
Annales Mathematicae et Informaticae
38 (2011) pp. 99–110
http://ami.ektf.hu

A clustering algorithm for multiprocessor
environments using dynamic priority of

modules

Pramod Kumar Mishraa, Kamal Sheel Mishrab

Abhishek Mishrac

aDepartment of Computer Science & DST Centre for Interdisciplinary Mathematical
Sciences, Banaras Hindu University, Varanasi-221005, India

e-mail: mishra@bhu.ac.in
bDepartment of Computer Science, School of Management Sciences, Varanasi-221011,

India
e-mail: ksmishra@smsvaranasi.com

cDepartment of Computer Engineering, Institute of Technology, Banaras Hindu
University, Varanasi-221005, India

e-mail: abhishek.rs.cse@itbhu.ac.in

Submitted March 3, 2011 Accepted October 25, 2011

Abstract

In this paper, we propose a task allocation algorithm on a fully connected
homogeneous multiprocessor environment using dynamic priority of modules.
This is a generalization of our earlier work in which we used static priority of
modules. Priority of modules is dependent on the computation and the com-
munication times associated with the module as well as the current allocation.
Initially the modules are allocated in a single cluster. We take out the modules
in decreasing order of priority and recalculate their priorities. In this way we
propose a clustering algorithm of complexity O(|V |2(|V |+ |E|)log(|V |+ |E|)),
and compare it with Sarkar’s algorithm.

Keywords: Clustering; Distributed Computing; Homogeneous Systems; Task
Allocation.

MSC: 68W40, 68Q25.

99

100 P. K. Mishra, K. S. Mishra, A. Mishra

1. Introduction

A homogeneous computing environment (HoCE) consists of a number of machines
generally fully connected through a communication backbone. They consist of iden-
tical machines that are connected through identical communication links. In con-
trast, a heterogeneous computing environment (HeCE) consists of different types
of machines as well as possibly different types of communication links (e.g., [8], [4],
[13]). In the remainder of this paper our discussion is based on a HoCE that is
fully connected and having an unlimited supply of machines.

A task to be executed on a HoCE may consist of a set of software modules
having interdependencies between them. The interdependencies between software
modules in a task can be represented as a task graph that is a weighted directed
acyclic graph (DAG). The vertices in this DAG represent software modules and
have a weight associated with them that represents the time of execution for the
software module. The directed edges represent data dependencies between software
modules. For example, if there is a directed edge of weight wij from module Mi

to the module Mj , then this means that Mj can start its execution only when
Mi has finished its execution and the data has arrived from Mi to Mj . The time
taken for communication is 0 if Mi and Mj are allocated on the same machine,
while it is wij in the case when Mi and Mj are allocated to different machines. We
are using the same computational model that was used in the CASC algorithm by
Kadamuddi and Tsai [7], in which a software module immediately starts sending
its data simultaneously along its outgoing edges.

When all the software modules of a task are allocated to the same machine,
then the time taken for completing the task is called sequential execution time.
When the modules are distributed among more than one machine, then the time
taken for completing the task is called parallel execution time. We use parallelism
so that the parallel execution time can be less than the sequential execution time
of a task.

The parallel execution time of a task may depend on the way in which the
software modules of the task are allocated to the machines. The task allocation
problem is to find an allocation so that the parallel execution time can be min-
imized. When the HoCE is fully connected, and having an unlimited supply of
processors (as is in our case), the task allocation problem is also called the cluster-
ing problem in which we make clusters of modules and allocate them to different
machines. The task allocation problem on a HeCE may consist of two steps. In
the first step, a clustering of modules are found aiming at minimizing the parallel
execution time of the task on a HoCE that is fully connected, and having an unlim-
ited supply of machines. In the second step, the clusters are allocated to different
machines so that the parallel execution time of the task on the given HeCE can be
minimized.

The problem of finding a clustering of software modules of a task that takes
minimum time is an NP-Complete problem (Sarkar [12], Papadimitriou [11]). So,
for solving clustering problems in time that is polynomial in size of task graph, we

A clustering algorithm for multiprocessor environments . . . 101

need to develop some heuristic. The solution provided by using a polynomial time
algorithm is generally suboptimal.

In our algorithm, the dynamic priority associated with a module is called the
DCCLoad (Dynamic-Computation-Communication-Load). DCCLoad is approx-
imately a measure of average difference between the module’s computation and
communication requirements according to the current allocation. Since the mod-
ules keep changing the clusters in our algorithm, we need to recalculate their pri-
orities after each allocation. Using the concept of DCCLoad, we have developed a
clustering algorithm of complexity O(|V |2(|V |+ |E|)log(|V |+ |E|)).

The remainder of this paper is organized in the following manner. Section 2
discusses some heuristics for solving the clustering problem. Section 3 explains
the concept of DCCLoad. Section 4 presents the DynamicCCLoad algorithm.
Section 5 explains this algorithm with the help of a simple example. In section 6,
some experimental results are presented. And finally in section 7, we conclude our
work.

2. Current approaches

When the two modules that are connected through a large weight edge, are allo-
cated to different machines, then this will make a large communication delay. To
avoid large communication delays, we generally put such modules together on the
same machine, thus avoiding the communication delay between them. This concept
is called edge zeroing.

Two modules Mi and Mj are called independent if there cannot be a directed
path from Mi to Mj as well as from Mj to Mi. A clustering where independent
modules are clustered together is called nonlinear clustering. A linear clustering is
the clustering in which independent modules are kept on separate clusters.

Sarkar’s algorithm [12] uses the concept of edge zeroing for clustering the mod-
ules. Edges are sorted in decreasing order of edge weights. Initially each module is
in a separate cluster. Edges are examined one-by-one in decreasing order of edge
weight. The two clusters connected by the edge are merged together if on doing
so, the parallel execution time does not increase. Sarkar’s algorithm uses the level
information to determine parallel execution time and the levels are computed for
each step. This process is repeated till all the edges are examined. The complexity
of Sarkar’s algorithm is O(|E|(|V |+ |E|)).

The dominant sequence clustering (DSC) algorithm by Yang and Gerasoulis
[14], [15] is based on finding the critical path of the task graph. The critical path
is called the dominant sequence (DS). An edge from the DS is used to merge its
adjacent nodes, if the parallel execution time is reduced. After merging, a new DS
is computed and the process is repeated again. DSC algorithm has a complexity
of O((|V |+ |E|)log(|V |)).

The clustering algorithm for synchronous communication (CASC) by Kadamud-
di and Tsai [7], is an algorithm of complexity O(|V |(|E|2 + log(|V |))). It has four
stages of Initialize, Forward-Merge, Backward-Merge, and Early-Receive. In addi-

102 P. K. Mishra, K. S. Mishra, A. Mishra

tion to achieving the traditional clustering objectives (reduction in parallel execu-
tion time, communication cost, etc.), the CASC algorithm reduces the performance
degradation caused by synchronizations, and avoids deadlocks during clustering.

Mishra and Tripathi [10] consider the Sarkar’s Edge Zeroing heuristic (Sarkar
[12]) for scheduling precedence constrained task graphs on parallel systems as a
priority based algorithm in which the priority is assigned to edges. In this case,
the priority can be taken as the edge weight. They view this as a task dependent
priority function that is defined for pairs of tasks. They have extended this idea
in which the priority is a cluster dependent function of pairs of clusters (of tasks).
Using this idea they propose an algorithm of complexity O(|V ||E|(|V |+ |E|)) and
demonstrate its superiority over some well known algorithms.

3. Dynamic Computation-Communication Load of a
module

3.1. Notation

We are using the notation of Mishra et al. [9] in which there are n modules Mi(1 ≤
i ≤ n) where the module Mi is in the cluster Ci(1 ≤ i ≤ n). The set of modules
are given by:

M = {Mi | 1 ≤ i ≤ n} (3.1)

The clusters Ci ⊂M(1 ≤ i ≤ n) are such that for i 6= j(1 ≤ i ≤ n, 1 ≤ j ≤ n)

Ci

⋂
Cj = ∅ (3.2)

and
n⋃

i=1

Ci = M (3.3)

The label of the cluster Ci is denoted as an integer cluster[i] (1 ≤ i ≤ n, 1 ≤
cluster[i] ≤ n). The set of vertices of the task graph are denoted as:

V = {i | 1 ≤ i ≤ n} (3.4)

The set of edges of the task graph are denoted as:

E = {(i, j) | i ∈ V, j ∈ V,∃ an edge from Mi to Mj} (3.5)

mi is the execution time of module Mi. If (i, j) ∈ E, then wij is the weight of the
directed edge from Mi to Mj . If (i, j) /∈ E, or if i = j, then wij is 0. T is the
adjacency list representation of the task graph.

A clustering algorithm for multiprocessor environments . . . 103

3.2. DCCLoad of a module
In our earlier work (Mishra et al. [9]), we used a static priority of modules that
we called Computation-Communication-Load (CCLoad) of a module. CCLoad of
a module was defined as follows:

CCLoadi = mi −max_ini −max_outi, (3.6)

where
max_ini = MAX({wji | 1 ≤ j ≤ n}) (3.7)

and
max_outi = MAX({wik | 1 ≤ k ≤ n}) (3.8)

Now we are generalizing this concept so that we can also include the current
allocation into the priority of modules. Since the allocation keeps changing in our
algorithm, the priority will be dynamic. We will call it the Dynamic-Computation-
Communication-Load (DCCLoad) of a module.

DCCLoad of a module is defined as follows:

DCCLoadi = (c_ini + c_outi)mi − sum_ini − sum_outi, (3.9)

where
c_ini =

∑
cluster[j] 6=cluster[i],1≤j≤n

1 (3.10)

c_outi =
∑

cluster[i] 6=cluster[k],1≤k≤n

1 (3.11)

sum_ini =
∑

cluster[j] 6=cluster[i],1≤j≤n

wji (3.12)

and
sum_outi =

∑
cluster[i] 6=cluster[k],1≤k≤n

wik (3.13)

For calculating DCCLoadi of a module Mi, we first multiply its execution
time (mi) with the number of those incoming edges from, and outgoing edges to,
(c_ini+c_outi) that are allocated on different clusters from Mi. Then we subtract
the result by the sum of weight of incoming edges that are allocated on different
clusters (sum_ini) subtracted by the sum of weight of outgoing edges that are
allocated on different clusters (sum_outi).

3.3. An example of DCCLoad
In Figure 1 (taken from Mishra et al. [9]), DCCLoad of modules are calculated.
As an example, for module M2, we have:

m2 = 4 (3.14)

104 P. K. Mishra, K. S. Mishra, A. Mishra

Figure 1: An example task graph for showing the calculation
of DCCLoad for the allocation {M1, M3, M7}{M2, M6}{M4, M5}.

(DCCLoadi)1≤i≤7 = (-1, -3, 0, 0, -3, 0, 0)

The number of incoming edges that are from different clusters are:

c_in2 = 1 (3.15)

The number of outgoing edges that are to different clusters are:

c_out2 = 2 (3.16)

The sum of weight of incoming edges that are from different clusters are:

sum_in2 = w13 = 4 (3.17)

The sum of weight of outgoing edges that are to different clusters are:

sum_out2 = w24 + w25 = 11 (3.18)

Therefore DCCLoad2 is given by:

DCCLoad2 = (c_in2 + c_out2)m2 − sum_in2 − sum_out2 = 12− 4− 11 = −3
(3.19)

4. The DynamicCCLoad algorithm

4.1. Evaluate-DCCLoad
Evaluate-DCCLoad(T, cluster)
01 for i← 1 to |V |

A clustering algorithm for multiprocessor environments . . . 105

02 do c_in[i]← 0
03 c_out[i]← 0
04 sum_in[i]← 0
05 sum_out[i]← 0
06 for i← 1 to |V |
07 do load[i].index← i
08 for each (i, j) ∈ E
09 do if cluster[i] 6= cluster[j]
10 then f ← 1
11 else f ← 0
12 c_in[j]← c_in[j] + f
13 c_out[i]← c_out[i] + f
14 sum_in[j]← sum_in[j] + fwij

15 sum_out[i]← sum_out[i] + fwij

16 for i← 1 to |V |
17 do load[i].value← (c_in[i] + c_out[i])mi − sum_in[i]− sum_out[i]
18 return load

Given a task graph T , the algorithm Evaluate-DCCLoad calculates the DCC
Load for each module in the array load. Using the notation of Mishra et al. [9],
for (1 ≤ j ≤ |V |), if the DCCLoad of module Mj is lj , and if it is stored in load[i],
then we have:

load[i].value = lj (4.1)

and
load[i].index = j (4.2)

In lines 01 to 05, the count (c_in[i]) and the sum of weights of incoming edges
from different clusters (sum_in[i]), and the count (c_out[i]) and the sum of weight
of outgoing edges to different clusters (sum_out[i]) are initialized to 0. In lines 06
to 15, we consider each edge (i, j) ∈ E, and update the values of c_out[i], c_in[j],
sum_out[i] and sum_in[j] accordingly. Finally, in lines 16 to 17, we store the
DCCLoad of module Mi in load[i] for (1 ≤ i ≤ |V |). Line 18 returns the load
array.

Lines 01 to 05, and lines 16 to 17 each have complexity O(|V |). Lines 06 to 15
have complexity O(|E|). Line 18 has complexity O(1). Therefore, the algorithm
Evaluate-DCCLoad has complexity O(|V |+ |E|).

4.2. Evaluate-Time

Given a task graph T , and a clustering cluster, the algorithm Evaluate-Time
taken from Mishra et al. [9] calculates the parallel execution time of the clustering.
It is basically based on the event queue model. There are two type of events:
computation completion event, and communication completion event. Events are
denoted as 3-tuples (i, j, t). As an example, a computation completion event of
module Mi, that completes its computation at time ti will be denoted as (i, i, ti),

106 P. K. Mishra, K. S. Mishra, A. Mishra

and a communication completion event of a communication from Mi to Mj , that
is finished at time tij will be denoted as (i, j, tij).

There are a total of (|V |+ |E|) events out of which |V | events are computation
completion events corresponding to each module, and |E| events are communication
completion events corresponding to each edge. Mishra et al. [9] has shown the
complexity of the Evaluate-Time algorithm as O((|V |+ |E|)log(|V |+ |E|)).

4.3. DynamicCCLoad Algorithm

DynamicCCLoad(T)
01 for j ← 1 to |V |
02 do cluster[j]← 1
03 load← Evaluate-DCCLoad(T, cluster)
04 Sort-Load(load)
05 cmax ← 2
06 for j ← 1 to |V |
07 do i← 1
08 tmin ← Evaluate-Time(T, cluster)
09 for k ← 2 to cmax

10 do cluster[load[j].index]← k
11 time← Evaluate-Time(T, cluster)
12 if time < tmin

13 then tmin ← time
14 i← k
15 cluster[load[j].index]← i
16 load← Evaluate-DCCLoad(T, cluster)
17 load[j].value← −∞
18 Sort-Load(load)
19 if i = cmax

20 then cmax ← cmax + 1
21 return (tmin, cluster)

We are using the heuristic of Mishra et al. [9]:
(1) We can keep the computational intensive tasks on separate clusters because

they mainly involve computation. Such tasks will heavily load the cluster. If we
keep these tasks separated, we can evenly balance the computational load.

(2) We can keep the communication intensive tasks on same cluster because
they mainly involve communication. If we keep these tasks on the same cluster, we
may reduce the communication delays through edge-zeroing.

The DCCLoad-Clustering algorithm implements the above heuristic using
the concept of DCCLoad. Initially all modules are kept in the same cluster (cluster
1, also called the initial cluster, lines 01 to 02). Given a task graph T , and an initial
allocation of modules cluster, line 03 evaluates the DCCLoad of modules. Line
04 sorts the load array in decreasing order. cmax (line 05) will be the number of
possible clusters that can result, if one module is removed from the initial cluster,
and put on a different cluster (including the initial cluster).

A clustering algorithm for multiprocessor environments . . . 107

We take the modules out from the initial cluster one-by-one (line 06) in de-
creasing order of CCLoad (line 10). At the same time we also calculate the parallel
execution time, when it is put on all possible different clusters (lines 09 to 11). tmin

is used to record the minimum parallel execution time, and i is used to record the
corresponding cluster (lines 12 to 14). Finally we put the module on the cluster
that gives the minimum parallel execution time (line 15). In line 16 we also set
its DCCLoad value to −∞ to make it invalid so that in future we can not use it.
Line 17 re-evaluates the DCCLoad of modules after the change in allocation and
line 18 again sorts them in decreasing order.

It may also happen that the parallel execution time was minimum when the
module was put alone on a new cluster. In this case we will have to increment cmax

by 1 (lines 19 to 20). Line 21 finally returns the parallel execution time, and the
corresponding clustering.

Lines 01 to 02 have complexity O(|V |). Line 03 has complexity O(|V | + |E|).
Line 04 has complexity O(|V |2) if bubble sort is used [6]. Lines 05 and 21 each have
complexity O(1). Lines 08 and 11 have complexity O((|V | + |E|)log(|V | + |E|)).
For each iteration of the for loop in line 06, Evaluate-Time (lines 08 and 11)
is called a maximum of |V | times (cmax can have a maximum value of |V |, when
all modules are on separate clusters). The complexity of the for loop of lines 06
to 20 is dominated by Evaluate-Time that is called a maximum of |V |2 times.
Therefore, the for loop has complexity O(|V |2(|V |+ |E|)log(|V |+ |E|)) that is also
the complexity of DynamicCCLoad algorithm.

5. A simple example

Consider the task graph in Figure 2 (taken from Mishra et al. [9]). Initially all mod-
ules will be clustered in the initial cluster as (cluster[i])1≤i≤4 = (1, 1, 1, 1). Parallel
execution time will be 8. For the initial allocation we have (DCCLoadi)1≤i≤4 =
(0, 0, 0, 0). Then the modules are sorted according to DCCLoad in decreasing order
as (M1, M2, M3, M4).

The first module to be taken out is M1 which forms the clustering (2, 1, 1, 1).
Parallel execution time for this clustering is 9. This is not less than 8. Therefore,
module M1 is kept back in the initial cluster as (1, 1, 1, 1). For this allocation we
re-calculate DCCLoad. After setting the value of DCCLoad1 to −∞ so that it
can not be used in future, we get (DCCLoadi)1≤i≤4 = (−∞, 0, 0, 0). The modules
sorted in decreasing order are: (M2, M3, M4, M1).

We next take out the module M2 to form the clustering (1, 2, 1, 1). Parallel
execution time for this clustering is 8. This is also not less than 8. Therefore,
module M2 is kept back in the initial cluster as (1, 1, 1, 1). For this allocation we
re-calculate DCCLoad. After setting the value of DCCLoad2 to −∞ so that it
can not be used in future, we get (DCCLoadi)1≤i≤4 = (−∞,−∞, 0, 0). Modules
sorted in decreasing order are: (M3, M4, M2, M1).

We next take out the module M3 to form the clustering (1, 1, 2, 1). Parallel
execution time for this clustering is 7. This is less than 8. Therefore, module M3

108 P. K. Mishra, K. S. Mishra, A. Mishra

Figure 2: An example task graph for explaining the
DynamicCCLoad algorithm. For the initial allocation we have
(DCCLoadi)1≤i≤4 = (0, 0, 0, 0). The DynamicCCLoad algorithm
clusters the modules as (M1, M2)(M3)(M4), giving a parallel exe-

cution time of 6.

is kept in a separate cluster as (1, 1, 2, 1). For this allocation we re-calculate
DCCLoad. After setting the value of DCCLoad3 to −∞ so that it can not be
used in future, we get (DCCLoadi)1≤i≤4 = (−∞,−∞,−∞, 0). Modules sorted in
decreasing order are: (M4, M3, M2, M1).

The last module to be taken out is M4. Now there are two possible clustering:
(1, 1, 2, 2) and (1, 1, 2, 3). Parallel execution time for the clustering (1, 1, 2,
2) is 7. Parallel execution time for the clustering (1, 1, 2, 3) is 6. The minimum
parallel execution time comes out to be 6 for the clustering (1, 1, 2, 3) that is
also less than 7. Therefore, module M4 is also kept in a separate cluster as (1,
1, 2, 3). For this allocation we re-calculate DCCLoad. After setting the value of
DCCLoad4 to −∞ so that it can not be used in future, we get (DCCLoadi)1≤i≤4 =
(−∞,−∞,−∞,−∞). Modules sorted in decreasing order are: (M4, M3, M2, M1).
At this point the DynamicCCLoad algorithm stops.

The final clustering of modules is (M1, M2)(M3)(M4) in which the modules M1

and M2 are clustered together, while the modules M3 and M4 are kept on separate
clusters. This clustering gives a parallel execution time of 6.

6. Experimental results

The DynamicCCLoad algorithm is compared with the Sarkar’s edge zeroing al-
gorithm [12]. This algorithm has a complexity of O(|E|(|V |+ |E|)).

Algorithms are tested on benchmark task graphs of Tatjana and Gabriel [3],
[2]. We have tested for 120 task graphs having number of nodes: 50, 100, 200, and
300 respectively. Each task graph has a label as tn_i_j.td. Here n is the number

A clustering algorithm for multiprocessor environments . . . 109

Figure 3: Parallel execution times for tn_i_j.td.

of nodes. i is a parameter depending on the edge density. Its possible values are:
20, 40, 50, 60, and 80. For each combination of n and i, there are 6 task graphs
that are indexed by j. j ranges from 1 to 6. Therefore, for each n, there are 30
task graphs.

For the values of n having 50, 100, 200, and 300, Figure 3 shows the comparison
between the Sarkar’s edge zeroing algorithm and the DynamicCCLoad algorithm
for the parallel execution time. It is evident from the figures that the average
improvement of DynamicCCLoad algorithm over Sarkar’s edge zeroing algorithm
ranges from 5.81% for 100-node task graphs to 8.30% for 300-node task graphs.

7. Conclusion

We developed the idea of DCCLoad of a module by including the current allocation
of modules. This resulted in a dynamically changing priority of modules. We used
a heuristic based on it to develop the DynamicCCLoad algorithm of complexity
O(|V |2(|V | + |E|)log(|V | + |E|)). We also demonstrated its superiority over the
Sarkar’s edge zeroing algorithm in terms of parallel execution time. For the future
work there are two possibilities: experiment with different dynamic priorities, and
experiment with different ways in which we can take the modules out from the
initial cluster.

Acknowledgements. The authors are thankful to the anonymous referees for
valuable comments and suggestions in revising the manuscript to the present form.
Corresponding author greatly acknowledge the financial assistance received under
sponsored research project from the CSIR, New Delhi.

110 P. K. Mishra, K. S. Mishra, A. Mishra

References

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., Introduction to
Algorithms, The MIT Press, 2’nd Edition, (2001).

[2] Davidovic, T., Benchmark task graphs available online at: http://www.mi.sanu.
ac.rs/~tanjad/sched_results.htm, (2006).

[3] Davidovic, T., Crainic, T. G., Benchmark-problem instances for static scheduling
of task graphs with communication delays on homogeneous multiprocessor systems,
Computers and Operations Research, 33(8), (2006) 2155–2177.

[4] Freund, R. F., Siegel, H. J., Heterogeneous processing, IEEE Computer, 26(6),
(1993) 13–17.

[5] Horowitz, E., Sahni, S., Rajasekaran, S., Fundamentals of Computer Algo-
rithms, W. H. Freeman, (1998).

[6] Langsam, Y., Augenstein, M. J., Tenenbaum, A. M., Data Structures Using C
and C++, Prentice Hall, 2’nd edition, (1996).

[7] Kadamuddi, D., Tsai, J. J. P., Clustering algorithm for parallelizing software
systems in multiprocessors environment, IEEE Transations on Software Engineering,
26(4), (2000) 340–361.

[8] Maheswaran, M., Braun, T. D., Siegel, H. J., Heterogeneous distributed com-
puting, J.G. Webster (Ed.), Encyclopedia of Electrical and Electronics Engineering,
8, (1999) 679–690.

[9] Mishra, P. K., Mishra, K. S., Mishra, A., A clustering heuristic for multi-
processor environments using computation and communication loads of modules,
International Journal of Computer Science & Information Technology, 2(5), (2010)
170–182.

[10] Mishra, A., Tripathi, A. K., An extension of edge zeroing heuristic for schedul-
ing precedence constrained task graphs on parallel systems using cluster dependent
priority scheme, Journal of Information and Computing Science, 6(2), (2011) 83–96.
An extended abstract of this paper appears in the Proceedings of IEEE International
Conference on Computer and Communication Technology (ICCCT’10), (2010) 647-
651.

[11] Papadimitriou, C. H., Yannakakis, M., Towards an architecture-independent
analysis of parallel algorithms, SIAM Journal on Computing, 19(2), (1990) 322–328.

[12] Sarkar, V., Partitioning and Scheduling Parallel Programs for Multiprocessors, Re-
search Monographs in Parallel and Distributed Computing, MIT Press, (1989).

[13] Siegel, H. J., Dietz, H. G., Antonio, J. K., Software support for heteroge-
neous computing, A. B. Tucker Jr. (Ed.), The Computer Science and Engineering
Handbook, CRC Press, Boca Raton, FL, (1997) 1886–1909.

[14] Yang, T., Gerasoulis, A., A fast static scheduling algorithm for DAGs on an
unbounded number of processors, In Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing (ICS’91), (1991) 633–642.

[15] Yang, T., Gerasoulis, A., PYRROS: Static task scheduling and code generation
for message passing multiprocessors, In Proceedings of the 6’th International Confer-
ence on Supercomputing (ICS’92), (1992) 428–437.

