Annales Mathematicae et Informaticae 38 (2011) pp. 15-25 http://ami.ektf.hu

Harmonic sections on the tangent bundle of order two^{*}

Nour El Houda Djaa, Seddik Ouakkas, Djaa Mustapha

Laboratory of Geometry, Analysis, Control and Applications Department of Mathematics, University of Saida, Saida, Algeria. e-mail: Lgaca_saida2009@hotmail.com

Submitted July 25, 2010 Accepted May 30, 2011

Abstract

The problem studied in this paper is related to the Harmonicity of sections from a Riemannian manifold (M, g) into its tangent bundle of order two T^2M equipped with the Diagonal metric g^D . First we introduce a connection on $\Gamma(T^2M)$ and we investigate the geometry and the harmonicity of sections as maps from (M, g) to (T^2M, g^D) .

Keywords: Horizontal lift, vertical lift, harmonic maps.

MSC: 53A45, 53C20, 58E20

1. Introduction

Consider a smooth map $\phi: (M^m,g) \to (N^n,h)$ between two Riemannian manifolds, then the energy functional is defined by

$$E(\phi) = \frac{1}{2} \int_M |d\phi|^2 dv_g \tag{1.1}$$

(or over any compact subset $K \subset M$).

A map is called harmonic if it is a critical point of the energy functional E (or E(K) for all compact subsets $K \subset M$). For any smooth variation $\{\phi\}_{t \in I}$ of ϕ with $\phi_0 = \phi$ and $V = \left. \frac{d\phi_t}{dt} \right|_{t=0}$, we have

$$\frac{d}{dt}E\left(\phi_{t}\right)\Big|_{t=0} = -\int_{M}h\left(\tau\left(\phi\right),V\right)dv_{g},\tag{1.2}$$

^{*}The authors would like to thank the referee for his useful remarks.

where

$$\tau(\phi) = \operatorname{trace}_{g} \nabla d\phi \tag{1.3}$$

is the tension field of ϕ . Then we have

Theorem 1.1. A smooth map $\phi : (M^m, g) \to (N^n, h)$ is harmonic if and only if

$$\tau(\phi) = 0. \tag{1.4}$$

If $(x^i)_{1 \le i \le m}$ and $(y^{\alpha})_{1 \le \alpha \le n}$ denote local coordinates on M and N respectively, then equation (1.4) takes the form

$$\tau(\phi)^{\alpha} = \left(\Delta\phi^{\alpha} + g^{ijN}\Gamma^{\alpha}_{\beta\gamma}\frac{\partial\phi^{\beta}}{\partial x^{i}}\frac{\partial\phi^{\gamma}}{\partial x^{j}}\right) = 0, \quad 1 \le \alpha \le n, \tag{1.5}$$

where $\Delta \phi^{\alpha} = \frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{i}} \left(\sqrt{|g|} g^{ij} \frac{\partial \phi^{\alpha}}{\partial x^{j}} \right)$ is the Laplace operator on (M^{m}, g) and ${}^{N}\Gamma^{\alpha}_{\beta\gamma}$ are the Christoffel symbols on N. One can refer to [1, 4, 6, 7, 8, 9] for background on harmonic maps.

2. Some results on horizontal and vertical lifts

Let (M,g) be an n-dimensional Riemannian manifold and (TM, π, M) be its tangent bundle. A local chart

$$(U, x^i)_{i=1...r}$$

on M induces a local chart $(\pi^{-1}(U), x^i, y^j)_{i,j=1,...,n}$ on TM. Denote by Γ_{ij}^k the Christoffel symbols of g and by ∇ the Levi-Civita connection of g.

We have two complementary distributions on TM, the vertical distribution \mathcal{V} and the horizontal distribution \mathcal{H} , defined by:

$$\mathcal{V}_{(x,u)} = \operatorname{Ker}(d\pi_{(x,u)})$$
$$= \{a^{i}\frac{\partial}{\partial y^{i}}|_{(x,u)}; \quad a^{i} \in \mathbb{R}\}$$
$$\mathcal{H}_{(x,u)} = \{a^{i}\frac{\partial}{\partial x^{i}}|_{(x,u)} - a^{i}u^{j}\Gamma_{ij}^{k}\frac{\partial}{\partial y^{k}}|_{(x,u)}; \quad a^{i} \in \mathbb{R}\},$$

where $(x, u) \in TM$, such that $T_{(x,u)}TM = \mathcal{H}_{(x,u)} \oplus \mathcal{V}_{(x,u)}$. Let $X = X^i \frac{\partial}{\partial x^i}$ be a local vector field on M. The vertical and the horizontal lifts of X are defined by

$$X^{V} = X^{i} \frac{\partial}{\partial y^{i}} \tag{2.1}$$

$$X^{H} = X^{i} \frac{\delta}{\delta x^{i}} = X^{i} \{ \frac{\partial}{\partial x^{i}} - y^{j} \Gamma^{k}_{ij} \frac{\partial}{\partial y^{k}} \}$$
(2.2)

For consequences, we have $(\frac{\partial}{\partial x^i})^H = \frac{\delta}{\delta x^i}$, $(\frac{\partial}{\partial x^i})^V = \frac{\partial}{\partial y^i}$ and $(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^j})_{i,j=1,...,n}$ a local frame on TM.

Remark 2.1.

1. if $w = w^i \frac{\partial}{\partial x^i} + \overline{w}^j \frac{\partial}{\partial y^j} \in T_{(x,u)}TM$, then its horizontal and vertical parts are defined by

$$w^{h} = w^{i} \frac{\partial}{\partial x^{i}} - w^{i} u^{j} \Gamma^{k}_{ij} \frac{\partial}{\partial y^{k}} \in \mathcal{H}_{(x,u)}$$
$$w^{v} = \{\overline{w}^{k} + w^{i} u^{j} \Gamma^{k}_{ij}\} \frac{\partial}{\partial y^{k}} \in \mathcal{V}_{(x,u)}$$

2. if $u = u^i \frac{\partial}{\partial x^i} \in T_x M$ then its vertical and horizontal lifts are defined by

$$\begin{split} u^{V} &= u^{i} \frac{\partial}{\partial y^{i}} \\ u^{H} &= u^{i} \{ \frac{\partial}{\partial x^{i}} - y^{j} \Gamma^{k}_{ij} \frac{\partial}{\partial y^{k}} \}. \end{split}$$

Proposition 2.2 (see [10]). Let $F \in \mathfrak{T}_p^1(M)$ be a tensor of type (1,p) (respectively, $G \in \mathfrak{T}_p^0(M)$ a tensor of type (0,p)), then there exist a tensor $\gamma(F) \in \mathfrak{T}_{p-1}^1(TM)$ (respectively, $\gamma(G) \in \mathfrak{T}_{p-1}^0(TM)$), localy defined by

$$\gamma(F) = F_{h_1 h_2 \dots h_p}^k y^{h_1} \frac{\partial}{\partial y^k} \otimes dx^{h_2} \otimes \dots \otimes dx^{h_p}$$
(2.3)

$$\gamma(G) = G_{h_1 h_2 \dots h_p} y^{h_1} dx^{h_2} \otimes \dots \otimes dx^{h_p}$$
(2.4)

where $F = F_{i_1...i_p}^j \frac{\partial}{\partial x^j} \otimes dx^{i_1} \otimes \cdots \otimes dx^{i_p}$ and $G = G_{i_1...i_p} dx^{i_1} \otimes \cdots \otimes dx^{i_p}$.

Definition 2.3. The Sasaki metric g^s on the tangent bundle TM of M is given by

- 1. $g^s(X^H, Y^H) = g(X, Y) \circ \pi$
- 2. $g^s(X^H, Y^V) = 0$
- 3. $g^s(X^V, Y^V) = g(X, Y) \circ \pi$

for all vector fields $X, Y \in \Gamma(TM)$.

In the general case, Sasaki metrics is considered in [2, 5, 7, 10].

Proposition 2.4 (see [6]). A vector fields $X : (M,g) \to (TM,g^s)$ is harmonic iff

$$\sum_{i=1} X_{ii}^k = 0, \qquad \sum_{i=1} R_{ilj}^k X_i^j = 0.$$

where X_i^k (resp X_{ij}^k) are the components of the first (resp second) covariant differential of the vector field X.

From Proposition 2.4 we deduce

Proposition 2.5. If $X : (M, g) \to (TM, g^s)$ is a harmonic vector field, then

$$\operatorname{trace}_{q} \nabla^{2} X = 0, \qquad \operatorname{trace}_{q} R(X, \nabla_{*} X) * = 0.$$

Let M be an n-dimensional manifold. The tangent bundle of order 2 is the natural bundle of 2-jets of differentiable curves, defined by:

$$T^{2}M = \{j_{0}^{2}\gamma \quad ; \quad \gamma : \mathbb{R}_{0} \to M, \text{ is a smooth curve at } 0 \in \mathbb{R}\}$$
$$\pi_{2} \colon T^{2}M \to M$$
$$j_{0}^{2}\gamma \mapsto \gamma(0)$$

A local chart $(U, x^i)_{i=1...n}$ on M induces a local chart $(\pi_2^{-1}(U), x^i, y^i, z^i)_{i=1...n}$ on T^2M by the following formulae

$$x^{i} = \gamma^{i}(0).$$
$$y^{i} = \frac{d}{dt}\gamma^{i}(0).$$
$$z^{i} = \frac{d^{2}}{dt^{2}}\gamma^{i}(0).$$

Proposition 2.6. Let M, be an n-dimensional manifold, then TM is sub-bundle of T^2M , and the map

$$i: TM \to T^2M$$
$$j_0^1 f = j_0^2 \tilde{f}$$
(2.5)

is an injective homomorphism of a natural bundles (not of vector bundles), where

$$\widetilde{f}^i = \int_0^t f^i(s)ds - tf^i(0) + f^i(0) \quad i = 1 \dots n.$$

Proof. Locally if (U, x^i) is a chart on M and (U, x^i, y^i) and (U, x^i, y^i, z^i) are the induced chart on TM and T^2M respectively, then we have $i : (x^i, y^i) \mapsto (x^i, 0, y^i)$, it follows that i is an injective homomorphism. Remains to show that i is well defined.

Let (U, φ) and (V, ψ) are a charts on M, for any vector $j_0^1 f \in TM$, if we denote

$$\widetilde{f}(t) = \varphi^{-1} \left(\int_0^t \varphi \circ f(s) ds - t\varphi \circ f(0) + \varphi \circ f(0) \right)$$
$$\widehat{f}(t) = \psi^{-1} \left(\int_0^t \psi \circ f(s) ds - t\psi \circ f(0) + \psi \circ f(0) \right)$$

then we obtain

$$\varphi \circ f(0) = \varphi \circ f(0)$$

$$= \varphi \circ f(0)$$
$$\frac{d}{dt}(\varphi \circ \tilde{f})(0) = 0$$
$$= \frac{d}{dt}(\varphi \circ \hat{f})(0)$$
$$\frac{d^2}{dt^2}(\varphi \circ \tilde{f})(0) = \frac{d}{dt}(\varphi \circ f)(0)$$
$$= \frac{d^2}{dt^2}(\varphi \circ \hat{f})(0)$$

which proves that $j_0^2 \tilde{f} = j_0^2 \hat{f}$.

Theorem 2.7. Let (M, g) be a Riemannian manifold and ∇ be the Levi-Civita connection. If $TM \oplus TM$ denotes the Whitney sum, then

$$S: T^2 M \to T M \oplus T M$$
$$j_0^2 \gamma \mapsto (\dot{\gamma}(0), (\nabla_{\dot{\gamma}(0)} \dot{\gamma})(0))$$
(2.6)

is a diffeomorphism of natural bundles.

In the induced coordinate, we have

$$S: (x^i, y^i, z^i) \mapsto (x^i, y^i, z^i + y^j y^k \Gamma^i_{jk})$$

$$(2.7)$$

In the more general case, the diffeomorphism S is considered in [3].

Remark 2.8. The diffeomorphism S determines a vector bundle structure on T^2M , for which S be an isomorphism of vector bundles, and $i : TM \to T^2M$ is an injective homomorphism of vector bundles.

Definition 2.9. Let (M, g) be a Riemannian manifold and T^2M be its tangent bundle of order 2 endowed with the vectorial structure induced by the diffeomorphism S. For any section $\sigma \in \Gamma(T^2M)$, we define two vector fields on M by:

$$X_{\sigma} = P_1 \circ S \circ \sigma$$

$$Y_{\sigma} = P_2 \circ S \circ \sigma$$
(2.8)

where P_1 and P_2 denotes the first and the second projection from $TM \oplus TM$ on TM.

Remark 2.10. We can easily verify that for all sections $\sigma, \varpi \in \Gamma(T^2M)$ and $\alpha \in \mathbb{R}$, we have

$$X_{\alpha\sigma+\varpi} = \alpha X_{\sigma} + X_{\varpi}$$
$$Y_{\alpha\sigma+\varpi} = \alpha Y_{\sigma} + Y_{\varpi}$$

From the Remarks 2.8 and 2.10 we can define a connection on $\Gamma(T^2M)$.

Definition 2.11. Let (M, g) be a Riemannian manifold and T^2M be its tangent bundle of order 2 endowed with the vectorial structure induced by the diffeomorphism S. We define a connection on $\Gamma(T^2M)$ by:

$$\widehat{\nabla} : \Gamma(TM) \times \Gamma(T^2M) \to \Gamma(T^2M) (Z, \sigma) \mapsto \widehat{\nabla}_Z \sigma = S^{-1}((\nabla_Z X_\sigma, \nabla_Z Y_\sigma))$$
(2.9)

where ∇ is the Levi-Civita connection on M.

From formula 2.7 and Definition 2.9, it follows

Proposition 2.12. If (U, x^i) is a chart on M and $(\sigma^i, \overline{\sigma}^i)$ are the components of section $\sigma \in \Gamma(T^2M)$ then

$$\begin{aligned} X_{\sigma} &= \sigma^{i} \frac{\partial}{\partial x^{i}} \\ Y_{\sigma} &= (\overline{\sigma}^{k} + \sigma^{i} \sigma^{j} \Gamma_{ij}^{k}) \frac{\partial}{\partial x^{k}} \end{aligned}$$

From Theorem 2.7 and Remark 2.10 we have

Proposition 2.13. Let (M, g) be a Riemannian manifold and T^2M be its tangent bundle of order 2, then

$$J: \Gamma(TM) \to \Gamma(T^2M)$$
$$Z = S^{-1}(Z, 0)$$
(2.10)

is an injective homomorphism of vector bundles.

Locally if (U, x^i) is a chart on M and (U, x^i, y^i) and (U, x^i, y^i, z^i) are the induced chart on TM and T^2M respectively, then we have

$$J: (x^i, y^i) \mapsto (x^i, y^i, -y^j y^k \Gamma^i_{jk})$$

$$(2.11)$$

Definition 2.14. Let (M, g) be a Riemannian manifold and $X \in \Gamma(TM)$ be a vector field on M. For $\lambda = 0, 1, 2$, the λ -lift of X to T^2M is defined by

$$X^{0} = S_{*}^{-1}(X^{H}, X^{H})$$

$$X^{1} = S_{*}^{-1}(X^{V}, 0)$$

$$X^{2} = S_{*}^{-1}(0, X^{V})$$
(2.12)

In the more general case, the λ -lift is considered in [3].

Theorem 2.15 (see [3]). Let (M, g) be a Riemannian manifold and R its tensor curvature, then for all vector fields $X, Y \in \Gamma(TM)$ and $p \in T^2M$ we have

1. $[X^0, Y^0]_p = [X, Y]_p^0 - (R(X, Y)u)^1 - (R(X, Y)w)^2$

- 2. $[X^0, Y^i] = (\nabla_X Y)^i$
- 3. $[X^i, Y^j] = 0.$

where (u, w) = S(p) and i, j = 1, 2.

Definition 2.16. Let (M,g) be a Riemannian manifold. For any section $\sigma \in \Gamma(T^2M)$ we define the vertical lift of σ to T^2M by

$$\sigma^{V} = S_{*}^{-1}(X_{\sigma}^{V}, Y_{\sigma}^{V}) \in \Gamma(T(T^{2}M)).$$
(2.13)

Remark 2.17. From Definition 2.9 and the formulae (2.5), (2.10), (2.12) and (2.13), for all $\sigma \in \Gamma(T^2M)$ and $Z \in \Gamma(TM)$, we obtain

- $\sigma^V = X^1_\sigma + Y^2_\sigma$
- $(\widehat{\nabla}_Z \sigma)^V = (\nabla_Z X_\sigma)^1 + (\nabla_Z Y_\sigma)^2$

•
$$Z^1 = J(Z)^V$$

• $Z^2 = i(Z)^V$

3. Metric diagonal and harmonicity

Using Definition 2.3 and formula (2.12), we have

Theorem 3.1. Let (M,g) be a Riemannian manifold and TM its tangent bundle equipped with the Sasakian metric g^s , then

$$g^D = S_*^{-1}(\widetilde{g} \oplus \widetilde{g})$$

is the only metric that satisfies the following formulae

$$g^{D}(X^{i}, Y^{j}) = \delta_{ij} \cdot g(X, Y) \circ \pi_{2}$$

$$(3.1)$$

for all vector fields $X, Y \in \Gamma(TM)$ and i, j = 0, ..., 2, where \tilde{g} is the metric defined by

$$\begin{split} \widetilde{g}(X^H,Y^H) &= \frac{1}{2}g^s(X^H,Y^H) \\ \widetilde{g}(X^H,Y^V) &= g^s(X^H,Y^V) \\ \widetilde{g}(X^V,Y^V) &= g^s(X^V,Y^V), \end{split}$$

 g^D is called the diagonal lift of g to T^2M .

Theorem 3.2. Let (M, g) be a Riemannian manifold and $\widetilde{\nabla}$ be the Levi-Civita connection of the tangent bundle of order two T^2M equipped with the diagonal metric g^D . Then

 $1. \ (\widetilde{\nabla}_{X^0}Y^0)_p = (\nabla_X Y)^0 - \frac{1}{2}(R(X,Y)u)^1 - \frac{1}{2}(R(X,Y)w)^2,$ $2. \ (\widetilde{\nabla}_{X^0}Y^1)_p = (\nabla_X Y)^1 + \frac{1}{2}(R(u,Y)X)^0,$ $3. \ (\widetilde{\nabla}_{X^0}Y^2)_p = (\nabla_X Y)^2 + \frac{1}{2}(R(w,Y)X)^0,$ $4. \ (\widetilde{\nabla}_{X^1}Y^0)_p = \frac{1}{2}(R_x(u,X)Y))^0,$ $5. \ (\widetilde{\nabla}_{X^2}Y^0)_p = \frac{1}{2}(R_x(w,X)Y))^0,$ $6. \ (\widetilde{\nabla}_{X^i}Y^j)_p = 0$

for all vector fields $X, Y \in \Gamma(TM)$ and $p \in \Gamma(T^2M)$, where i, j = 1, 2 and (u, w) = S(p).

The proof of theorem 3.2 follows directly from Theorem 3.1 and the Kozul formula.

Lemma 3.3. Let (M,g) be a Riemannian manifold and (TM,g^s) be the tangent bundle equipped with the Sasaki metric. If $X, Y \in \Gamma(TM)$ are a vector fields and $(x, u) \in TM$ such that $X_x = u$, then we have

$$d_{x}X(Y_{x}) = Y_{(x,u)}^{H} + (\nabla_{Y}X)_{(x,u)}^{V}$$

Proof. Let (U, x^i) be a local chart on M in $x \in M$ and $(\pi^{-1}(U), x^i, y^j)$ be the induced chart on TM, if $X_x = X^i(x) \frac{\partial}{\partial x^i}|_x$ and $Y_x = Y^i(x) \frac{\partial}{\partial x^i}|_x$, then

$$d_x X(Y_x) = Y^i(x) \frac{\partial}{\partial x^i}|_{(x,X_x)} + Y^i(x) \frac{\partial X^k}{\partial x^i}(x) \frac{\partial}{\partial y^k}|_{(x,X_x)},$$

thus the horizontal part is given by

$$(d_x X(Y_x))^h = Y^i(x) \frac{\partial}{\partial x^i}|_{(x,X_x)} - Y^i(x) X^j(x) \Gamma^k_{ij}(x) \frac{\partial}{\partial y^k}|_{(x,X_x)}$$
$$= Y^H_{(x,X_x)}$$

and the vertical part is given by

$$(d_x X(Y_x))^v = \{Y^i(x) \frac{\partial X^k}{\partial x^i}(x) + Y^i(x) X^j(x) \Gamma^k_{ij}(x)\} \frac{\partial}{\partial y^k}|_{(x,X_x)}$$
$$= (\nabla_Y X)^V_{(x,X_x)}.$$

Lemma 3.4. Let (M,g) be a Riemannian manifold and (T^2M, g^D) be the tangent bundle equipped with the diagonal metric. If $Z \in \Gamma(TM)$ and $\sigma \in \Gamma(T^2M)$, then we have

$$d_x \sigma(Z_x) = Z_p^0 + (\widehat{\nabla}_Z \sigma)_p^V.$$
(3.2)

where $p = \sigma(x)$.

Proof. Using Lemma 3.3, we obtain

$$d_x \sigma(Z) = dS^{-1} (dX_\sigma(Z), dY_\sigma(Z))_{S(p)}$$

= $dS^{-1} (Z^h, Z^h)_{S(p)} + dS^{-1} ((\nabla_Z X_\sigma)^v, (\nabla_Z Y_\sigma)^v)_{S(p)}$
= $Z_p^0 + (\widehat{\nabla}_Z \sigma)_p^V.$

Lemma 3.5. Let (M,g) be a Riemannian n-dimensional manifold and (T^2M, g^D) be its tangent bundle of order two equipped with the diagonal metric and let $\sigma \in \Gamma(T^2M)$. Then the energy density associated with σ is

$$e(\sigma) = \frac{n}{2} + \frac{1}{2} \|\widehat{\nabla}\sigma\|^2.$$

where $\|\widehat{\nabla}\sigma\|^2 = \operatorname{trace}_g g(\nabla X_\sigma, \nabla X_\sigma) + \operatorname{trace}_g g(\nabla Y_\sigma, \nabla Y_\sigma).$

Proof. Let (e_1, \ldots, e_n) be a local orthonormal frame on M, then

$$e(\sigma) = \frac{1}{2} \sum_{i=1}^{n} g^{D}(d\sigma(e_{i}), d\sigma(e_{i}))$$

Using formula 3.2 and Remark 2.17, we obtain

$$\begin{split} e(\sigma) &= \frac{1}{2} \sum_{i=1}^{n} g^{D}(e_{i}^{0}, e_{i}^{0}) + \frac{1}{2} \sum_{i=1}^{n} g^{D}((\widehat{\nabla}_{e_{i}}\sigma)^{V}, (\widehat{\nabla}_{e_{i}}\sigma)^{V}) \\ &= \frac{n}{2} + \frac{1}{2} \|\widehat{\nabla}\sigma\|^{2}. \end{split}$$

Theorem 3.6. Let (M, g) be a Riemannian manifold and (T^2M, g^D) be its tangent bundle of order two equipped with the diagonal metric. Then the tension field associated with $\sigma \in \Gamma(T^2M)$ is

$$\tau(\sigma) = (\operatorname{trace}_{g} \widehat{\nabla}^{2} \sigma)^{V} + (\operatorname{trace}_{g} \{ R(X_{\sigma}, \nabla_{*} X_{\sigma}) * + R(Y_{\sigma}, \nabla_{*} Y_{\sigma}) * \})^{0}.$$
(3.3)

Proof. Let $x \in M$ and $\{e_i\}_{i=1}^n$ be a local orthonormal frame on M such that $\nabla_{e_i} e_j = 0$, then

$$\tau(\sigma)_x = \sum_{i=1}^n (\nabla_{d\sigma(e_i)} d\sigma(e_i))_{\sigma(x)}$$
$$= \sum_{i=1}^n \left[\nabla_{e_i^0 + (\nabla_{e_i} \sigma)^V} \left(e_i^0 + (\widehat{\nabla}_{e_i} \sigma)^V \right) \right]_{\sigma(x)}$$

From Theorem 3.2, we obtain

$$\tau(\sigma)_x = \sum_{i=1}^n \left\{ \nabla_{e_i^0} e_i^0 + \nabla_{e_i^0} (\nabla_{e_i} X_\sigma)^1 + \nabla_{e_i^0} (\nabla_{e_i} Y_\sigma)^2 + \nabla_{(\nabla_{e_i} X_\sigma)^1} e_i^0 \right. \\ \left. + \nabla_{(\nabla_{e_i} Y_\sigma)^2} e_i^0 \right\}_{\sigma(x)} \\ = \sum_{i=1}^n \left\{ (\nabla_{e_i} \nabla_{e_i} X_\sigma)^1_{\sigma(x)} + (\nabla_{e_i} \nabla_{e_i} Y_\sigma)^2_{\sigma(x)} + (R_x(X_\sigma(x), \nabla_{e_i} X_\sigma) e_i)^0 \right. \\ \left. + (R_x(Y_\sigma(x), \nabla_{e_i} Y_\sigma) e_i)^0 \right\}$$

Theorem 3.7. Let (M, g) be a Riemannian manifold and (T^2M, g^D) be its tangent bundle of order two equipped with the diagonal metric. A section $\sigma : M \to T^2M$ is harmonic if and only the following conditions are verified

$$\begin{aligned} &\operatorname{trace}_{g}(\nabla^{2} X_{\sigma}) = 0, \\ &\operatorname{trace}_{g}(\nabla^{2} Y_{\sigma}) = 0, \\ &\operatorname{trace}_{g}\{R(X_{\sigma}, \nabla_{*} X_{\sigma}) * + R(Y_{\sigma}, \nabla_{*} Y_{\sigma}) *\} = 0. \end{aligned}$$

From Proposition 2.5 and Theorem 3.7 we obtain

Corollary 3.8. Let (M, g) be a Riemannian manifold and (T^2M, g^D) be its tangent bundle of order two equipped with the diagonal metric. If $\sigma : M \to T^2M$ is a section such that X_{σ} and Y_{σ} are harmonic vector fields, then σ is harmonic.

Corollary 3.9. Let (M, g) be a Riemannian manifold and (T^2M, g^D) be its tangent bundle of order two equipped with the diagonal metric. If $\sigma : M \to T^2M$ is a section such that X_{σ} and Y_{σ} are parallel, then σ is harmonic.

Theorem 3.10. Let (M,g) be a Riemannian compact manifold and (T^2M, g^D) be its tangent bundle of order two equipped with the diagonal metric. Then $\sigma: M \to T^2M$ is a harmonic section if and only if σ is parallel (i.e $\widehat{\nabla}\sigma = 0$).

Proof. If σ is parallel, from Corollary 3.9, we deduce that σ is harmonic. Inversely. Let σ_t be a compactly supported variation of σ defined by $\sigma_t = (1 + t)\sigma$. From Lemma 3.5 we have

$$e(\sigma_t) = \frac{n}{2} + \frac{(t+1)^2}{2} \|\widehat{\nabla}\sigma\|^2.$$

If σ is a critical point of the energy functional we have :

$$0 = \frac{d}{dt} E(\sigma_t)_{|t=0},$$
$$= \int_M \|\widehat{\nabla}\sigma\|^2 dv_{g^D}$$

Hence $\widehat{\nabla}\sigma = 0$.

References

- BAIRD, P., FARDOUN, A., OUAKKAS, S., Conformal and semi-conformal biharmonic maps, Annals of global analysis and geometry, 34 (2008),403–414.
- [2] CENGIZ, N., SALIMOV, A. A., Diagonal lift in the tensor bundle and its applications, *Appl. Math. Comput*, 142(2003), 309–319.
- [3] DJAA, M., GANCARZEWICZ, J., The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias, Espagne, 4 (1985), 147–165
- [4] EELLS, J., SAMPSON, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Maths, 86(1964).
- [5] GUDMUNSSON, S., KAPPOS, E., On the Geometry of Tangent Bundles, *Expo.Math*, 20 (2002), 1–41.
- [6] ISHIHARA, T., Harmonic sections of tangent bundles, J. Math. Tokushima Univ, 13 (1979), 23–27.
- [7] ONICIUC, C., Nonlinear connections on tangent bundle and harmonicity, Ital. J. Pure Appl, 6 (1999), 109–122 .
- [8] OPROIU, V., On Harmonic Maps Between Tangent Bundles, *Rend.Sem.Mat*, 47 (1989), 47–55.
- [9] OUAKKAS, S., Biharmonic maps, conformal deformations and the Hopf maps, *Dif*ferential Geometry and its Applications, 26 (2008), 495–502.
- [10] YANO,K., ISHIHARA, S., Tangent and Cotangent Bundles, Marcel Dekker. INC. New York, (1973).