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1. Introduction

Let X be a non-negative integer-valued random variable, pn = P(X = n). Put
Sn =

∑n
1 Xj , n ≥ 1, where Xj are i.i.d. random variables which have the same

distribution as X. In what follows we assume that S0 = 0. Let un =
∑∞
k=0 P(Sk =

n) be the renewal probability at the instant n. Put f(z) =
∑∞
k=0 pkz

k. If g(z) is
an analytical function in some neighbourhood of zero, we denote the coefficient at
zn in Taylor series for g(z) by Cn(g(z)).

In 1963 Garsia and Lamperti [1] proved that under the condition

P(X > n) ∼ L(n)n−α, (1.1)

where L(x) is a slowly-varying function, the asymptotic formula

un ∼
sinπα

π
L−1(n)nα−1, (1.2)

is valid, provided 1/2 < α < 1. The relation an ∼ bn here and below indicates that
lim
n→∞

an/bn = 1.
In 1968 Williamson [3] extended Garsia-Lamperti’s result to the case that X

belongs to the domain of attraction of a non-degenerate d - dimensional stable law
with characteristic exponent α, d/2 < α < min(d; 2).

To prove (1.2) Garsia and Lamperti used the purely analytical method based
on analysis of behavior of the generating function f(z) on the unit circle. On the
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contrary, Williamson’s approach is probabilistic with the local limit theorem by
Rvacheva [4] as the starting point.

As to case 0 < α ≤ 1/2, formula (1.2), generally speaking, is not true if we
restrict our selves to condition (1.1). Corresponding counter-example is given in
[3]. The point is that in the case 0 < α ≤ 1/2 the existence of lacunas in the
sequence pn influences on the behavior of un. Therefore, additional constraints are
necessary to provide the validity of (1.2). One such constraint was suggested by
De Bruijn and Erdos [2] before [1] appeared, namely,

pn−1pn+1 > p2n, (1.3)

i.e. the sequence ln pn is convex. Williamson [3] noticed that (1.2) remains true if
the sequence pn does not increase beginning with some number n. This condition
is weaker than (1.3).

In the present work we use the condition

pn ∼
l(n)

n1+α
, 0 < α < 1, (1.4)

where the function l(x) is slowly varying. Notice that condition (1.1) with L(n) =
α−1l(n) follows from (1.4) (see Lemma 2.1 below). Condition (1.4) is discussed
in our previous paper [5], namely, it is shown therein that if above-mentioned
Williamson’s condition is fulfilled, then (1.4) hold.

Theorem 1.1. If condition (1.4) holds, then

un ∼ c(α)
P(X = n)

P2(X ≥ n)
∼ α2c(α)

l(n)n1−α
, (1.5)

where c(α) = sinπα/πα.

The extreme case pn ∼ n−1l(n) is studied in [5]. It turns out that under this
condition un ∼ P(X = n)/P2(X ≥ n). Since c(α) → 1 as α → 0, it implies that
representation

un ∼ c(α)
P(X = n)

P2(X ≥ n)
,

which is given in Theorem 1.1 is stable as α → 0. However, we can not say this
about the relation un ∼ α2c(α)/l(n)n1−α.

In proving Theorem 1.1 we apply the same approach as in [5]. However, to
realize it was found more difficult in this case.

Remark. In [6] the renewal theorem is proved under condition that (1.1) holds and

pn < cP(X > n)n−1

using Williamson’s method. The proof is based on the following statement:
Assume that F (0) = 0 and (2.1) holds. Then for all n ≥ 1, z large enough and
x ≥ z

P{Sn ≥ x,Mn ≤ z} ≤ {cz/x}x/z,
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where Mn = max{X1, X2, ..., Xn} and Sn =
n∑
1
Xi (see Lemma 2 in [6]).

The author of [6] asserts that this lemma is an immediate consequence of the
inequality

P(Sn ≥ x) ≤
n∑

i=1

P(Xi > yi) + (eA+
t /xy

t−1)x/y,

where Sn =
n∑
j=1

Xj , Xj are independent random variables, y > max
i
yi, A

+
t =

n∑
j=1

{Xt
j ;Xj > 0}, 0 < t < 1 (see Corollary 1.5 in [7]).

If Xj are i.i.d. equal to X by distribution, then

P(Sn ≥ x) ≤ nP(X > y) +

(
enE{Xt;X > 0}

xyt−1

)x/y
.

If X ≤ y, then
E{Xt;X > 0} ≤ yt.

Consequently, in this case

P(Sn ≥ x) ≤
(
eny

x

)x/y
.

This inequality differs from the inequality stated in [6] by the presence of n in the
right-hand side. Thus, Lemma 2 of [6] does not follow from Corollary 1.5 of [7]),
and, therefore, the former can not be considered as being proved.

Let hn =
∞∑
k=0

n−1P(Sk = n).

Theorem 1.2. If condition (1.4) holds, then

hn ∼
α

n
. (1.6)

Notice that hn is the derivative of the measure ν(A) :=
∑
k∈A

hk with respect to

the counting measure. The measure ν(A) is a particular case of so called harmonic

renewal measure. Recall that that the measure ν(·) =
∞∑
1
n−1Fn(·), where Fn is n-

th convolution of any distribution F on R+ is said to be harmonic renewal measure
associated with F . In our case the distribution F is concentrated on the lattice
of non-negative integers.The harmonic renewal function is defined by the equality
H(x) = ν([0, x)).

The next statement concerning the asymptotic behavior of H(n) as n → ∞
follows from Theorem 1.2.

Corollary 1.3. If condition (1.4) holds, then

H(n) ∼ α lnn. (1.7)
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The asymptotic behavior of H(x) for x → ∞ is studied in [9, 10, 11, 12]. The
case that F attracts to a stable law is considered in [9], namely , it is proved therein
that under the condition 1− F (x) ∼ x−αL(x)

lim
x→∞

(H(x)− α lnx+ lnL(x)) = αC− ln Γ(1− α),

where C is the Euler constant, Γ(·) is the gamma function. Of course, the last
assertion is sharper than (1.7). Formula (1.7) is presented by reason of simplicity
of proving.

2. Auxiliary results

Lemma 2.1. For any α > 0

∞∑

k=n

l(k)

kα+1
∼
∞∫

n

l(y)

yα+1
dy. (2.1)

Proof. Put p(x) = l(x)/xα+1. Obviously,

inf
n≤y≤n+1

p(y)

p(n)
≤ 1

p(n)

n+1∫

n

p(y)dy ≤ sup
n≤y≤n+1

p(y)

p(n)
. (2.2)

It is easily seen that for every n ≤ y ≤ n+ 1

(
n

n+ 1

)α+1

inf
n≤y≤n+1

l(y)

l(n)
≤ p(y)

p(n)
≤ sup
n≤y≤n+1

l(y)

l(n)
. (2.3)

In what follows we need Kamarata’s representation

l(x) = a(x) exp

{ x∫

1

ε(u)

u
du

}
, x ≥ 1, (2.4)

where lim
n→∞

ε(u) = 0, lim
x→∞

a(x) = a, 0 < a <∞. Hence,

l(y)

l(n)
=
a(y)

a(n)
exp

{ y∫

n

ε(u)

u
du

}
.

Obviously,

lim
n→∞

sup
n≤y≤n+1

∣∣∣∣

y∫

n

ε(u)

u
du

∣∣∣∣ = 0.
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It follows from last two relations that

lim
n→∞

sup
n≤y≤n+1

∣∣∣∣
l(y)

l(n)
− 1

∣∣∣∣ = 0. (2.5)

Combining (2.2), (2.3) and (2.5), we have

lim
n→∞

1

p(n)

n+1∫

n

p(y)dy = 1. (2.6)

It is easily seen that

inf
k≥n

1

p(k)

k+1∫

k

p(y)dy ≤

∞∫
n

p(y)dy

∞∑
k=n

p(k)
≤ sup
k≥n

1

p(k)

k+1∫

k

p(y)dy. (2.7)

The conclusion of the Lemma follows from (2.6) and (2.7).

Lemma 2.2. For any α > 0

∞∫

x

l(y)

yα+1
dy ∼ l(x)

αxα
. (2.8)

Proof. By using (2.4), we have

∞∫

x

l(y)

yα+1
dy ∼

∞∫

x

l0(y)

yα+1
dy, (2.9)

where

l0(y) = exp

{ y∫

1

ε(u)

u
du

}
. (2.10)

Integrating by parts, we conclude that

∞∫

x

l0(y)

yα+1
dy =

l0(x)

αxα
+

1

α

∞∫

x

ε(u)l0(y)

yα+1
dy

=
l0(x)

αxα
(1 + o(1)) =

l(x)

αxα
(1 + o(1)).

(2.11)

The desired result follows from (2.9) and (2.11).
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Note that (2.8) can be deduced from the asymptotic formula

∞∫

α

f(t)l(xt)dt ∼ l(x)

∞∫

α

f(t)dt,

where α > 0, and f(t)tη, η > 0, is integrable (see [8], Theorem 2.6), but not
immediately. For this purpose one needs to make the change of variables y = xt

in the integral
∞∫
x

y−α−1l(y)dy. On the other hand, the method which is used in

proving Lemma 2.2 allows to obtain very easily the statement the above mentioned
Theorem 2.6 of [8].

Corollary 2.3. Under condition (1.4)

P(X ≥ n) ∼ l(n)

αnα
. (2.12)

Proof. Evidently,

inf
k≥n

l(k)

kα+1pk
≤

∞∑
k=n

l(k)k−α−1

∞∑
k=n

pk

≤ sup
k≥n

l(k)

kα+1pk
.

Hence, by (2.7)

P(X ≥ n) =
∑

k≥n
pk ∼

∑

k≥n

l(k)

kα+1
∼ l(n)

αnα
,

which was to be proved.

Lemma 2.4. For any α < 1

n∑

k=1

l(k)

kα
∼ l(n)

1− αn
1−α. (2.13)

Proof. Let l0(x) be defined by (2.10). Since l0(x) ∼ l(x),

n∑

k=1

l0(k)

kα
∼

n∑

k=1

l(k)

kα
. (2.14)

Indeed,

1− ε <

n∑
k=n(ε)

k−αl0(k)

n∑
k=n(ε)

k−αl(k)
< 1 + ε
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if n(ε) is such that for x > n(ε)

1− ε < l0(x)

l(x)
< 1 + ε.

It is easily seen that

lim
n→∞

n∑

k=n(ε)

k−αl(k) =∞.

Therefore for sufficiently large n

1− 2ε <

n∑
k=n(ε)

k−αl0(k)

n∑
k=n(ε)

k−αl(k)
< 1 + 2ε.

Since ε can be made as small as we wish, hence the validity of (2.14) follows. By
applying the Abel transform, we get

n∑

k=1

l0(k)

kα
= l0(n)

n∑

k=1

k−α +
n−1∑

k=1

(l0(k)− l0(k + 1))
k∑

j=1

j−α. (2.15)

It is easily seen that

l0(k)− 0(k + 1) = l0(k)

(
1− exp

{ k+1∫

k

ε(u)

u
du

})
.

Hence

|l0(k)− 0(k + 1)| < l0(k)

∣∣∣∣
k+1∫

k

ε(u)

u
du

∣∣∣∣ = o(l0(k)k−1). (2.16)

Further,
n∑

k=1

k−α ∼ n1−α

1− α. (2.17)

It follows from (2.16) and (2.17)

n−1∑

k=1

(l0(k)− l0(k + 1))
k∑

j=1

j−α = o

( n∑

k=1

l0(k)

kα

)
. (2.18)

Combining (2.15)–(2.17), we conclude that
n∑

k=1

l0(k)k−α ∼ l0(n)

1− αn
1−α. (2.19)

From (2.14) and (2.19) the result follows.
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Corollary 2.5. Under conditions of Theorem 1.1

n∑

k=1

P(X ≥ k) ∼ l(n)

α(1− α)
n1−α. (2.20)

Proof. According to Corollary 2.3 for any ε > 0 there exists n(ε) such that for
n > n(ε)

1− ε < P(X ≥ n)

/
l(n)

αnα
< 1 + ε.

Hence,

1− ε <
n∑

n(ε)<k≤n
P(X ≥ k)

/
α−1

n∑

n(ε)<k≤n

l(k)

kα
< 1 + ε.

On the other hand, since

lim
n→∞

∑

n(ε)<k≤n

l(k)

kα
=∞

for every ε > 0,

∑

n(ε)<k≤n

l(k)

kα
∼

n∑

k=1

l(k)

kα
,

n∑

n(ε)<k≤n
P(X ≥ k) ∼

n∑

k=1

P(X ≥ k).

Therefore, for sufficiently large n

1− 2ε < α
n∑

k=1

P(X ≥ k)
/ n∑

k=1

l(k)

kα
< 1 + 2ε.

Hence, since ε is arbitrary, it follows that

n∑

k=1

P(X ≥ k) ∼ α−1
n∑

k=1

l(k)

kα
.

To complete the proof it remains to apply Lemma 2.4.

Lemma 2.6. Under conditions of Theorem 1.1

1− f(z) ∼ (1− z)αL
(

1

1− z

)
, (2.21)

where
L(x) =

Γ(1− α)

α
l(x).
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Proof. First of all,
n∑

k=0

P(X > k)zk =
1− f(z)

1− z .

It is easily seen that
P(X > k) ∼ P(X ≥ k).

Now, using Corollary 2.5 and the Abelian theorem (see, e.g. [13], Ch. XIII, section
5, Th. 5), we have

1− f(z)

1− z ∼ Γ(2− α)

α(1− α)
(1− z)α−1L(1− z)

= α−1Γ(1− α)(1− z)α−1l
(

1

1− z

)
= (1− z)α−1L

(
1

1− z

)
,

which is equivalent to the assertion of the Lemma.

Lemma 2.7. Under conditions of Theorem 1.1

n∑

k=0

uk ∼
nα

Γ(α+ 1)L(n)
, (2.22)

where L(x) is defined in Lemma 2.6.

Proof. Obviously,

uk = Ck

(
1

1− f(z)

)
.

Applying Lemma 2.6 and the Tauberian theorem (see ref. in the proof of Lemma
2.6), we obtain the desired result.

The next assertion is borrowed from [5].

Lemma 2.8. The identity

nun =
n−1∑

k=0

(n− k)pn−ku
(2)
k (2.23)

holds, where un =
∞∑
k=0

P(Sk = n), u
(2)
n =

n∑
k=0

un−kuk.

Lemma 2.9. Under condition of Theorem 1.1 there exists the sequence θn such
that lim

n→∞
θn = 1 and

u(2)n ≤
21−αθnnα

Γ(α+ 1)L(n)
max

n/2≤k≤n
uk. (2.24)
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Proof. It is easily seen that

u(2)n ≤ 2
∑

0≤k≤n/2
ukun−k ≤ 2 max

n/2≤k≤n
uk

∑

0≤k≤n/2
uk.

To complete the proof it is sufficient to apply Lemma 2.7.

Lemma 2.10. Under conditions of Theorem 1.1

n∑

k=1

u
(2)
k ∼

n2α

Γ(2α+ 1)L2(n)
, (2.25)

where L(x) is defined in Lemma 2.6.

Proof. It is easily seen that

u
(2)
k = Ck

(
1

(1− f(z))2

)
.

According to Lemma 2.6

(1− f(z))−2 ∼ (1− z)−2αL−2
(

1

1− z

)
.

Applying the Tauberian theorem (see ref. in the proof of Lemma 2.6), we get the
desired result.

Lemma 2.11. Under conditions of Theorem 1.1 for every fixed 0 < a < b < 1

∑

na≤k≤nb
l−2(k)k2α−1(n− k)−α ∼ l−2(n)nα

b∫

a

u2α−1(1− u)−αdu. (2.26)

Proof. First of all, notice that

ln
l0(n)

l0(k)
=

n∫

k

ε(u)

u
du. (2.27)

Consequently,

lim
n→∞

sup
na≤k≤nb

∣∣∣∣
l0(n)

l0(k)
− 1

∣∣∣∣ = 0. (2.28)

This implies that
∑

na≤k≤nb
l−20 (k)k2α−1(n− k)−α ∼ l−20 (n)

∑

na≤k≤nb
k2α−1(n− k)−α.
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Hence it follows that
∑

na≤k≤nb
l−2(k)k2α−1(n− k)−α ∼ l−2(n)

∑

na≤k≤nb
k2α−1(n− k)−α.

Further,

∑

na≤k≤nb
k2α−1(n− k)−α = nα−1

∑

na≤k≤nb

(
k

n

)2α−1(
1− k

n

)−α

∼ nα
b∫

a

u2α−1(1− u)−αdu.

The result follows from last two relations.

3. The proof of Theorem 1.1

Let us write down formula (2.23) in the form

nun =

( ∑

0≤k<√n
+

∑
√
n≤k≤(1−η)n

+
∑

(1−η)n<k≤n

)
(n− k)pn−ku

(2)
k

≡
∑

1
+
∑

2
+
∑

3
,

(3.1)

where 0 < η < 1. For any ε > 0, sufficiently large n, and k <
√
n

pn−k < (1 + ε)
l(n− k)

(n−√n)α+1
. (3.2)

If n−√n ≤ k ≤ n, then

l0(n)

lo(k)
= exp

{ n∫

k

ε(u)

u
du

}
= 1 + o(lnn− ln(n−√n)) = 1 + o

(
1√
n

)
.

Consequently,

max
n−√n≤k≤n

l0(k) ∼ l0(n). (3.3)

It follows from (3.2) and (3.3) that

∑
1

= O

(
l(n)

nα

[
√
n]∑

k=1

u
(2)
k

)
.
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By Lemma 2.10

[
√
n]∑

k=1

u
(2)
k = O

(
nα

l2(
√
n)

)
. (3.4)

Thus,

∑
1

= O

(
1

l(
√
n)

)
. (3.5)

Let us turn to estimating
∑

2. It is easily seen that

∑
2
∼

∑
√
n≤k≤(1−η)n

u
(2)
k

l0(n− k)

(n− k)α
≡
∑

4
. (3.6)

Applying Abel’s transformation, we have

∑
4
∼ l0(n−√n)

(n−√n)α

∑
√
n≤k≤(1−η)n

u
(2)
k

−
∑

√
n≤k≤(1−η)n

(
l0(n− k − 1)

(n− k − 1)α
− l0(n− k)

(n− k)α

) k∑

j=[
√
n]

u
(2)
j .

(3.7)

By Lemma 2.10

∑
√
n≤k≤(1−η)n

u
(2)
k =

∑

k≤(1−η)n
u
(2)
k −

∑

k<
√
n

u
(2)
k ∼

(1− η)2αn2α

Γ(2α+ 1)L2(n)
. (3.8)

Further,

l0(k)

kα
− l0(k + 1)

(k + 1)α
= l0(k)

(
1

kα
− 1

(k + 1)α

)
+
l0(k)− l0(k + 1)

(k + 1)α
. (3.9)

Obviously,

1

kα
− 1

(k + 1)α
∼ α

kα+1
. (3.10)

On the other hand,

l0(k + 1)− l0(k) = l0(k)

(
l0(k + 1)

l0(k)
− 1

)

= l0(k)

(
exp

{ k+1∫

k

ε(u)

u
du

}
− 1

)
= o

(
l0(k)

k

)
.

(3.11)
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It follows from (3.9)–(3.11) that

l0(k)

kα
− l0(k + 1)

(k + 1)α
∼ αl0(k)

kα+1
. (3.12)

Combining (3.6)–(3.8) and (3.12), we obtain

∑
2
∼ (1− η)2αl0(n)nα

Γ(2α+ 1)L2(n)
− α

∑
√
n≤k≤(1−η)n

l0(n− k)

(n− k)α+1

k∑

j=[
√
n]

u
(2)
j

=
(1− η)2ααnα

Γ(1− α)Γ(2α+ 1)a(n)L(n)

− α
∑

√
n≤k≤(1−η)n

l0(n− k)

(n− k)α+1

k∑

j=0

u
(2)
j + α

√
[n]−1∑

j=0

u
(2)
j

∑
√
n≤k≤(1−η)n

l0(n− k)

(n− k)α+1

=
(1− η)2ααnα

Γ(1− α)Γ(2α+ 1)a(n)L(n)
− α

∑
5

+α
∑

6
. (3.13)

Here a(·) is a factor in Karamata’s representation (2.4) for l(x). In view of (3.4)

∑
6

= O

(
l0(n)

l20(
√
n)

)
. (3.14)

We now proceed to estimating
∑

5. By Lemma 2.10

∑
5
∼ c(α)

∑
√
n≤k≤(1−η)n

L−2(k)k2α
l0(n− k)

(n− k)α+1
≡ c(α)

∑
7
, (3.15)

where c(α) = 1/Γ(2α+ 1). Applying the Abel transformation, we have

∑
7
∼ L−2(n)(1− η)2αn2α

∑
√
n≤k≤(1−η)n

l0(n− k)

(n− k)α+1

−
∑

√
n≤k≤(1−η)n

(L−2(k + 1)(k + 1)2α − L−2(k)k2α)

k∑

j=[
√
n]

l0(n− j)
(n− j)α+1

. (3.16)

In the same way as (3.12) we deduce that

L−2(k + 1)(k + 1)2α − L−2(k)k2α ∼ 2αL−2(k)k2α−1.

Hence, denoting the second summand in (3.16) by
∑

8, we obtain

∑
8
∼ 2α

∑
√
n≤k≤(1−η)n

L−2(k)k2α−1
k∑

j=[
√
n]

l0(n− j)
(n− j)α+1
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∼ 2αl0(n)
∑

√
n≤k≤(1−η)n

L−2(k)k2α−1
k∑

j=[
√
n]

(n− j)−α−1. (3.17)

It is not difficult to check that for
√
n ≤ k ≤ (1− η)n

α
∑

j=|√n|
(n− j)−α−1 = (n− k)−α − n−α + o(n−α).

Consequently,
∑

8
+2n−α

∑
√
n≤k≤(1−η)n

L−2(k)k2α−1 ∼ 2l0(n)
∑

√
n≤k≤(1−η)n

L−2(k)k2α−1(n− k)−α. (3.18)

We need the identity

∑
√
n≤k≤(1−η)n

=

( ∑
√
n≤k<εn

+
∑

εn≤k≤(1−η)n

)
L−2(k)k2α−1(n− k)−α

≡
∑

9
+
∑

10
.

(3.19)

It is easily seen that
∑

9
< (1− ε)−αn−α

∑
√
n≤k≤εn

L−2(k)k2α−1.

By using Lemma 2.4, we obtain that

∑
√
n≤k≤εn

L−2(k)k2α−1 ∼ (εn)2α

2αL2(n)
.

Therefore, for sufficiently large n

∑
9
< (1− ε)−α ε2αnα

2αL2(n)
. (3.20)

On the other hand, by Lemma 2.11

∑
10
∼ L−2(n)nα

∫ 1−η

ε

u2α−1(1− u)−αdu. (3.21)

It follows from (3.18) – (3.21) that

∑
8

+
(1− η)2αnα

αL2(n)
∼ 2α2nα

Γ2(1− α)l(n)

1−η∫

0

u2α−1(1− u)−αdu. (3.22)
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Combining (3.15), (3.16), (3.18) and (3.22) we obtain

∑
5
∼ (1− η)2ααnα

Γ(1− α)Γ(2α+ 1)L(n)
− 2α2nα

Γ2(1− α)Γ(2α+ 1)l(n)
I(η), (3.23)

where I(η) =
1−η∫
0

u2α−1(1−a)−αdu. Finally, it follows from (3.13), (3.14) and (3.23)

that

∑
2
∼ 2α3nα

Γ2(1− α)Γ(2α+ 1)l(n)
I(η). (3.24)

We now turn to estimating
∑

3 . Evidently,
∑

3
< max

(1−η)n<k≤n
u
(2)
k

∑

(1−η)n<k≤n
(n− k)pn−k.

By Lemma 2.4

∑

(1−η)n<k≤n
(n− k)pn−k ∼

[ηn]∑

1

l(j)

jα
∼ l(n)

1− α (ηn)1−α.

On the other hand, in view of (2.24)

max
(1−η)n<k≤n

u
(2)
k <

21−αnα

Γ(α+ 1)
max

(1−η)n<k≤n
θk
L(k)

max
(1−η)n/2≤j≤n

uj .

As a result we obtain that
∑

3
= nψ(n)(2η)1−α max

δn≤j≤n
uj , (3.25)

where

ψ(n) =
αbn

Γ(α+ 1)Γ(1− α)(1− α)
, 0 < lim sup

n→∞
bn ≤ 1, δ =

1− η
2

.

Notice that
α

Γ(α+ 1)Γ(1− α)
=

1

Γ(α)Γ(1− α)
=

sinπα

π

( see [14], formula 8.334, 3). Consequently,

ψ(n) =
sinπα

(1− α)π
bn. (3.26)

It follows from (3.1), (3.5), (3.24) and (3.25) that

un = ϕ(n) + (2η)1−αψ(n) max
δn≤j≤n

uj , (3.27)
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where

ϕ(n) =
2α3ann

α−1I(η)

Γ2(1− α)Γ(2α+ 1)l(n)
, an ∼ 1.

Let us fix 0 < ε < 1/2. Let η be such that (2η)1−α < ε. Chose N so that ψ(n) < 1
for n > N . Let n1 be the value of k for which max

δn≤k≤n
uk is attained. In particular,

it may be that n1 = n. In this case un < ϕ(n)/(1− ε). If N < n1 < n, then

un1 < ϕ(n1) + ε max
δn1≤j≤n1

uj

and consequently

un < ϕ(n) + εϕ(n1) + ε2 max
δn1≤j≤n1

uj . (3.28)

If max
δn1≤j≤n1

uj = un1
, then un1

< ϕ(n1)/(1− ε). Substituting this bound in (3.28),

we have

un < ϕ(n) + εϕ(n1) +
ε2

1− εϕ(n1).

If max
δn1≤j≤n1

uj is attained for N < j < n1, then, similarly, the following inequality

is deduced

un < ϕ(n) + εϕ(n1) + ε2ϕ(n2) +
ε3

1− ε max
δn2≤j≤n2

uj

and so forth.
There exist two possibilities: either for some nk > N

max
δnk≤j≤nk

uj = unk
,

or for some k = k0 the inequality nk < N is fulfilled. Consider the first case. First
of all, notice that nk ≥ δkn. Using Karamata’s representation (2.4) for l(n), we
obtain

ϕ(nj)

ϕ(n)
=

ana(n)

anj
a(nj)

(
n

nj

)1−α
exp

{
−

n∫

nj

ε(u)

u

}
.

Evidently,
∣∣∣∣∣

n∫

nj

ε(u)

u
du

∣∣∣∣∣ < sup
nj≤u≤n

|ε(u)| ln n

nj
< −jγ ln δ, γ = sup

u>N
|ε(u)|.

Consequently, there exists ε0 such that for ε < ε0

εjϕ(nj) < εjϕ(n) exp

{
jγ ln 2

}
< εj/2.
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As a result we get that for ε < ε0

un <

k−1∑

j=0

εjϕ(nj) +
εk

1− εϕ(nk) <

( k−1∑

j=0

εj/2 +
εk/2

1− ε

)
ϕ(n) <

ϕ(n)

1− ε1/2 . (3.29)

In the second case the recursion stops for k = k0 = min{k : nk < N}. As a result
we arrive at the bound

un <
ϕ(n)

1− ε1/2 +
εk0−1

1− ε max
k≥0

uk. (3.30)

Since nk ≥ δkn, k0 ≥ logδ
N
n . It implies that εk0 ≤ exp{−2−1 ln ε logδ n} for

n > N2. Consequently, for sufficiently small ε

εk0 = o(n−2) = o(ϕ(n)). (3.31)

It follows from (3.30) and (3.31) that un < 2ϕ(n) for n > N2 if ε sufficiently small.
Returning to (3.27) we conclude that for sufficiently large n

0 < l(n)n1−αun − anc1(α)I(η) < 2εn1−αl(n) max
δn≤k≤n

ϕ(k),

where c1(α) = 2α3/Γ2(1− α)Γ(2α+ 1). It is easily seen that

lim sup
n→∞

n1−αl(n) max
δn≤k≤n

ϕ(k) ≤ δα−1c1(α)I(η).

It follows from two latter relations that

lim
n→∞

l(n)n1−αun = c1(α)I(0). (3.32)

It remains to calculate c1(α)I(0). Obviously,

I(0) = B(2α, 1− α) =
Γ(2α)Γ(1− α)

Γ(1 + α)
.

Consequently,

c1(α)I(0) =
2α3Γ(2α)

Γ(1− α)Γ(2α+ 1)Γ(1 + α)
=

α

Γ(1− α)Γ(α)
=
α sinπα

π
. (3.33)

It follows from (3.32) and (3.33) that

lim
n→∞

l(n)n1−αun =
α sinπα

π

On the other hand, by (2.12)

P(X = n)

P2(X ≥ n)
∼ α2

l(n)n1−α
.

Hence,
sinπα

πα

P(X = n)

P2(X ≥ n)
∼ α sinπα

πl(n)n1−α
∼ un,

which was to be proved.
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4. The proof of Theorem 1.2

According to definition
hn = Cn(− ln (1− f(z))).

Hence,

nhn = Cn

(
f ′(z)

1− f(z)

)
.

Consequently,

hn =
1

n

n∑

k=0

(k + 1)pk+1un−k. (4.1)

Applying Theorem 1.1, we have
∑

εn≤k≤(1−ε)n
(k + 1)pk+1un−k ∼

α sinπα

π

∑

εn≤k≤(1−ε)n
(k + 1)−α(n− k)α−1

∼ α sinπα

π

1−ε∫

ε

u−α(1− u)α−1du ≡ α sinπα

π
I(ε). (4.2)

On the other hand, applying Lemmas 2.4 and 2.7, we have

lim sup
n→∞

∑

0≤k<εn
(k + 1)pk+1un−k <

α

π(1− α)

(
ε

1− ε

)1−α
(4.3)

and

lim sup
n→∞

∑

(1−ε)n<k≤n
(k + 1)pk+1un−k <

1

π

(
ε

1− ε

)α
. (4.4)

It follows from (4.2)–(4.4) that

lim
n→∞

n∑

k=0

(k + 1)pk+1un−k = α
sinπα

π
I(0). (4.5)

Obviously,

I(0) = B(α, 1− α) = Γ(α)Γ(1− α) =
π

sinπα
. (4.6)

Combining (4.1), (4.5), (4.6), we obtain that

hn ∼
α

n
,

which was to be proved.
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