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Abstract

In Hungary algorithmical thinking is a part of teaching informatics both in
primary and secondary grammar schools. A teacher usually starts with some
everyday algorithm, taking examples from cooking or solving a mathematical
or physical problem. The steps of the solutions are usually represented in
a flow diagram. This diagram is a graphical representation of the algorithm
steps including decision symbols. With these decision symbols, selections and
iterations can be applied.

Unfortunately, the common ways of describing algorithms are far from
functional thinking, therefore it is rather difficult for teachers to find materials
on teaching functional programming. On the other hand, programming and
trying the algorithm in a functional way is much easier as in the imperative
way ([3], [4]).

The next step is usually the description of the algorithm by a sentence-
like language, which is very close to BASIC programming language. At this
point the teacher switches to a programming language, like Pascal, BASIC,
C# [17], or any OOP [9] supportive or OOP language [9], all of which are
imperative languages.

These languages were taught to teachers during their studies, and are
used in their workplaces, in grammar schools as well. We believe that the
functional programming paradigm is raising nowadays, and getting more and
more important. In this paper we are trying to show and prove that this pro-
gramming style is appropriate for teaching programming in grammar schools.

1. Introduction

The mathematical fundamentals of functional programming are based on
Church’s lambda-calculus theory which he invented in 1932–33. Turing proved
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that the effectively evaluable functions interpreted on non-negative integers follow-
ing the lambda-calculus are the same as the ones that are computable by the Turing
machine commonly utilized by imperative languages. Thus every task which can
be solved by imperative languages are as well solvable in functional languages, and
vice versa.

There are several functional languages, which can be used to code the algo-
rithms. Most of them can be downloaded and use for free, and has some sort of
IDE (Integrated Development Environment).

Erlang is a development of Ericson and Ellemtel Computer Science Laborato-
ries. Erlang is a programming language in that it is possible to develop concurrent,
real-time, distributed and highly error-tolerant systems. Ericson uses the Open
Telecom Platform extension of Erlang to develop telecommunication systems. The
language has internal methods to achieve that without shared memory distributed
applications communicate through signaling among themselves. It supports inte-
grating components written in different programming languages, but is generally a
weakly typed language.

Haskell is an advanced purely functional programming language. An open
source product of more than twenty years of cutting edge research, it allows rapid
development of robust, concise, correct software. With strong support for integra-
tion with other languages, built-in concurrency and parallelism, debuggers, pro-
filers, rich libraries and an active community, Haskell makes it easier to produce
flexible, maintainable high-quality software.

Clean is a non-profit development as a functional programming language, with
many similarities to Haskell. With the ObjectIO library extension of Clean, one
can develop interactive applications having menus, and dialog windows.

In Hungary at Eötvös Lóránd University the functional programming paradigm
is used both in education and in scientific researches and projects. There are
attempts to include functional languages in education abroad too.

We use Clean functional programming language as a reference language to solve
some basic algorithmic problems. The Clean System is a software development sys-
tem for developing applications in Clean. The Clean System is available on many
platforms (PC, Mac, SUN) and operating systems (Windows’95/’98/2000/NT,
Linux, MacOS, Solaris). The main platforms are PC and Mac. The Clean System
is a full-fledged system that can be used in industrial environments. The Clean
System is a commercial product of Hilt–High Level Software Tools B.V. Clean can
be downloaded from its homepage, http://clean.cs.ru.nl/index.html.

We do not intend to give a full language reference here, as many information
is available in [5] and [15]. We give just a short introduction on how this language
(and other functional languages) can be used as a reference language in teaching
the implementation of simple algorithms.

Short introduction to Clean language. First we show how simple the usual
Hello World! program (see Example 1) is. A one-module Clean program starts
with the keyword “module” which is followed by the module name. It must be
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equivalent with the file name, so if the module name is helloWorld, the source code
must be saved to helloWorld.icl. The second line imports the StdEnv (standard
environment), which holds the prototypes of the most important library functions
and type definitions.

The Start expression is the replacement of the C-like main function. The eval-
uation of the Start expression creates the result of the functional program itself.
The first program demonstrates how simple the Hello World! program is.

Clean source code

1 module helloWorld

2 import StdEnv

3

4 Start = "Hello World!"

Example 1: Hello World!

In the following examples the first two lines are not shown, we should concen-
trate on the significant lines. In example 2 we assign a numerical expression as
the result of the program. In a console application this expression is evaluated and
written on the screen.

Clean source code
1 Start = 3-2*4

Example 2: Numeric expression

In a functional program we do not have the usual variables, but we can use sim-
ple constant value functions similarly to the variables, or constants. In Example 3,
a and b are functions, which evaluate to the values 2 and 3. As local functions,
they are defined inside the Start expression’s scope, using the where keyword.

Clean source code
1 Start = a+b

2 where

3 a=2

4 b=3

Example 3: Using functions

The previous examples have demonstrated how easy the very first steps are in
the functional world. Not only simple, but also more complicated types can be
used as a result of the program. For example we can define lists easily, and use
them as result (see Example 4).

Clean source code

1 Start = resultList

2 where

3 resultList = [1,3,4,5,6,7,9,4,3,5,6,7,8,4,3]

Example 4: Define list
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A special datatype called tuple can be found in functional languages. Tuples
can be imagined as records without defining its naming the fields. Tuples are values
keeping together. We can refer to the values of a tuple by their serial numbers only
(1st element, 2nd element, etc.). With tuples we can define functions that return
more than one value at a time. In example 5 the Start expression returns a tuple
of a string and an integer value. Running this program will show both elements on
the screen (separating by commas), writing 3+2=,5.

Clean source code
1 Start = ("3+2=",3+2)

Example 5: Returning tuple

Defining a function usually does not require the description of the function type,
it is inferred by the deduction system included in the compiler. We must give a
name to the parameter and define the result. In this example we define a function
called increment, which only has one argument, named a. We define the result of
this function as a+1. The type deduction system will know that the type of the a
can be anything that the additive operator with an integer value can interpret. We
call this function in the Start expression, and give the value of 3 to it. The type
deduction system will check if its type (integer) can be added to another integer,
and will generate an increment function with this specific type.

Clean source code
1 Start = increment 3

2

3 increment a = a+1

Example 6: User defined function

Note that calling a function means writing its name and after a space, defining
the value for its parameter. There’s no need for the C-style function to call oper-
ators (parentheses). Nor we use parentheses when a parameter value is a complex
expression (see Example 7).

Clean source code

1 Start = decrement (increment 3)

2

3 increment a = a+1

4 decrement a = a-1

Example 7: Calling a function

In example 7 we want to evaluate the inner expression first (increment 3 ), then
pass its value to function decrement.

We can use patterns to define different function bodies for different input argu-
ments. In this example we decrement every positive value by one, but decrementing
zero means returning the zero value itself (see Example 8).

When we write decrement 0 (it means “ if the first parameter’s value equals to
0”), we define the function result as 0. In other cases we define the function result
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Clean source code
1 decrement 0 = 0

2 decrement a = a-1

Example 8: Using patterns

as a-1. Note that adding a negative value to the function will trigger the second
variant of the function body, as a negative value is not equal to 0. We can define
different cases for negative values, but not with the pattern match (as we cannot
write all the patterns for all the negative numbers), but we can write a guardian
term (see Example 9).

A guard is a boolean expression that can be inserted between the patterns of
a function alternative and the symbol =. The symbol | separates the patterns
and the guard. The alternative is only applied when the guards yield True. Each
function clause can have a sequence of guarded right-hand sides.

This time we first check if the value of n is less than m or not. If less, we
define the function result as the value of m, because it is the maximum of the two
numbers. In every other case we define the function result as n, as it holds the
maximum value.

Clean source code
1 maximum n m

2 | n<m = m

3 | otherwise = n

Example 9: Using guard

In example 9 we used the word otherwise and it seems as it would be a keyword
for these cases, but it is not. The word otherwise is a constant function, always
returning with the value of true. That means we could write the word True instead
(see Example 10). Note that we can define more than two cases at the same time,
writing more guard terms.

Clean source code
1 maximum n m

2 | n<m = m

3 | True = n

Example 10: Using True instead of otherwise

Pattern matching can be applied not only to simple values, but also to lists. In
example 11 the first pattern matches to the empty list, and returns zero. The second
pattern matches to a list containing one value only. In this case, the parameter
named x will holds the value of this element. The third pattern will match to a
list which has at least one element. The first element’s value will be represented
by x in this case, the remaining list goes to tail, which means that in this case x is
a simple element, and tail is a list of elements. Note that the last pattern matches
to a one-element list too, and in that case tail will be an empty list.
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Clean source code
1 count [] = 0

2 count [x] = 1

3 count [x:tail] = 2

Example 11: Patterns of list

We use the colon operator to add (insert) an element to a list. Note that it will
not modify the original list, but will create a brand new list, as function side-effects
are denied in functional languages. Function insert in Example 12 will insert the
parameter value of a after the first element of the list by constructing a brand new
list.

Clean source code
1 insert a [x:tail] = [x:a:tail]

Example 12: Inserting a value into a list

2. Examples of using functional programming

methods

Element of a set. Now we will discuss the basic algorithm of determining if a
given value is an element of a set or not. The set is given as a list of integer values.
Normally it is given in imperative algorithm in 13.

Imperative algorithm
1 algorithm isElement

2 parameters x:integer, h:list of integer

3 start

4 i:=1

5 while i<=length of h and h[i]<>x

6 i := i+1

7 end of while

8 return (i<=length of h)

9 end of algorithm

Example 13: isElement as imperative algorithm

If the functional paradigm is used to write the previous program, the function
can be evaluated in two ways. The first clause is evaluated if the set is empty, so
value x cannot be element of this empty set. In the second case we separate the
set into two parts, an element of the set, and the remains of the set (tail). We can
say that x is an element of this set, if it equals to the separated element of the
set, or if it is an element of the remaining set (see Example 14). We can use this
isElementOf function as in the example 15.
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Clean source code
1 isElementOf x [] = False

2 isElementOf x [a:tl]

3 | x==a = True

4 | otherwise = isElementOf x tl

Example 14: isElementOf function

Clean source code
1 Start = isElementOf 3 mySet

2 where

3 mySet = [1,2,3,5,6,8]

Example 15: Use of isElementOf

Counting of elements. Counting the elements can be carried out similarly to
the exampe above. The empty list has zero elements, in other cases we can define
the length of the list by counting one element at a time (see Example 16).

Clean source code
1 countingElements [] = 0

2 countingElements [x:tl] = 1 + countingElements tl

Example 16: countingElements function

When we want to count those elements only that have a P property (in this
example, the elements that are even), we should modify this function a little by
introducing a guard expression. With that we can separate two cases: whether the
first element of the list has P property or not (see Example 17).

Clean source code
1 countingElementsEvens [] = 0

2 countingElementsEvens [x:tl]

3 | isEven x = 1 + countingElementsEvens tl

4 | otherwise = countingElementsEvens tl

Example 17: counting of P property

Note that the isEven function is a library function, and its parameter type
must be Int, and its result has to be a boolean value (see Example 18). In Clean,
however, we do not need to define the type of a function, in simple cases the type
inference system will deduce that. If we want to define a function type explicitly, we
can use the double colon after which we can list the types of the input parameters.
After the arrow we can give the result type.

Clean source code
1 isEven::Int->Bool

Example 18: Prototype of isEven

We can define our own function that has one int parameter only and results
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a bool, too. In example 19 we define an isGood function, which checks if the
parameter is in range of [4 . . . 8).

Clean source code
1 isGoodElement::Int->Bool

2 isGoodElement x = (4<x) && (x<8)

Example 19: User defined isGoodElement function

Fortunately, functions in Clean can be passed easily as a parameter, if their
names are given. We can define the counting of elements algorithm by using the
P property function as a parameter. If we want to define the type of countingEle-
mentsAny function, the first parameter is a list of integers, the second is a function
which needs one integer, and returns bool.

Clean source code

1 countingElementsAny:: [Int] (Int->Bool) -> [Int]

2 countingElementsAny [] isP = 0

3 countingElementsAny [x:tl] isP

4 | isP x = 1 + countingElementsAny tl isP

5 | otherwise = countingElementsAny tl isP

Example 20: Defining countingElementsAny function

Giving a function as a parameter is very simple, but its type matches only with
one parameter. Without explicitly defining the type of countingElementsAny, the
type inference system will deduce the same. In the Start expression we can call
this function by giving a list and a function as a parameter (see Example 21).

Clean source code
1 Start = countingElementsAny myList isGoodElement

2 where

3 myList = [1,3,4,5,6,7,9,4,3,5,6,7,8,4,3]

Example 21: Calling the countingElementsAny general function

Index of an element. Suppose to have a specific value and a list of values. We
need to know what the index of the specific value inside the list is. If it is not in
the list, the function must return with 0.

In the first case, the element cannot be found in the empty list, so it returns
with 0. In the second case, if the first element equals to the given one, we have its
index, and it can return it. Otherwise, we try to determine the index of the value
in the remaining list (tail). If we found a good index value (other than zero), we
must increase that with 1, because we removed the first element of the tail, and
therefore the indices in the tail are shifted by one. If we cannot found the element
in the tail, we return with 0 as well (see Example 22).
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Clean source code
1 indexOf e [] = 0

2 indexOf e [x:tl]

3 | e==x = 1

4 | index>0 = 1+index

5 | otherwise = 0

6 where

7 index = indexOf e tl

Example 22: Calling the countingElementsAny general function

The maximum of elements. Let’s suppose we have a list of integers (a set of
integers), and need to determine their maximum value. We give a possible solution
for this problem as the myMaxList function in example 23. We have chosen this
name because a maxList function exists in the StdEnv standard library.

Clean source code
1 myMaxList [e] = e

2 myMaxList [e:tl]

3 | e>max = e

4 | otherwise = max

5 where

6 max = myMaxList tl

Example 23: myMaxList

Sum of elements. Let’s suppose we have a list of elements, and we have to
determine the sum of these elements. We can define a genSum function, which
takes a list of integers, and generates the sum of the elements recursively as we
show in example 24.

Clean source code

1 genSum [] = 0

2 genSum [x:tl] = x + genSum tl

Example 24: Clean program

Selecting of elements. Let’s suppose we have a list of elements, and we need
the sublist of the values, gathering the ones with a P property. Let’s say we have
an isP function which can decide whether an element has a P property or not. The
solution is very similar to the countingOfElementsAny (see in example 20). An
empty list has no elements with P properties. Otherwise, if the first element has
P property, we will insert it into result before the remaining selected elements, or
else it returns the selected elements of the tail (see Example 25).
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Clean source code
1 selectingElementsAny [] isP = []

2 selectingElementsAny [x:tl] isP

3 | isP x = [x : selectingElementsAny tl isP]

4 | otherwise = selectingElementsAny tl isP

Example 25: Selecting elements

Merging two lists into one. Let’s suppose we have two ordered lists, and we
have to merge them into one list, keeping the ordering as well. The solution in
example 26 handles two different cases. When one of the lists is empty, the result
is the another (possibly not the empty) list. Otherwise, when either lists are not
empty, we can take the first element of both lists, and decide which is less. If the
first element of the first list is the least (named x in the function), insert it into
the beginning of the result, and process the remaining lists. The same is the case
when the first element of the second list is less.

Clean source code
1 merging [] b = b

2 merging a [] = a

3 merging [x:xtl] [y:ytl]

4 | x<y = [x : merging xtl [y:ytl]]

5 | otherwise = [y : merging [x:xtl] ytl]

Example 26: Merging elements

Intersect of two sets. Let’s suppose, we have two sets, and we have to determine
the intersection of the two sets. We can use the isElement function defined above,
and a solution is given in example 27.

Clean source code

1 intersect [] _ = []

2 intersect [x:tl] b

3 | isElement x b = [x : intersect tl b]

4 | otherwise = intersect tl b

Example 27: intersection of two sets

The underscore sign in the pattern matches to any value (like the joker char
matches to any file name). In this case, we can interpret the first pattern as follows:
if the first argument is an empty list, the second argument can be anything. This
function can be called from anywhere, as described in example 28.

Quick Sort. We can define the Quick Sort algorithm as in example 29. We use
a special list construction mode, which is very close to the mathematical way of
giving a set. The [ x \\ x <- r | x<e ] means: construct a list of elements
x, where x comes from a list named r, and x is less than the value of e. The ++

operator concatenates two lists together.
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Clean source code
1 Start = intersect set1 set2

2 where

3 set1 = [1,2,3,5,6,8]

4 set2 = [1,3,4,5,7,8,9]

Example 28: Calling intersect

Clean source code
1 qsort [] = []

2 qsort [e:r] = qsort [ x \\ x <- r | x<e ]

3 ++ [e] ++

4 qsort [ x \\ x <- r | x>=e ]

Example 29: qsort function

3. Conclusion

The most important element of the functional languages is the function. As
all functional programs are built up of the composition of functions, it is simple
to write example algorithms with the help of functions. Experience shows that
students have a strong indisposition for using functions, list expressions or pattern
matching. The reason for this is that their way of thinking is based on imperative
grounds, and that technology is averse in imperative programs. As the use of
guards have grounds in imperative paradigms, they can be easily substituted by a
kind of switch control structure.

When writing simple functions, the variables, or rather the iterations are missing
from the imperative way of thinking. Despite considering them nice and elegant,
students do not like using recursive solutions because of their difficulty level. This
is so, because they use the already acquired imperative solutions as a starting point,
and cannot replace iterations with recursive functions. Most undergraduates find
the use of function parameters very exciting, and discover their advantages soon.

After acquiring the functional programming technology, they can view and use
algorithms on a higher level of abstraction. This has an impact on their imperative
programming style and development. The use of recursive functions often causes
problems for beginner programmers, because their training in that field is insuffi-
cient. They rarely come across functional thinking in other fields or subjects, like
mathematics.

They can hardly get used to regarding a function as a complete prototype while
writing it. At the same time, these properties of the functions drive them to learn,
as they know and feel that the solution is simple, and they know the principle (the
imperative algorithm). They work assiduously on their ideas because they know
that they will succeed.
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