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Abstract

In this paper, we discuss the maximum of the mean response time that
appears in finite-source retrial queues with orbital search when the arrival
rate is varied.

We show that explicit closed-form equations of the mean response time
can be derived by exploiting the block-structure of the finite Markov chain un-
derlying the model and using an efficient computational algorithm proposed
by Gaver, Jacobs, and Latouche.

However, we also show that already for the discussed relatively simple
model, the resulting equation is rather complex which hampers further eval-
uation.

Keywords: Performance evaluation, Finite-source retrial queues, Closed-form
solutions, Orbital search, Block-structured Markov chain, MOSEL-2

1. Introduction

Retrial queues are an important field of study, since in various scenarios, they
are able to capture certain behavior of real systems more accurately than classical
FCFS queues. Retrial queues are used to model, e.g., telephone traffic in [23],
load balancing in multiprotocol label switching (MPLS) networks in [19], Ethernet
systems in [2], wireless broadband networks in [20], active queue management of
Internet routers in [17], self-organizing peer-to-peer systems in [42], the dynamic
host configuration protocol (DHCP) in [24], and mobile communication in [3, 32,
34]. Further application examples are given in [6, 22, 43, 15].
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For example, consider a call center scenario with several agents and without a
waiting loop installed. If all agents are busy, an additional caller is not able to join
a queue, but has to hang up and retry to reach an agent later. Such a retrying
caller is said to be in orbit.

In addition, consider a call center that is able to log the phone numbers of
unserved customers. Then, if an agent gets idle, it may call back unserved orbiting
customers. This behavior is called orbital search.

In many situations it is unrealistic to assume that the calling population, i.e.,
the potential number of customers generating requests, is infinitely large. Then,
the arrival rate of incoming requests depends on the number of requests already
in the system and the arrival process is quasi-random, state-dependent, and non-
Poisson. Retrial queues with a finite population size are also known as finite-source
retrial queues. We are especially interested in models where infinite-source models
fail, i.e., models with a small number of sources.

During evaluation of finite-source retrial queues, for some parameter setups a
maximum of the mean response time of the system can be identified. Several pub-
lications noticed this maximum (e.g., [27, 4, 5, 40]) and gave informal reasons for
it (e.g., [40]). Since this maximum should be avoided in real-system configura-
tions by all means, we here try to provide closed-form equations that facilitate the
identification of such undesirable configurations during system design.

Our main contribution is the development of novel and explicit closed-form
equations for steady-state performance evaluation of the mean response time in
finite-source retrial queues with orbital search. To achieve this, we adopt an algo-
rithm introduced by Gaver, Jacobs, and Latouche in [29], which we refer to as GJL
Algorithm.

The main motivation for this research was to find exact mathematical expres-
sions of the maximum’s location in closed form. However, as is discussed later
in Section 7, this cannot be achieved, even for the relatively simple model under
study.

Previous results on various types of retrial queues are surveyed in [6, 15, 7, 8,
26, 28, 31].

Due to the complexity of finite-source and infinite-source retrial queues, pub-
lications on performance measures in closed form are quite rare. Instead, most
publications, e.g., the more recent ones [34, 15, 5, 38, 21, 10, 11, 12, 13, 35], employ
algorithmic or numerical analysis.

The search for customers immediately on termination of a service was first
discussed in the context of classical queues by [33]. More recently, infinite-source
retrial queueing systems where the server(s) search for customers after service have
been investigated in [21, 16, 25]. We recently introduced and discussed finite-source
retrial queues with orbital search by applying numerical analysis in [40] and [41].

There exist several publications discussing infinite-source retrial queues without
orbital search and presenting exact results (e.g., [17, 15, 28, 1, 9, 14, 30, 36]), or
approximations (e.g., [17, 3, 32, 15, 21]) of performance measures in closed form.
Regarding finite-source retrial queues without orbital search, [2] presents closed-
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form results including phase-type service and multiple servers. However, we are not
aware of any publications that present steady-state probabilities and performance
measures in closed form applicable to finite-source retrial queues with orbital search.

The remainder of this paper is structured as follows. In Section 2, the inves-
tigated model is introduced to fix the notations and preliminary numerical results
are presented to state the tackled problem in more detail. Starting from Section 3,
we exemplarily focus on the case of three sources and one server. Section 3 dis-
cusses the underlying continuous-time Markov chain, and in Section 4, the GJL
Algorithm is applied to obtain the steady-state probabilities of the Markov chain
in closed form. Based on these equations, in Section 5, mean response time is
obtained in closed form and validated in Section 6. In Section 7, we discuss the
presented approach with respect to the failure of providing closed-form equations
of the maximum’s location, and its applicability to derive further performance
measures in closed form and for models with a higher number of sources, multiple
servers, and phase-type distributed service times. Finally, in Section 8, a conclusion
and directions for future work are given.

2. Model description and preliminary numerical

analysis

Figure 1: High-level queueing model of finite-source retrial queue
with orbital search.

In Fig. 1, a queueing model illustrates the M/M/c/K/K (for Kendall’s notation,
see [18, p. 242]) finite-source retrial queue with orbital search. All inter-event
times involved in the model are assumed to be exponentially distributed. Model
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extensions by including phase-type distributions are discussed in Section 7.
Each of the K sources is generating primary requests to the retrial queue with

rate λ as long as the source is not waiting for a response to an active (i.e., in
service or orbiting) request. A primary request first checks whether an idle server
is available. If all c identical servers are busy, the primary request enters the orbit
instead and retries to get service with rate ν. If a request finds at least one server
idle, it starts to receive service with service rate µ. After being serviced, a response
is returned to the requesting source. With a probability of p, where 0 6 p 6 1,
at service completion instant, the server carries out orbital search and instantly
fetches a request, if available, directly from the orbit (denoted by the link symbol).

The finite-source retrial queue with orbital search can be evaluated numerically
quite easily by using the MOSEL-2 performance evaluation tool. The corresponding
MOSEL-2 model is shown in Listing 1. The interested reader is referred to [39]
for a short introduction to MOSEL-2. In [40, 41] similar models and discussion of
MOSEL-2’s scalability are presented in the context of finite-source retrial queues.

1 /∗∗∗ CONSTANTS AND PARAMETERS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
2 CONST K := 3; // popu la t ion s i z e
3 CONST mu := 1; // se r v i c e ra te
4 PARAMETER lambda := 0.0001 , 0 .1 . . 1 STEP 0 . 1 ; // reques t gen . rat e
5 PARAMETER nu := 0.001 , 0 .0025 , 0 . 005 ; // r e t r i a l ra te
6 PARAMETER p := 1E−8, 0 .5 , 1−1E−8; // search p r o b a b i l i t y
7
8 /∗∗∗ NODES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
9 NODE Sources [K] := K; // the sources

10 NODE Request [ 1 ] := 0; // primary re ques t s
11 NODE Server [ 1 ] := 0; // the server
12 NODE Orbit [K] := 0; // the o r b i t
13 NODE Fin i shed [ 1 ] := 0; // response
14
15 /∗∗∗ RULES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
16 FROM Sources TO Request RATE Sources ∗lambda ; // primary re ques t s
17 FROM Request TO Server PRIO 1 ; // to server i f i d l e
18 FROM Request TO Orbit PRIO 0 ; // to o r b i t i f busy
19 FROM Orbit TO Server RATE Orbit∗nu ; // r e t r i a l s
20 FROM Server TO Fin i shed RATE mu; // se r v i c e
21 FROM Fini shed TO Sources WEIGHT 1−p ; // wi thout orb . search
22 FROM Finished , Orbit TO Server , Sources WEIGHT p ; // with o r b i t a l search
23
24 /∗∗∗ RESULTS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
25 PRINT rho := UTIL( Server ) ; // server u t i l i z a t i o n
26 PRINT M := MEAN( Orbit )+MEAN( Server ) ; // mean # ac t i ve req .
27 PRINT S := K−M; // mean # ac t i ve sources
28 PRINT N := MEAN( Orbit ) ; // mean # or b i t
29 PRINT ml := S∗ lambda ; // mean throughput
30 PRINT T := M/ml ; // mean response time
31 PRINT To := N/ml ; // mean o r b i t time
32 PRINT R := nu∗To ; // mean # r e t r i a l s

Listing 1: MOSEL-2 model of finite-source retrial queue with
orbital search.

Fig. 2 shows the mean response time T as a function of request generation rate
λ for K = 3 sources, c = 1 server, service rate µ = 1. We chose different values
of retrial rate ν and orbital-search probability p. The curves labeled “num” are
obtained by using MOSEL-2’s numerical analysis.

These results show a maximum of the mean response time but they are not
detailed enough to estimate the exact location of the maximum (in the following
denoted as λpeak). This is achieved more accurately by the dashed curves (labeled
“expl”) which are, in fact, derived using the closed-form equations developed in
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Section 5. Hence, in the following, we aim at finding an explicit equation for the
mean response time T as a function of λ and further model parameters. Afterwards,
we discuss whether this equation can be differentiated with respect to λ and whether
is is possible to find the roots of the derivation which would lead to an explicit
equation of λpeak.

Figure 2: Mean response time T over request generation rate λ
for service rate µ = 1 and different values of retrial rate ν and

orbital-search probability p.

3. Underlying Markov chain

Theorem 3.1. The behavior of the finite-source retrial queue with orbital search as
described in Section 2 can be modeled by a bivariate continuous-time, finite-state
Markov chain (CTMC) with state variable X(t) = (N(t), C(t)), where variable
N(t) is the number of customers in the orbit and variable C(t) is the number of
busy servers at time t > 0. Furthermore, this CTMC has a unique steady-state
distribution π(i, j), with i = 0, . . . , K − c, and j = 0, . . . , c.

Proof. Due to the memoryless property of the solely exponentially distributed
inter-event times, the sojourn times of X(t) are also exponentially distributed,
hence the process is a Markov chain.

It is easy to see that X(t) has a finite number of states and is irreducible for
all reasonable (i.e., strictly positive) values of λ, µ, and ν. Hence, the underlying
stochastic process is positive recurrent which also implies ergodicity. Ergodicity
again implies the existence and uniqueness of steady-state probabilities (see [18,
p. 69–70]). �

Note that the order of the variables N(t) and C(t) within X(t) is chosen to
reflect the structure (levels and phases) of the underlying Markov chain.
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In the following, we restrict our investigation to the case K = 3 and c = 1 to
preserve conciseness and traceability. Directions for K > 3 and c > 1 are given in
Section 7. The state transition diagram of the corresponding CTMC is shown in
Fig. 3.

Figure 3: State transition diagram of finite-source retrial queue
with orbital search for K = 3 and c = 1.

Note that for p = 0, Fig. 3 reduces to the state transition diagram of the
classical M/M/1/3/3 finite-source retrial queue without orbital search. On the
other hand, for p = 1, Fig. 3 reduces to the state transition diagram of the classical
M/M/1/3/3–First-Come-First-Served (FCFS) queue.

The CTMC shown in Fig. 3 can be structured according to levels reflecting
the number of customers in the orbit N(t). Each level consists of two phases
indicating the state of the server given by C(t). Moreover, the CTMC constitutes
a finite quasi-birth-death process (QBD), which is skip-free in both directions. This
structure is also reflected in the block-tridiagonal form of the infinitesimal generator
matrix Q of the CTMC given by

Q =




A(0) Λ(0) 0

M(1) A(1) Λ(1)

0 M(2) A(2)


 , (3.1)

where the sub-matrices

A(0) =

(
−3λ 3λ
µ −2λ − µ

)
, Λ(0) =

(
0 0
0 2λ

)
,

A(1) =

(
−2λ − ν 2λ
(1 − p)µ −λ − µ

)
, Λ(1) =

(
0 0
0 λ

)
,

A(2) =

(
−λ − 2ν λ
(1 − p)µ −µ

)
, M(1) =

(
0 ν
0 pν

)
,

0 =

(
0 0
0 0

)
, M(2) =

(
0 2ν
0 pν

)
,

can be obtained by inspecting the transition rates given in Fig. 3. Note that the
notation of the sub-matrices is chosen in accordance to [29].
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4. Application of the GJL algorithm

To obtain the steady-state probabilities in closed form, we apply the computa-
tional algorithm proposed in [29]. For this, we exploit the relatively simple struc-
ture of the underlying Markov chain as presented in Section 3. For a thorough
explanation and proof of the GJL algorithm, we refer the interested reader to [29].

The GJL Algorithm is applied to the structured CTMC (i.e., finite QBD) given
in Sect. 3, where K = 3:

1. Calculation of Cn with 0 6 n 6 2:

C0 = A(0) =

(
−3λ 3λ
µ −2λ − µ

)
, (4.1)

C1 = A(1) + M(1)
(
−C−1

0 Λ(0)
)

=

(
−2λ − ν 2λ + ν
(1 − p)µ −λ − (1 − p)µ

)
, (4.2)

C2 = A(2) + M(2)
(
−C−1

1 Λ(1)
)

=

(
−λ − 2ν λ + 2ν
(1 − p)µ −(1 − p)µ

)
. (4.3)

2. Obtaining π2: Since the system π2C2 = (0, 0) is linearly dependent, we can
replace one equation of the system by the normalization condition π2

(
1
1

)
= 1 and

solve

π2

(
−λ − 2ν 1
(1 − p)µ 1

)
= (0, 1), (4.4)

instead. This leads to

π2 = 1
λ+(1−p)µ+2ν

(
(1 − p)µ λ + 2ν

)
. (4.5)

3. Obtaining Pn, n = 2, 1, 0, recursively:

P2 = π2

= 1
λ+(1−p)µ+2ν

(
(1 − p)µ λ + 2ν

)
, (4.6)

P1 = P2M
(2)

(
−C−1

1

)

= 1
λ+(1−p)µ+2ν

·
(

(1−p)µ2(λp+2ν)
λ(2λ+ν)

µ(λp+2ν)
λ

)
, (4.7)

P0 = P1M
(1)

(
−C−1

0

)

= 1
λ+(1−p)µ+2ν

·
(

µ3(λp+2ν)(2λp+ν)
6λ3(2λ+ν)

µ2(2ν+λp)(2λp+ν)
2λ2(2λ+ν)

)
. (4.8)
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4. Re-normalizing vector P = (P0,P1,P2): For this, we derive the normalization

constant PN as follows:

PN = P0

(
1
1

)
+ P1

(
1
1

)
+ P2

(
1
1

)

= 1
λ+(1−p)µ+2ν

1
6λ3(2λ+ν) P̃N , (4.9)

where P̃N is given by the term

P̃N = 2µ3ν2 + 5µ3νλp + 2µ3λ2p2 + 6µ2λν2

+ 3µ2λ2νp + 12µ2λ2ν + 6µ2λ3pν

+ 30µλ3 + 12µλ2ν2 + 12µλ4 + 12λ5

+ 30λ4ν + 12λ3ν2. (4.10)

In the following, we denote by Pi,j , i ∈ {0, 1, 2}, j ∈ {0, 1}, the j-th element of
vector Pi and with π(i, j) the steady-state probability of state (i, j), i.e., phase j
in level i. With Pi given by Eqs. (4.6) through (4.8) and PN given by Eq. (4.9), the
desired steady-state probabilities of the CTMC depicted in Fig. 3 can be derived
in closed form as follows:

π(0, 0) =
P0,0

PN

=
µ3(λp + 2ν)(2λp + ν)

P̃N

, (4.11)

π(0, 1) =
P0,1

PN

=
3λµ2(λp + 2ν)(2λp + ν)

P̃N

, (4.12)

π(1, 0) =
P1,0

PN

=
6λ2(1 − p)µ2(λp + 2ν)

P̃N

, (4.13)

π(1, 1) =
P1,1

PN

=
6λ2µ(λp + 2ν)(2λ + ν)

P̃N

, (4.14)

π(2, 0) =
P2,0

PN

=
6λ3(1 − p)µ(2λ + ν)

P̃N

, (4.15)

π(2, 1) =
P2,1

PN

=
6λ3(λ + 2ν)(2λ + ν)

P̃N

. (4.16)

5. Mean response time in closed form

In Section 4, closed-form expressions of the steady-state probabilities of the
underlying Markov chain were derived. These expressions are now used to obtain
the mean response time T in closed form.

Mean number of active requests M : The mean number of requests located in
service or in orbit is given by

M = π(0, 1) + π(1, 0) + 2π(1, 1) + 2π(2, 0)
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+ 3π(2, 1)

=
3λ

P̃N

(µ2λpν + 2µ2ν2 + 2λ2µ2p + 4λµ2ν

+ 20λ2µν + 8λµν2 + 8λ3µ + 12λ4

+ 30λ3ν + 12λ2ν2). (5.1)

Mean system throughput λ: The mean throughput of the finite-source retrial
queue with orbital search can be obtained from

λ = (K − M)λ

= 3λ

(
1 −

λ

P̃N

(µ2λpν + 2µ2ν2 + 2λ2µ2p

+ 4λµ2ν + 20λ2µν + 8λµν2 + 8λ3µ

+ 12λ4 + 30λ3ν + 12λ2ν2)

)

=
3λΛ̃

P̃N

, (5.2)

where Λ̃ is defined as follows:

Λ̃ = µ(2µ2λ2p2 + 5µ2λpν + 2µ2ν2 + 4λ3µp

+ 2λ2µpν + 8λ2µν + 4λµν2 + 4λ4

+ 10λ3ν + 4λ2ν2). (5.3)

Mean response time T : The mean time spent by each request in the orbit and
the server can also be calculated by applying Little’s Law as follows:

T =
M

λ

=
1

Λ̃
(µ2λpν + 2µ2ν2 + 2λ2µ2p + 4λµ2ν

+ 12λ4 + 20λ2µν + 8λµν2 + 8λ3µ

+ 30λ3ν + 12λ2ν2) (5.4)

In Fig. 4, we exemplarily plot the mean response time T as a function of re-
quest generation rate λ and retrial rate ν for service rate µ = 1 and orbital-search
probability p = 0.5 by employing Eq. (5.4). The presented closed-form equations
facilitate the retrieval of fine-grained results since, in general, they can be imple-
mented more efficiently than numerical analysis.
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Figure 4: Mean response time T (z-axis) over request generation
rate λ (x-axis) and retrial rate ν (y-axis) for service rate µ = 1 and

orbital-search probability p = 0.5.

6. Validation of closed-form equations

In this section, the closed-form equations derived in Section 5 are validated
against numerical results and against well-known closed-form equations of
M/M/1/K/K–FCFS queueing systems.

6.1. Comparison to numerical results

Table 1 compares results obtained from numerical analysis using MOSEL-2
(see Section 2) to results obtained by using the closed-form expressions presented
in Section 5 for λ = 0.1, ν = 0.0025, µ = 1, and p = 0.5. It can be seen that the
numerical results are very close to the closed-form results.

6.2. Comparison to M/M/1/K/K–FCFS system

As already mentioned in Section 3, the state-transition diagram given in Fig. 3
takes the form of the CTMC underlying an M/M/1/3/3–FCFS queueing system
for p = 1. Such finite-population FCFS systems are also known as Machine Re-
pairman Models (see [18, p. 252]), for which performance measures are available in
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Perf. Measure Num. Analysis Closed-Form Expression
ρ 0.239555 0.2395547133

M 0.604453 0.6044528670
S 2.39555 2.395547133
N 0.364898 0.3648981538

λ 0.239555 0.2395547133
T 2.52324 2.523235126

TO 1.52324 1.523235126
R 0.00380809 0.003808087814

Table 1: Model results for λ = 0.1, ν = 0.0025, µ = 1,
and p = 0.5.

closed form.
According to [18], the mean response time T of an M/M/1/K/K–FCFS queue

is given by

TFCFS =
K

µ(1 − π0)
−

1

λ
, (6.1)

where the steady-state probability of an idle server π0 is given by

π0 =
1

K∑
k=0

(
λ
µ

)k
K!

(K−k)!

. (6.2)

In the current scenario, where K = 3, Eq. (6.1) can be rewritten as

TFCFS =
3

µ(1 − π0)
−

1

λ

=
6λ2 + 4µλ + µ2

(λ2 + 2µλ + µ2)µ
. (6.3)

When setting p = 1 in Eq. (5.4), we equivalently get

T =
(
5µ2λν + 2µ2ν2 + 2µ2λ2 + 20λ2µν

+ 8λµν2 + 8µλ3 + 12λ4 + 30λ3ν + 12λ2ν2
)

/(
µ
(
5µ2λν + 2µ2λ2 + 2µ2ν2 + 4µλ3

+ 10λ2µν + 4λµν2 + 4λ4 + 10λ3ν

+ 4λ2ν2
))

=
6λ2 + 4µλ + µ2

(λ2 + 2µλ + µ2)µ

= TFCFS. (6.4)
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Hence, the two closed forms match in the case of p = 1. For the sake of com-
pleteness, we compare the mean response time T p of an M/M/1/3/3 retrial queue
with orbital search (µ = 1, ν = 0.001, p = 0.1 . . .0.9) with the mean response time
TFCFS of an M/M/1/3/3–FCFS queue (µ = 1) in Fig. 5.

Figure 5: Mean response times T p and TFCFS over request
generation rate λ.

As expected, T p gets close to TFCFS for p ≈ 1. It can also be seen that
all curves get close to each other for high values of the request generation rate
λ. High generation rates lead to high server utilization. The server is then kept
busy by primary requests even if the orbital search probability p is low. Also for
high values of ν (compared to µ), the behavior of finite-source retrial queues with
orbital search should be close to the behavior of an M/M/1/K/K–FCFS queueing
system. This statement is confirmed by Fig. 6, where the mean response times T ν

of an M/M/1/3/3 retrial queue with orbital search (µ = 1, ν = 0.1 . . . 20, p = 0.1),
and T FCFS of the M/M/1/3/3–FCFS queue (µ = 1) are compared.

It can be seen that for high values of ν, T ν gets close to TFCFS. Again, for high
server utilization, T ν becomes independent of ν.

Note that all results of Figs. 5 and 6 are obtained using Eqs. (5.4) and (6.3).

7. Discussion of approach

7.1. Location of maximum

To find an equation for λpeak, i.e., the arrival rate of the maximum mean re-

sponse time, in closed form, we need to find the roots of equation dT
dλ

. However,

according to Eq. (5.4), T is quite complex already for this simple model. The re-

sulting equation derived from dT
dλ

is a ratio of high order polynomials for which the
roots could be found numerically, but unfortunately not in a closed form.
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Figure 6: Mean response times T ν and TFCFS over request
generation rate λ.

7.2. Further performance measures

Unfortunately, our forseen goal to provide a closed-form equation for the max-
imum’s location cannot be achieved. However, by using the steady-state probabil-
ities presented in Section 4, further performance measures of the discussed retrial
queue can be derived in closed form.

For example, Eqs. (4.11) through (4.16) can be readily used together with the
equations provided in our previous work [40, Sec. 2.3] to obtain steady-state perfor-
mance measures like the server utilization, the mean number of orbiting customers,
the mean waiting time, etc. in closed form.

7.3. Model generalization

While in Sections 3 through 6, for the sake of clearness, the investigation is
restricted to K = 3 and c = 1 to show the principles, we now discuss the applica-
bility of the method for a higher number of sources and servers as well as phase-type
service.

7.3.1. Increasing the number of sources

The GJL Algorithm employed in Section 4 can be applied in principle also for
higher values of K. If K is increased, the number of levels of the underlying CTMC
(recall Fig. 3) increases, but the number of phases in each level stays the same,
i.e., two. As a consequence, matrix Q (recall Eq. (3.1)) will grow by one additional
column and one additional row of 2 × 2 sub-matrices per each additional source.
The number of the matrices Cn increases (0 6 n 6 K−1) but not their size (2×2).
This results in additional iteration steps in Steps 1 and 3 of the GJL Algorithm
but the matrices Cn can still be inverted explicitly in a relatively compact way.
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7.3.2. Increasing the number of servers

If the number of servers is increased, then also the size of square matrices Cn

increases. By using, e.g., Eq. (7.1) (cf. [37]):

C−1
n =

1

det(Cn)
adj(Cn), (7.1)

the matrices Cn can still be inverted explicitly. This, however, increases the effort
and leads to even more complex closed-form equations.

7.3.3. Increasing the number of service phases

The method can also be used in case of a single server which conducts phase-type
service with a finite number of service phases. Comparable to Section 7.3.2, this
results in additional phases within the Markov chain and in larger Cn matrices,
which can still be inverted explicitly. The proposed method cannot be applied
directly to multiple-server retrial queues with phase-type service, since this implies
higher-dimensional Markov chains.

8. Conclusion and future work

In this paper, we present steady-state probabilities and the mean response time
of single-server finite-source retrial queues with orbital search and three sources
in closed form. The equations are derived by adopting an algorithm introduced
in [29]. The results are validated against results obtained by numerical analysis
and against closed-form equations well-known for M/M/1/K/K–FCFS queueing
systems.

It could be shown that due to the high complexity of the derived equations,
it is not possible to derive the location of the mean response time’s maximum in
closed form. However, using the derived closed-form equations of the steady-state
probabilities gives raise to other interesting performance measures in closed-form
as well.

Our planned future work includes applying the algorithm to a higher number
of sources and servers, phase-type service, and unreliable servers. It may also be
worthwhile to study approximate solutions for higher numbers of sources, servers,
and service phases.

9. Acknowledgments

This research is partially supported by the German-Hungarian Intergovernmen-
tal Scientific Cooperation, HAS-DFG, 436 UNG 113/197/0-1, by the Hungarian
Scientific Research Fund, OTKA K60698/2006, by the AutoI project (STREP,
FP7 Call 1, ICT-2007-1-216404), by the ResumeNet project (STREP, FP7 Call 2,



Investigating the mean response time in finite-source retrial queues. . . 157

ICT-2007-2-224619), by the SOCIONICAL project (IP, FP7 Call 3, ICT-2007-3-
231288), and by the EuroNF Network of Excellence (FP7, IST 216366).

The first author is especially grateful to the participants of the Dagstuhl Semi-
nar on “Numerical Methods for Structured Markov Chains” (07461) for very fruitful
discussions.

References

[1] Aissani, A., Artalejo, J., “On the single server retrial queue subject to break-
downs,” Queueing Systems, vol. 30, (1998) 309–321.

[2] Alfa, A.S., Isotupa, K.S., “An M/PH/k retrial queue with finite number of
sources,” Computers and Operations Research, vol. 31, (2004) 1455–1464.

[3] Alfa, A.S., Li, W., “PCS networks with correlated arrival process and retrial phe-
nomenon,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, (October
2002) 630–637.

[4] Almasi, B., Bolch, G., Sztrik, J., “Heterogeneous finite-source retrial queues,”
University of Erlangen-Nuremberg, Erlangen, Germany, Tech. Rep. TR-I4-02-04,
2004.

[5] Almasi, B., Roszik, J., Sztrik, J., “Homogeneous finite-source retrial queues with
server subject to breakdowns and repairs,” Mathematical and Computer Modelling,
vol. 42, (2005) 673–682.

[6] Artalejo, J.R., “Retrial queues with a finite number of sources,” J. Korean Math.
Soc., vol. 35, (1998) 503–525.

[7] Artalejo, J.R., “Accessible bibliography on retrial queues,” Mathematical and
Computer Modelling, vol. 30, (1999) 1–6.

[8] Artalejo, J.R., “A classified bibliography of research on retrial queues: Progress
in 1990-1999,” TOP, vol. 7, (1999) 187–211.

[9] Artalejo, J.R., “Stationary analysis of the characteristics of the M/M/2 queue
with constant repeated attempts,” Opsearch, vol. 33, no. 2, (1996) 83–95.

[10] Artalejo, J.R., Chakravarthy, S.R., “Computational analysis of the maximal
queue length in the MAP/M/c retrial queue,” Applied Mathematics and Computa-
tion, vol. 183, (2006) 1399–1409.

[11] Artalejo, J.R., Chakravarthy, S.R., “Algorithmic analysis of the maximum level
length in general-block two-dimensional Markov processes,” Mathematical Problems
in Engineering, vol. 2006, (2006) 1–15.

[12] Artalejo, J.R., Chakravarthy, S.R., “Algorithmic analysis of the MAP/PH/1
retrial queue,” TOP, vol. 14, no. 2, (2006) 293–332.

[13] Artalejo, J.R., Chakravarthy, S.R., Lopez-Herrero, M.J., “The busy pe-
riod and the waiting time analysis of a MAP/M/c queue with finite retrial group,”
Stochastic Analysis and Applications, vol. 25, (2007) 445–469.

[14] Artalejo, J.R., Economou, A., Lopez-Herrero, M.J., “Algorithmic analysis of
the maximum queue length in a busy period for the M/M/c retrial queue,” INFORMS
J. on Computing, vol. 19, no. 1, (2007) 121–126.



158 P. Wüchner, J. Sztrik, H. de Meer

[15] Artalejo, J.R., Gómez-Corral, A., Retrial Queueing Systems: A Computational
Approach. Springer Verlag, 2008.

[16] Artalejo, J.R., Joshua, V.C., Krishnamoorthy, A., “An M/G/1 retrial queue
with orbital search by the server,” in Advances in Stochastic Modelling, J. R. Artalejo
and A. Krishnamoorthy, Eds. NJ: Notable Publications Inc., (2002) 41–54.

[17] Avrachenkov, K., Yechiali, U., “Retrial networks with finite buffers and their
application to internet data traffic,” Probability in the Engineering and Informational
Sciences, vol. 22, (2008) 519–536.

[18] Bolch, G., Greiner, S., Meer, H., Trivedi, K., Queueing Networks and Markov
Chains, 2nd ed. New York: John Wiley & Sons, 2006.

[19] Chakka, R., Do, T.V., “The MM
∑K

k=1
CPPk/GE/c/L G-Queue and Its Appli-

cation to the Analysis of the Load Balancing in MPLS Networks.” in Proc. of 27th
Annual IEEE Conference on Local Computer Networks (LCN 2002), 6-8 November
2002, Tampa, FL, USA, (2002) 735–736.

[20] Chakka, R., Do, T.V., “The MM
∑K

k=1
CPPk/GE/c/L G-queue with heteroge-

neous servers: Steady state solution and an application to performance evaluation,”
Performance Evaluation, vol. 64, (March 2007) 191–209.

[21] Chakravarthy, S.R., Krishnamoorthy, A., Joshua, V., “Analysis of a multi-
server retrial queue with search of customers from the orbit,” Performance Evalua-
tion, vol. 63, no. 8, (2006) 776–798.

[22] Choi, B.D., Chang, Y., “Single server retrial queues with priority calls,” Mathe-
matical and Computer Modelling, vol. 30, (1999, invited paper) 7–32.

[23] Cohen, J.W., “Basic problems of telephone traffic theory and the influence of re-
peated calls,” Philips Telecommun. Rev., vol. 18, no. 2, (1957) 49–100.

[24] Do, T.V., “An efficient solution to a retrial queue for the performability eval-
uation of DHCP,” Computers and Operations Research, vol. In Press, Cor-
rected Proof, (2009) [Online]. Available: http://www.sciencedirect.com/science/
article/B6VC5-4WGVPXN-1/2/48b8e2e8550847fd28abec83ff41f72d

[25] Dudin, A.N., Krishnamoorthy, A., Joshua, V., Tsarenkov, G.V., “Analysis
of the BMAP/G/1 retrial system with search of customers from the orbit.” Eur. J.
Operational Research, vol. 157, no. 1, (2004) 169–179.

[26] Falin, G., “A survey of retrial queues,” Queueing Systems, vol. 7, no. 2, (1990)
127–167.

[27] Falin, G., Artalejo, J., “A finite source retrial queue,” Eur. J. Operational Re-
search, vol. 108, (1998) 409–424.

[28] Falin, G., Templeton, J., Retrial Queues. Chapman & Hall, 1997.

[29] Gaver, D., Jacobs, P., Latouche, G., “Finite birth-and-death models in ran-
domly changing environments,” Adv. Appl. Prob., vol. 16, (1984) 715–731.

[30] Hanschke, T., “Explicit formulas for the characteristics of the M/M/2/2 queue
with repeated attempts,” Appl. Prob., vol. 24, (1987) 486–494.

[31] Kulkarni, V.G., Liang, H.M., Frontiers in Queueing: Models and Applications
in Science and Engineering. CRC Press, 1997, ch. Retrial queues revisited, 19–34.



Investigating the mean response time in finite-source retrial queues. . . 159

[32] Marsan, M.A., Carolis, G., Leonardi, E., Lo Cigno, R., Meo, M., “Efficient
estimation of call blocking probabilities in cellular mobile telephony networks with
customer retrials,” IEEE Journal on Selected Areas in Communications, vol. 19,
no. 2, (February 2001) 332–346.

[33] Neuts, M.F., Ramalhoto, M.F., “A service model in which the server is required
to search for customers,” Appl. Prob., vol. 21, no. 1, (March 1984) 157–166.

[34] Roszik, J., Kim, C., Sztrik, J., “Retrial queues in the performance modeling of
cellular mobile networks using MOSEL,” International Journal of Simulation: Sys-
tems, Science and Technology, vol. 6, (2005) 38–47.

[35] Roszik, J., Sztrik, J., Virtamo, J., “Performance analysis of finite-source retrial
queues operating in random environments,” Int. J. Operational Research, vol. 2, no. 3,
(2007) 254–268.

[36] Sherman, N.P., Kharoufeh, J.P., “An M/M/1 retrial queue with unreliable
server,” Operations Research Letters, vol. 34, (2006) 697–705.

[37] Stewart, G.W., “On the adjugate matrix,” Linear Algebra and its Applications,
vol. 283, (1998) 151–164.

[38] Sztrik, J., Almasi, B., Roszik, J., “Heterogeneous finite-source retrial queues
with server subject to breakdowns and repairs,” Math. Sciences, vol. 132, (2006)
677–685.

[39] Wüchner, P., Meer, H., Barner, J., Bolch, G., “A brief introduction to
MOSEL-2,” in Proc. of MMB 2006 Conference, R. German and A. Heindl, Eds.,
GI/ITG/MMB, University of Erlangen. VDE Verlag, 2006.

[40] Wüchner, P., Sztrik, J., Meer, H., “Homogeneous finite-source retrial queues
with search of customers from the orbit,” in Proc. of 14th GI/ITG Conference on
Measurement, Modelling and Evaluation of Computer and Communication Systems
(MMB 2008), Dortmund, Germany, March 2008.

[41] Wüchner, P., Sztrik, J., Meer, H., “Finite-source M/M/S retrial queue with
search for balking and impatient customers from the orbit,” Computer Networks,
vol. 53, (2009) 1264–1273.

[42] Wüchner, P., Sztrik, J., Meer, H., “The impact of retrials on the performance
of self-organizing systems,” Praxis der Informationsverarbeitung und Kommunikation
(PIK), vol. 31, no. 1, (March 2008) 29–33.

[43] Yang, T., Templeton, J.G.C., “A survey on retrial queues,” Queueing Systems,
vol. 2, (1987) 201–233.

Patrick Wüchner, Hermann de Meer

Faculty of Informatics and Mathematics, University of Passau

Innstraße 43, 94032 Passau, Germany

e-mail: {patrick.wuechner,hermann.demeer}@uni-passau.de

János Sztrik

Faculty of Informatics, University of Debrecen

Egyetem tér 1, P.O. Box 12

4010 Debrecen, Hungary

e-mail: jsztrik@inf.unideb.hu


