cause a
substantial bias in the differencing parameter (Fajardo et al. 2009 [7]).

An autocovariance robust function was proposed by Ma & Genton 2000 [20].
The asymptotical properties of this function are studied by Lévy-Leduc et al. 2011
[19]. The results presented in Fajardo et al. 2009 [7], Lévy-Leduc et al. 2011 [19]
and Lévy-Leduc, Boistard, Moulines, Taqqu & Reisen 2011 [18] are the motivations
of this paper. The impact of outliers in the estimation of ARFIMA models under
different context is here studied. The asymptotical properties of a robust autoco-
variance function is discussed and some empirical examples are used to illustrate
the usefulness of a robust fractional parameter estimator. The invariance property
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of the estimator to the first difference is also empirically studied. The outline of this
papers is as follows: Section 2 discusses the model and the impact of the outliers
in time series. Section 3 summarizes the main results related to the robust auto-
covariance estimator given in Lévy-Leduc et al. 2011 [19] and discusses the robust
estimation of the fractional parameter in the ARFIMA model. Section 4 presents
some empirical studies and an application is discussed in Section 5. Concluding
remarks and future directions are given in Section 6.

2. The impact of outliers in time series

Suppose x1, ..., xn is a partial realization of {Xt}t∈Z. Hence, the periodogram
function is defined as Ix(ω) = (2πn)

−1|∑n
t=1 xte

iωt|2. It follows that, when d = 0
in the ARFIMA model,

Ix(ω) = 2πfX(ω)
Iε(ω)

σ2
ε

+H(ω) (2.1)

where E[|H(ω)|2] = O( 1
n2ξ ) (ξ > 0) is uniformly in ω ∈ [−π, π] (Theorem 6.2.2 in

Priestley 1981 [25]) and Iε(·) is the periodogram of the residuals. From (1.2) and
Theorem 6.1.1 in Priestley 1981 [25], asymptotic sample properties of Ix(ω)

fX(ω) are
derived and they are summarized as follows. If {εt}t∈Z are normally distributed,
for a fixed set of values of the Fourier frequencies ωj = 2πj

n , j = 1, ..., [n/2], where [·]
means the integer part, asymptotically the set of variables Ix(ωj)

fX(ωj)
is independently

distributed, each distributed as χ2
2

2 . At ω = 0 and π, the distributions are χ2
1 (for

details see Priestley 1981 [25]). These asymptotic results for the periodogram lead
to E

[
Ix(ωj)
fX(ωj)

]
→ 1 and var

[
Ix(ωj)
fX(ωj)

]
→ (1 + δ(ωj)) as n→∞, where

δ(ωj) = 1 if ωj = 0, π and 0 otherwise. (2.2)

The above results establish the unbiasedness and inconsistency properties of Ix(ωj).
Due to the singularity of fX(ω) when d > 0, the standard results of the

asymptotic distribution of the periodogram discussed previously can not be ap-
plied to Ix(ωj) for small and fixed j. Hurvich & Beltrão 1993 [13] showed that
limn→∞ E

[
Ix(ωj)
fX(ωj)

]
depends on j and d, and exceeds unity for most d 6= 0 (Künsch

1986 [16]; Robinson 1995 [28]). For j 6= k, Ix(ωj)
fX(ωj)

and Ix(ωk)
fX(ωk) are correlated, and for

a fixed value j and Gaussian processes, the limiting distribution of Ix(ωj)
fX(ωj)

is not ex-
ponential (Robinson 1995 [28]). That is, under the Gaussian assumption, Hurvich
& Beltrão 1993 [13] show that the normalized periodogram I(ω)

fX(ω) is asymptotically
distributed as the quadratic form

α1

2
χ1 +

α2

2
χ2
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where χ1 and χ2 are variables with Chi-squared distribution with one degree of
freedom, α1 = Lj(d)− 2L∗j (d), α2 = Lj(d) + 2L∗j (d),

Lj(d) = lim
n→∞

E
{
Ix(ωj)

fX(ωj)

}
=

2

π

∞∫

−∞

sin2(ω/2)

(2πj − ω)2

∣∣∣∣
ω

2πj

∣∣∣∣
−2d

dω

and

L∗j (d) =
1

π

∞∫

−∞

sin2(ω/2)

(2πj − ω)(2πj + ω)

∣∣∣∣
ω

2πj

∣∣∣∣
−2d

dω.

Let {Zt}t∈Z be a process contaminated by additive outliers, which is described by

Zt = Xt +
m∑

j=1

$jYj,t, (2.3)

where m is the maximum number of outliers; the unknown parameter ωj represents
the magnitude of the jth outlier, and Yj,t (≡ Yj) is a random variable (r.v.) with
probability distribution Pr (Yj = −1) = Pr (Yj = 1) =

pj
2 and Pr (Yj = 0) = 1− pj ,

where E[Yj ] = 0 and E[Y 2
j ] = var(Yj) = pj . Model 2.3 is based on the para-

metric models proposed by Fox 1972 [8]. Yj is the product of Bernoulli(pj) and
Rademacher random variables; the latter equals 1 or −1, both with probability 1

2 .
Xt and Yj are independent random variables.

Some results related to the effects of outliers on the spectral density and on the
autocorrelation functions of {Zt}t∈Z are presented as follows.

Proposition 2.1. Suppose that {Zt}t∈Z follows Model 2.3.

i. The autocovariance function (ACOVF) of {Zt}t∈Z is given by

γz(h) =




γX(0) +

m∑
j=1

$2
jpj , if h = 0,

γX(h), if h 6= 0,

where γX(h) = E[XtXt+h]− E[Xt]E[Xt+h] with h ∈ Z.

ii. The spectral density function of {Zt} is given by

fZ(ω) = fX(ω) +
1

2π

m∑

j=1

$2
jpj , ω ∈ (−π, π],

where fX(ω) =
1

2π

∞∑
h=−∞

γX(h)e−ihω.

Proposition 2.1 states that γz(h), for h = 0, depends on var(Yj). γZ(0) increases
with var(Yj) (see the proof in Fajardo et al. 2009 [7]). This relation between RZ(0)
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and var(Yj) will certainly affect the model parameter estimates because it reduces
the magnitude of the autocorrelations and introduces loss of information on the
pattern of serial correlation (see also Chan 1992, 1995 [2, 3]). The spectral form of
{Zt}t∈Z (Model 2.3) when {Xt}t∈Z follows an ARFIMA(p, d, q) model is given in
the next lemma.

Lemma 2.2. Let {Xt}t∈Z be a stationary and invertible ARFIMA(p, d, q) process.
Also, let {Zt}t∈Z be such that Zt = Xt +

∑m
j=1$jYj, where m is the maximum

number of outliers, the unknown parameter $j is the magnitude of the jth outlier
and Yj is a r.v. with probability distribution Pr (Yj = −1) = Pr (Yj = 1) =

pj
2 and

Pr (Yj = 0) = 1− pj. The spectral density of {Zt}t∈Z is

fZ(ω) =
σ2
ε

2π

|Θ(e−iω)|2
|Φ(e−iω)|2

{
2 sin

(ω
2

)}−2d

+
1

2π

m∑

j=1

$2
jpj .

The proof of Lemma 2.2 follows directly from Proposition 2.1.
The effects of an outlier on the sample autocovariance function and on the

periodogram are given below.

Proposition 2.3. Let z1, z2, . . . , zn be generated from Model 2.3 with one outlier,
and let the outlier occur at time t = T with h < T < n− h. It follows that:

i. The sample ACOVF is given by

γ̂z(h) = γ̂x(h) +
$

n
(x

T−h + x
T+h
− 2x̄) +

ω2

n
δ′(h) + op(n

−1), (2.4)

where γ̂x(h) =
1

n

n−h∑
t=1

(xt − x̄)(xt+h − x̄) and δ′(h) =

{
1, when h = 0,

0, otherwise.

ii. The periodogram is given by

Iz(ω) = Ix(ω) + ∆($), ω ∈ (−π, π],

where Ix(ω) =
1

2π

n−1∑
h=−(n−1)

γ̂x(h)e−ihω, and

∆($) =
$2

2πn
± $

πn

{
(x

T
− x̄) +

n−1∑

h=1

(x
T−h + x

T+h
− 2x̄) cos(hω)

}
+ op(n

−1).

These results show that outliers may substantially affect the inference performed
on stationary models by revealing that there is information loss in the serial corre-
lation dynamics of the process, which is translated into the parameter estimation
process.
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3. The autocovariance and spectral density robust
functions

3.1. The autovariance function
Ma & Genton 2000 [20] proposed a scale covariance estimator which is based on
Qn(·), defined in the sequel, and on the following covariance identity

cov(X,Y ) =
1

4ab
[var(aX + bY )− var(aX − bY )], (3.1)

where X and Y are random variables, a = 1√
var(X)

and b = 1√
var(Y )

(Huber 2004

[12]).
Rousseeuw & Croux 1993 [29] proposed a robust scale estimator function Qn(·)

which is based on the τth order statistic of
(
n
2

)
distances {|ηj − ηk|, j < k}, and

can be written as

Qn(η) = c× {|ηj − ηk|; j < k}(τ), (3.2)

where η = (η1, η2, . . . , ηn)′, c is a constant used to guarantee consistency (c =

2.2191 for the normal distribution) and τ =

⌊
(n2)+2

4

⌋
+ 1.

Based on identity (3.1) and on Qn(·), Ma & Genton 2000 [20] proposed a highly
robust estimator for the ACOVF:

γ̂Q(h) =
1

4

[
Q2
n−h(u + v)−Q2

n−h(u− v)
]
, (3.3)

where u and v are vectors containing the initial n − h and the final n − h obser-
vations, respectively. The robust estimator for the autocorrelation function (ACF)
is

ρ̂Q(h) =
Q2
n−h(u + v)−Q2

n−h(u− v)

Q2
n−h(u + v) +Q2

n−h(u− v)
.

It can be shown that |ρ̂Q(h)| ≤ 1 for all h.

Influence Function and Breakdown Point

Influence Function (IF) is an important tool to understand the effect of the con-
tamination of an outlier in any estimator. To define IF supposes that the empirical
c.d.f. Fn of x1, ..xn, adequately normalized, converges. Following Huber 2004 [12],
the influence function x→ IF (x, T, F ) is defined for a functional T at a distribution
F and at point x as the limit

IF (x, T, F ) = lim
ε→0+

ε−1{T (F + ε(δx − F ))− T (F )} ,
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where δx is the Dirac distribution at x.
Breakdown Point (BP) indicates the largest proportion of outliers that the data

may contain such that the estimator still gives some information about the distri-
bution of the outlier-free data (Maronna, Martin & Yohai 2006 [21]). Rousseeuw
& Croux 1993 [29] showed that the asymptotic BP of Qn(·) is 50%, which means
that the data can be contaminated by up to half of the observations with outliers
and Qn(·) will still yield sensible estimates.
The classical notion of sample BP of a scale estimator Sn(·) is given in Definition
3.1.

Definition 3.1. Let η = (η1, η2, . . . , ηn)′ be a sample of size n. Let η̃ be obtained
by replacing any m observations of η by arbitrary values. The sample breakdown
point of a scale estimator Sn(η) is given by

ε∗n(Sn(η)) = max

{
m

n
: sup

η̃
Sn(η̃) <∞ and inf

η̃
Sn(η̃) > 0

}
.

The above BP definition holds for a scale estimator function of a time invariant ran-
dom sample. As noted by Ma & Genton 2000 [20], in time series, the estimators are
based on differences between observations apart by various time lag distances and
usually have a BP with respect to these differences. Then, the time location of the
outlier becomes important (see also, for example, Ledolter 1989 [17]). Therefore,
the authors introduced the following definition of a temporal sample breakdown
point of an autocovariance estimator γ̂η(h) based on (3.1).

Definition 3.2. Let η = (η1, η2, . . . , ηn)′ be a sample of size n and let η̃ be obtained
by replacing any m observations of η by arbitrary values. Denote by Im a subset of
size m of {1, 2, . . . , n}. The temporal sample breakdown point of an autocovariance
estimator γ̂η(h) is given by

εtempn (γ̂η(h)) = max

{
m

n
: sup

Im
sup
η̃
Sn−h(ũ + ṽ) <∞, inf

Im
inf
η̃
Sn−h(ũ + ṽ) > 0,

sup
Im

sup
η̃
Sn−h(ũ− ṽ) <∞ and inf

Im
inf
η̃
Sn−h(ũ− ṽ) > 0

}
,

where ũ and ṽ are derived from η̃ as in (3.3).

Remark 3.3. The relation between the classical sample and the temporal sample
breakdown points can be expressed by the following inequality (Ma & Genton 2000
[20]):

n− h
2n

ε∗n(γ̂η(h)) ≤ εtempn (γ̂η(h)) ≤ 1

2
ε∗n(γ̂η(h)).

It then follows that since the sample breakdown point of the classical autocovariance
estimator is zero, the temporal breakdown point of this estimator is also zero. This
means that only one single outlier is enough to ‘break’ the estimator.
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Ma & Genton 2000 [20] showed that the maximum temporal breakdown point
of the highly robust autocovariance estimator is 25%, which is the highest possible
breakdown point for an autocovariance estimator.

Results of the asymptotic properties of the robust aucovariance function for a
Gaussian ARFIMA model are summarized as follows (see Lévy-Leduc et al. 2011
[19]).

Short-memory case

Let {Xt}t∈Z be a stationary mean-zero Gaussian process given by Model 1.2 with
d = 0, that is, the autocovariance function (γ(h) = E(X1Xh+1)) of {Xt}t∈Z satisfies

∑

h≥1

|γ(h)| <∞.

The following theorems present the asymptotic behavior of the robust autoco-
variance estimator.

Theorem 3.4. Let h be a non-negative integer. Under the assumption that the au-
tocovariances are absolutely summable, the autocovariance estimator γ̂Q(h,X1:n,Φ)
satisfies the following Central Limit Theorem:

√
n (γ̂Q(h,X1:n,Φ)− γ(h))

d−→ N (0, σ̌2
h),

where

σ̌2(h) = E[ψ2(X1, X1+h)] + 2
∑

k≥1

E[ψ(X1, X1+h)ψ(Xk+1, Xk+1+h)] (3.4)

where ψ is a function of γ(h) and of IF (see, Theorem 4 in Lévy-Leduc et al. 2011
[19]).

Long-memory case

Now, let d 6= 0 in Model 1.2 and let D = 1− 2d. The ACF behaves like

γ(h) = h−DL(h), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large h. Note that, for
positive d, as previously stated, the ACF of the process is not absolutely summable.

Theorem 3.5. Let h be a non negative integer. Then, γ̂Q(h,X1:n,Φ) satisfies the
following limit theorems as n tends to infinity.

• If D > 1/2,

√
n (γ̂Q(h,X1:n,Φ)− γ(h))

d−→ N (0, σ̌2(h)) ,
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where

σ̌2(h) = E[ψ2(X1, X1+h)] + 2
∑

k≥1

E[ψ(X1, X1+h)ψ(Xk+1, Xk+1+h)] ,

where ψ is a function of γ(h) and of IF (see, Theorems 4 and 5 in Lévy-Leduc
et al. 2011 [19]).

• If D < 1/2,

β(D)
nD

L̃(n)
(γ̂Q(h,X1:n,Φ)− γ(h))

d−→ γ(0) + γ(h)

2
(Z2,D(1)− Z2

1,D(1))

where β(D) = B((1 − D)/2, D), B denotes the Beta function, the processes
Z1,D(·) and Z2,D(·) are defined by Equations 53 and 54, respectively, in Lévy-
Leduc et al. 2011 [19], and

L̃(n) = 2L(n) + L(n+ h)(1 + h/n)−D + L(n− h)(1− h/n)−D . (3.5)

Remark 3.6. For Model 1.2 with 1/4 < d < 1/2, the robust autocovariance estima-
tor γ̂Q(h,X1:n,Φ) has the same asymptotic behavior as the classical autocovariance
estimator γ̂x(h).

Theories related to the use of the robust ACF function to obtain an spectral
estimate are still opened questions. However, this was first empirically investigated
by Fajardo et al. 2009 [7]. The authors considered a robust estimator of the spectral
density based on the robust ACF function when the time series follows an ARFIMA
Model. Their estimation method is discussed in the next sub-section.

3.2. The sample spectral function
The results discussed in the previous sections and the spectral representation of a
stationary process justify the use of the robust ACF function in the calculus of an
estimator of a spectral density.

As previously stated, for the stationary process {Xt}t∈Z, the spectral density
is a real-valued function of the Fourier transform of the autocovariance function,
that is,

fX(ω) =
1

2π

∞∑

h=−∞
γX(h)e−ihω (3.6)

where γX(·) is the autocovariance of the process.
Equation (3.6) suggests to replace γX(·) by its estimate to obtain an estimate

of fX(ω). The periodogram function is the classical tool to estimate the spectral
function. Other variants of the periodogram are called smoothed window peri-
odogram ( see, for example, Priestley 1981 [25]). In the same direction, Fajardo
et al. 2009 [7] suggested to use the robust autocovariance function as an estimator
of the classical ACF to obtain a robust spectral function. Although the theoretical
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justification of this estimator is still an opened question, the authors have empir-
ically shown that the robust spectral estimator can be an alternative method to
estimate a time series with outliers. A robust spectral estimator is

IQ(ω) =
1

2π

∑

|h|<n
κ(h)γ̂Q(h) cos(hω), (3.7)

where γ̂Q(h) is the sample autocovariance function given in (3.3) and κ(h) is defined
as

κ(h) =

{
1, |h| ≤M,

0, |h| > M.

κ(h) is a particular case of the lag window functions used in classical spectral theory
to obtain a consistent spectral estimator, and M is the truncation point which is
a function of n, say M = G(n), where G(n) must satisfy G(n)→∞, n→∞, with
G(n)
n → 0. G(n) is usually chosen to be G(n) = nβ , where 0 < β < 1 (see, e.g.

Priestley 1981 [25, pp. 433–437]). Note that, equivalently to the classical spectral
estimation theories, other different lag window functions can be used to obtain a
robust spectral estimator.

Since (3.7) does not have the same finite-sample properties as the periodogram,
it is defined here as robust truncated pseudo-periodogram. For large h, the numbers
of observations in the calculus of γ̂Q(h) are very small and, consequently, this func-
tion becomes very unstable. Then, to avoid these undesirable covariance estimates
in the calculus of the estimator given in (3.7) justify the use of a truncation point
M in the calculus of this sample function (see Fajardo et al. 2009 [7]). The authors
suggested M that satisfies

M ≤ h′ = min
{

0 < h < n : εtempn (γ̂Q(h)) ≤ m

n

}
− 1.

4. Semiparametric estimation methods of d and em-
pirical studies

The semiparametric estimation procedure based on the OLS estimator proposed
by Geweke & Porter-Hudak 1983 [10](GPH) is considered. Since the GPH estima-
tor is well-discussed in the literature, this method and its asymptotic statistical
properties are briefly summarized as follows.

For a single realization x1, ..., xn of {Xt}t∈Z, the GPH estimate of d is obtained
from the regression equation

log Ix(ωj) = a0 − 2d log [2 sin(ωj/2)] + ξj , j = 1, ...,m′ (4.1)

where ωj is the Fourier frequency at j, m′ is the bandwidth in the regression
equation which has to satisfy m′ →∞, n→∞, with m′

n → 0 and m′ log(m′)
n → 0,
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a0= log fη(0) + log
fη(ωj)
fη(0) + C, ξj = log

Ix(ωj)
fX(ωj)

− C and C = ϕ(1) (ϕ(.) is the
digamma function).

The GPH estimate of d is given by

dGPH = (−0.5)

∑m′

j=1(vj − v̄) log Ix(ωj)

Svv
(4.2)

where Svv =
∑m′

j=1(vj − v)2, vj = log
{

4 sin2(ωj/2)
}
.

Under some conditions, Hurvich, Deo & Brodsky 1998 [14] proved that the
GPH-estimator is consistent for the memory parameter and asymptotically normal
for Gaussian time series processes. The authors established that the optimal m′ in
(4.1) and (4.2) is of order o(n4/5) and (m′)1/2(dGPH − d)

d−→ N(0, π
2

24 ).
To obtain a robust estimator of d, Fajardo et al. 2009 [7] proposed to replace

in (4.1) the log Ix(ωj) by log IQ(ωj) which gives the following OLS regression esti-
mator

dGPHR = −(0.5)

∑m
′

j=1(υj − ῡ) log IQ(ωj)

Svv
, (4.3)

where Svv, m′ are defined as before and IQ(ω) is the function given in (3.7). As pre-
viously mentioned, the asymptotical properties of dGPHR still remains to be estab-
lished. However, based on the following empirical investigation, the robust method
seems to be a reasonable robust alternative method to estimate long-memory time
series in the presence of additive outliers.

4.1. Numerical evaluation using the ARFIMA(0, d, 0) model
The finite series were simulated from zero-mean ARFIMA models (Eq. 1.2) with
{εt}t∈Z, t = 1, ..., n, i.i.d. N(0, 1). The models, parameters, sample sizes and em-
pirical results are displayed in the following tables. The empirical mean, standard
deviation (s.d.), bias and mean squared error (MSE) were obtained as a mean of
10.000 replications. The contaminated data were generated from Model 2.3 with
m = 1, p = 0.05 for magnitude $ = 10 and bandwidth values for dGPH and
dGPHR were computed for α = 0.7 and truncation point M = nβ , β = 0.7. In the
tables dGPHc and dGPHRc mean the estimates of d when the series has outliers.
The simulations were carried out using the Ox matrix programming language (see
http://www.doornik.com). The empirical study was divided into the following
model properties: stationary and non-stationary processes.

Stationary model

Table 1 displays results for d = 0.3, 0.45 and α = β = 0.7. From the table, it
can be seen that when the series does not contain outliers, both estimators present
similar behavior in the estimation of d, which is not a surprising result. However,
the introduction of outliers in the series dramatically changes the performance of
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the classical estimator (GPH), in particular, it significantly underestimates the
true parameter. On the other hand, in this scenario, the robust method (GPHR)
seems to be not sensitive to outliers. Other cases were also simulated such as
ARFIMA models with AR and MA parts and different values of p and $. All
cases indicated similar conclusions to the one given in Table 1. These are available
upon request. Table 2 gives the estimates of d when different lag-windows are
used to compute the robust periodogram estimator. The lag-windows are Parzen
(P), Tukey-Hamming(TH) and Bartlett (B) and the fractional estimators were
computed with the same bandwidths as in the previous case. The choice of the
lag-window does not appear to be too important in the estimation of d since the
estimates obtained from different lag-windows are, in general, numerically very
close to each other. In other words, the estimates are not too sensitive to the
choice of the lag-window. These lag-windows yield similarly accurate estimates
compared to the one given in (3.7).

d n dGPH dGPHc dGPHR dGPHRc

100 mean 0.2988 0.1134 0.2584 0.2449
s.d. 0.1735 0.1619 0.1558 0.1556
bias −0.0012 −0.1866 −0.0416 −0.0551
MSE 0.0301 0.0610 0.0260 0.0272

300 mean 0.3062 0.1007 0.2907 0.2837
0.30 s.d. 0.1005 0.0978 0.0926 0.0960

bias 0.0062 −0.1993 −0.0093 −0.0163
MSE 0.0101 0.0493 0.0087 0.0095

800 mean 0.3003 0.1184 0.2949 0.2869
s.d. 0.0679 0.0715 0.0573 0.0610
bias 0.0003 −0.1816 −0.0051 −0.0131
MSE 0.0046 0.0381 0.0033 0.0039

100 mean 0.4561 0.1923 0.3975 0.3778
s.d. 0.1722 0.1727 0.1506 0.1433
bias 0.0061 −0.2577 −0.0525 −0.0722
MSE 0.0297 0.0962 0.0254 0.0258

300 mean 0.4594 0.2015 0.4329 0.4233
0.45 s.d. 0.0986 0.0976 0.1041 0.1013

bias 0.0094 −0.2485 −0.0171 −0.0267
MSE 0.0098 0.0713 0.0111 0.0110

800 mean 0.4620 0.2306 0.4457 0.4349
s.d. 0.0688 0.0809 0.0562 0.0576
bias 0.0121 −0.2194 −0.0043 −0.0151
MSE 0.0049 0.0547 0.0032 0.0035

Table 1: Simulation results; ARFIMA(0, d, 0) model with α = β =
0.7 and $ = 0, 10.

Non-stationary model

As is well-known, the GPH estimator has been widely used even for ARFIMA
models with d in (0.5, 1.0] (see, for example, Franco & Reisen 2007 [9], Hurvich
& Ray 1995 [15],Olbermann, Lopes & Reisen 2006 [22], Phillips 2007 [24] among
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uncontaminated series
Parameter n dP dTH dB

100 mean 0.2699 0.2602 0.2459
s.d. 0.1497 0.1575 0.1444
bias −0.0301 −0.0398 −0.0541
MSE 0.0233 0.0264 0.0238

300 mean 0.2880 0.2833 0.2857
d = 0.3 s.d. 0.1050 0.1037 0.0976

bias −0.0119 −0.0167 −0.0143
MSE 0.0112 0.0110 0.0097

800 mean 0.2985 0.2966 0.3001
s.d. 0.0554 0.0584 0.0561
bias −0.0015 −0.0034 0.0001
MSE 0.0031 0.0034 0.0031

contaminated series
Parameter n dP dTH dB

100 mean 0.2504 0.2446 0.2419
s.d. 0.1552 0.1482 0.1405
bias −0.0496 −0.0554 −0.0581
MSE 0.0266 0.0250 0.0231

300 mean 0.2806 0.2729 0.2796
d = 0.3 s.d. 0.1028 0.0925 0.0964

bias −0.0194 −0.0271 −0.0204
MSE 0.0109 0.0093 0.0097

800 mean 0.2934 0.2889 0.2928
s.d. 0.0578 0.0606 0.0553
bias −0.0066 −0.0111 −0.0072
MSE 0.0034 0.0038 0.0031

Table 2: Empirical results of d’s estimators in ARFIMA(0, d, 0)
model using different lag-windows.

others).
Based on the theory discussed in the previous sections, the robust method can

not be applied in a non-stationary time series. However, it may be interesting to
verify if GPHR estimator is invariant to the first difference, i.e. estimative of the
memory parameter based on the original data is equal to one plus the estimated d
based on the differenced data.

Now, let Model 1.2 be defined with parameter d∗ = d+κ, where d ∈ (−0.5, 0.5),
κ > 0, κ ∈ Z. Then, Model 1.2, with zero-mean, becomes

Xt = (1−B)−d
∗
ηt, t ∈ Z. (4.4)

Process given in (4.4) is non-stationary when d∗ ≥ 0.5; however, it is still persistent.
For d∗ ∈ [0.5, 1.0) it is level-reverting in the sense that there is no long-run impact
of an innovation on the value of the process. The level-reversion property no longer
holds when d∗ ≥ 1. Note that when d∗ = 1 the process is a random walk.

From Model 4.4 with κ = 1 and p = q = 0,

Wt = (1−B)Xt, t ∈ Z,
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is an ARFIMA(0, d, 0) process. Let d̂∗ be the estimator of d∗ and let d̂ be the
fractional estimator obtained from the differenced data. The main goal is to verify
the equality d̂∗ = d̂ + 1 for uncontaminated and contaminated series. Based on
the same simulation procedure previously described, series from Model 4.4 were
generated and some cases are displayed in Table 3 (other cases are available upon
request). Similar conclusions to the previous study are observed. Both estimators
present equivalent performance when they are applied in the first difference of
uncontaminated series. This suggests that both can be used in practical situations
when dealing with non-stationary data. However, since the first difference does not
eliminate the effect of an outlier, the estimates clearly indicate that caution has to
be exercised when there is suspicion of outliers in the data. The GPH estimator
presents poor performance in terms of bias (high positive bias) and MSE. In
contrast to the GPH estimator, the GPHR method seems to be invariant to the
first difference of non-stationary time series with outliers. This empirical study
suggests that, in practical situations when dealing with non-stationary data with
outliers, one solution is to apply the first difference in the series and then to estimate
d with the robust estimator discussed in this paper.

Parameter n dGPH dGPHc dGPHR dGPHRc

300 mean −0.2141 −0.5066 −0.1906 −0.2211
dX = 0.8, dW = −0.2 bias 0.0141 0.3066 −0.0094 0.0211

s.d 0.1076 0.1469 0.1127 0.1421
MSE 0.0118 0.1155 0.0128 0.0206

800 mean −0.1906 −0.4283 −0.2062 −0.2250
bias −0.0094 0.2283 0.0062 0.0251
s.d 0.0630 0.0883 0.0851 0.1081
MSE 0.0041 0.0599 0.0073 0.0123

100 mean −0.0048 −0.4166 −0.0449 −0.0871
bias 0.0048 0.4166 0.0449 0.0871
s.d 0.1763 0.2215 0.1620 0.1811
MSE 0.0311 0.2226 0.0283 0.0404

300 mean −0.0122 −0.3230 −0.0273 −0.0426
dX = 1.0, dW = 0.0 bias 0.0122 0.3230 0.0273 0.0426

s.d 0.1076 0.1296 0.1094 0.1277
MSE 0.0117 0.1211 0.0127 0.0181

800 mean 0.0059 −0.2181 −0.0107 −0.0222
bias −0.0059 0.2181 0.0107 0.0222
s.d 0.0648 0.0823 0.0629 0.0909
MSE 0.0042 0.0544 0.0041 0.0088

Table 3: Empirical results: ARFIMA(0, d, 0) model with differ-
enced data and ω = 0, 10.

5. Application

IGP-DI is the general price index with domestic availability and is calculated by
Fundação Getúlio Vargas, Brazil. The series comprises monthly observations from
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August 1994 to April 2011 (total of 201 observations). The series and its ACF
are displayed in Figure 1. The observations of the months February 1999 (4.44%),
October 2002 (4.21%) and November 2002 (5.84%) are possibly outliers. Looking
at the plots in Figure 1, these suggest that the series is stationary and possess
long-memory behavior. From the data and using the methodologies previously
discussed, the parameter d is estimated and the results are displayed in Table
4. For this application, the estimates of d were computed from the original data
(OD) and from the modified data (MD), where the observations of February 1999,
October 2002 and November 2002 were replaced by the sample mean of the series.
This analysis is a simple exercise to verify the robustness of the estimators in a
real application and, also, to investigate whether the data contains outliers. The
d′ estimates of OD and MD series are given, respectively, on the left and right
sides of Table 4. These estimates were calculated using different bandwidths in
(4.2)(m′ = nα) and β was fixed as in the simulation study. In both series, for a
fixed α, the robust methods present similar results. The estimates maintain the
same empirical property across the bandwidth values. In contrast to the robust
methods, the classical GPH estimator gives estimates that dramatically change
from OD to MD data, showing that the observations replaced by the mean are
possible atypical data.
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Figure 1: IGP-DI series and its sample autocorrelation function:
period from Aug/94 to Apr/11.

6. Concluding remarks and future direction

This paper investigates the effect of outliers in the estimation of the fractional pa-
rameter d in the ARFIMA(p, d, q) model and, also, discusses the asymptotical and
empirical properties of the robust autocovariance and spectral estimators, previ-
ously given in Fajardo et al. 2009 [7] and Lévy-Leduc et al. 2011 [19], for the case of
time series with short and long-memory properties. These studies support the use
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Original time series Modified time series
Estimator α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.5 α = 0.6 α = 0.7 α = 0.8
dGPH 0.0757 0.1205 0.3431 0.3759 0.3110 0.3116 0.3713 0.3875

(0.3417) (0.1869) (0.1389) (0.0888) (0.1586) (0.1077) (0.0909) (0.0683)
dGPHRP 0.1802 0.2335 0.2269 0.2397 0.1630 0.2077 0.2078 0.2230

(0.0857) (0.0745) (0.0469) (0.0331) (0.0782) (0.0603) (0.0385) (0.0251)
dGPHRTH 0.1718 0.1919 0.2125 0.2379 0.1545 0.1782 0.1968 0.2231

(0.0742) (0.0508) (0.0303) (0.0210) (0.0673) (0.0436) (0.0259) (0.0170)
dGPHRB 0.1522 0.1788 0.2047 0.2327 0.1379 0.1667 0.1896 0.2181

(0.0641) (0.0433) (0.0262) (0.0183) (0.0586) (0.0378) (0.0227) (0.0151)
dGPHR 0.1662 0.2628 0.2454 0.2285 0.1500 0.2211 0.2215 0.2228

(0.0862) (0.0995) (0.0671) (0.0436) (0.0794) (0.0717) (0.0511) (0.0328)

Table 4: Estimates of d: IGP-DI data, period from Aug/94 to
Apr/11.

of the robust estimators to estimate the long-memory parameter when Gaussian
long-memory time series are contaminated with additive outliers. Non-stationary
time series with outliers are also studied and the investigation reveals that the
robust method can be used as an alternative estimation procedure in time series
with fractional differences. As previously stated, the asymptotical properties of
the robust estimator under the study still remain to be investigated. The robust
ACF method discussed here has also been used in other contexts such as in the
estimation of periodic process (Sarnaglia, Reisen & Lévy-Leduc 2010 [30]) and in
seasonal ARFIMA processes (this is one of the current research of the authors).
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