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Abstract

We study the convexity of curves defined by the combination of control
points and blending functions, that are globally controlled. We provide a
method using which the convexity of the curve can be determined by the
location of one of its control points.
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1. Introduction

Convexity of curves is an important concept in Computer Aided Geometric Design.
We adopt the following definition of convex curves (see e.g. [4]).

Definition 1.1. A curve is convex if it is (a part of) the boundary of a convex
plane figure.

One can find other approaches, such as

• A (directed) plane curve is convex if it is on the same side of its (directed)
tangents (cf. [3]).
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with support by the European Union, co-financed by the European Social Fund.
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• A curve is convex, if it is intersected by any hyperplane in at most two points
or it lies completely in the hyperplane. (c.f. [5], [1]) Therefore, convex curves
are plane curves (lie in two-dimensional planes). This is a bit more restrictive
than Definition 1.1, since excludes curves that contain straight line segments.

In [3] there is a comprehensive study on the convexity of directed parametric
curves. According to that treatment the same plane curve can be convex or concave
depending on its direction.

Based on the more traditional Definition 1.1 we study the global convexity of
control point based curves

g (u) =
n∑

j=0

Fj (u)dj , u ∈ [a, b] , (1.1)

where functions {Fi (u)}ni=0 are assumed to be at least twice continuously differen-
tiable.

Applying the moving control point concept, we propose a method that provides
both a visual aid for interactive convex curve design and a simple convexity check
algorithm for all curves defined by the combination of control points and blending
functions. In comparison with the already published results, the proposed method
is rather intuitive and easy to implement and use.

2. Singularity

We briefly summarize those results of [2] that we will utilize in the sequel. We let
control point di, i ∈ {0, 1, . . . , n} vary and fix the rest. Separating the fixed and
varying parts of (1.1) we obtain

g (u) = Fi (u)di + ri (u) , ri (u) =
n∑

j=0,j 6=i

Fj (u)dj . (2.1)

We assume that control point di has influence on the shape of the whole curve,
i.e. we suppose that the curve is globally controlled. Consequently, the proposed
method is not suitable for spline curves, i.e. for locally controlled curves.

Curve
ci (u) = − ṙi (u)

Ḟi (u)
(2.2)

is called the ith discriminant of curve (1.1).
Conditions for singularity are as follows.

• The locus of control point di that results a cusp on the curve (1.1) is the ith
discriminant (2.2).

• The locus of control point di that results a zero curvature point on the curve
(1.1) is the region in the plane that is covered by the tangent lines of the ith
discriminant (2.2).
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Figure 1: Singularity regions of a quartic Bézier curve with respect
to its control point d0.

• The locus of control point di that results a self-intersection point on the curve
(1.1) is the triangular region in the plane bounded by the curves

li (u) = − ri (b)− ri (u)
Fi (b)− Fi (u)

, u ∈ [a, b] , (2.3)

hi (δ) = − ri (a+ δ)− ri (a)
Fi (a+ δ)− Fi (a)

, δ ∈ (0, b− a]

and by the ith discriminant (2.2).

These singularities are illustrated in Fig. 1 for a quartic Bézier curve with
respect to its control point d0.

3. Convexity

As is known, if the curve (1.1) shares the variation diminishing property, then any
convex control polygon results a convex curve. However, the converse is not true
in general.

We assume that curve (1.1) has no inflection point, cusp and self-intersection
point, i.e. it is free of singularity. Under these circumstances, closed curves (g (a) =
g (b)) are convex. In case of open curves, however this is not necessarily true, the
two possible types of counterexamples can be seen in Fig. 2.
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Figure 2: Singularity free nonconvex open curves.

3.1. Case 1

The left hand side figure of Figure 2 shows that case when a tangent line can be
drawn from the endpoint g (b) to the curve, which means that ∃u ∈ [a, b) for which

ġ (u)× (g (u)− g (b)) = 0,

i.e., ∃λ ∈ R such that

λġ (u) = g (u)− g (b) .

Substituting (2.1) we obtain

di =
ri (u)− λṙi (u)− ri (b)
λḞi (u) + Fi (b)− Fi (u)

,

which is the parametric form of a straight line (with parameter λ). The λ = 0
point of this line is

ri (u)− ri (b)
Fi (b)− Fi (u)

that is on the curve (2.3), and the λ → ∞ point (which is a singularity of the
parametrization)

− ṙi (u)
Ḟi (u)

is on the discriminant (2.2). The direction vector of this line is

(ri (u)− ri (b)) Ḟi (u) + ṙi (u) (Fi (b)− Fi (u)) ,

therefore this line is the tangent line of curve (2.3) at u ∈ [a, b).
Thus, the locus of control point di that results case 1 is the plane region covered

by the tangent lines of the curve (2.3).
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3.2. Case 2
The right hand side figure of Figure 2 illustrates the case when the tangent line at
the endpoint g (b) intersects the curve, which means that ∃u ∈ [a, b) for which

ġ (b)× (g (u)− g (b)) = 0,

i.e., ∃λ ∈ R
λġ (b) = g (u)− g (b) .

After the substitution (2.1) we obtain

di =
ri (u)− λṙi (b)− ri (b)
λḞi (b) + Fi (b)− Fi (u)

which is the parametric form of a line, with parameter λ. The λ = 0 point of this
line is

ri (u)− ri (b)
Fi (b)− Fi (u)

,

which is on the curve (2.3), and the λ → ∞ point (which is a singularity of the
parametrization)

− ṙi (b)
Ḟi (b)

is on the discriminant (2.2). The direction vector of this line is

qi (u) = (ri (u)− ri (b)) Ḟi (b) + ṙi (b) (Fi (b)− Fi (u)) . (3.1)

Therefore, the locus of control point di that results case 2 is the plane region
covered by straight lines that are parallel to the direction (3.1) and pass through
the points of curve (2.3).

4. Convexity test

It is obvious, that if a curve has a self-intersection point then it is possible to draw
a tangent line from its endpoint g (b) to the curve such that the point of contact
differs from the endpoint itself, or the tangent line at the endpoint intersects the
curve. Therefore, self-intersecting curves fall into Case 1 or 2 above.

As a consequence of this, the following questions have to be answered in order
to determine convexity.

1. Does the curve (1.1) have a cusp or an inflection point?
It comprises the following steps:

• Is the control point di on the discriminant (2.2)?
• Is it possible to draw a tangent line from control point di to the dis-

criminant (2.2)? If the answer is yes, does the curvature change sign in
the neighborhood of the corresponding point on the curve (1.1)?
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2. Is it possible to draw a tangent line from control point di to the curve (2.3)?
(Case 1)

3. Is there a straight line parallel to the direction (3.1) that passes through the
corresponding point of curve (2.3)? (Case 2)

If all answers are negative then the curve is convex, otherwise it is concave. The
corresponding equations are

(di − ci (u))× ċi (u) = 0, u ∈ (a, b) , (4.1)

(di − li (u))× l̇i (u) = 0, u ∈ (a, b) , (4.2)

(di − li (u))× qi (u) = 0, u ∈ (a, b) , (4.3)

respectively. Since, the curve is planar, we can assume that it is in the x, y coor-
dinate plane, therefore only the third component of the cross products above may
differ from zero. Thus, equations (4.1–4.3) can be reduced to scalar equations, i.e.
we have to find zeros of functions of a single variable.

Actually, in cases (4.2) and (4.3) we do not need the zeros themselves, only
their existence is of interest. For the determination of their existence it is enough
to bracket the zero of the function, i.e. to find two values in the domain the
corresponding function values to which have different sign. Bracketing is also used
as a pre-processor to zero finding methods like bisection, secant or false position
(c.f. [6]).

In case of inflection point, however we have to find the zeros themselves, since
equality (4.1) guarantees only a vanishing curvature. A point with zero curvature
is an inflection point if the curvature changes its sign in the neighborhood of the
point.

This test works also for closed curves, and it is easier to answer question 2 than
to check self-intersection by means of the loop region described in Section 2.

5. Implementation

In principle, we can use any control point of the curve for the convexity test but
the usage of d0 seems to be the best choice in several cases, especially curves with
endpoint interpolation, such as the Bézier curve and its various extensions and
generalizations. (It is explained in more detail in [2].) In case of Bézier curves
basis functions are the Bernstein polynomials, i.e.

Fj (u) = Bn
j (u) =

(
n

j

)
uj (1− u)n−j

, (j = 0, 1, . . . , n)

with a = 0, b = 1. We describe the consideration above for the control point d0.
In this case

r0 (u) =
n∑

j=1

Bn
j (u)dj ,
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Figure 3: A convex Bézier curve with concave control polygon.
While control point d0 is in the green region the curve remains

convex.

curve (2.3) becomes

l0 (u) = − r0 (1)− r0 (u)
Bn

0 (1)−Bn
0 (u)

=
dn − r0 (u)
Bn

0 (u)

and direction q0 (u) is

q0 (u) = (r0 (u)− r0 (1)) Ḃn
0 (1) + ṙ0 (1) (Bn

0 (1)−Bn
0 (u))

= −nBn
0 (u) (dn − dn−1) ,

i.e. q0 (u) is parallel to the direction dn−dn−1 for any permissible value of u. Fig.
3 illustrates the different regions that are used for the convexity test for a Bézier
curve of degree 6.
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