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Abstract

Generalizing a geometric idea due to J. Sondow, we give a geometric proof
for the Cantor’s Theorem. Moreover, it is given an irrationality measure for
some Cantor series.
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1. Introduction

In 2006, Jonathan Sondow gave a nice geometric proof that e is irrational.
Moreover, he said that a generalization of his construction may be used to prove
the Cantor’s theorem. But, he did not do that in his paper, see [2]. So we give a
geometric proof to Cantor’s theorem using a generalization to Sondow’s construc-
tion. After, it is given an irrationality measure for some Cantor series, for that we
generalize the Smarandache function. Also we give an irrationality measure for e

that is a bit better than the given one in [2].

2. Cantor’s Theorem

Definition 2.1. Let a0, a1, . . . , b1, b2, . . . be sequences of integers that satisfy the
inequalities bn > 2, and 0 6 an 6 bn − 1 if n > 1. Then the convergent series

θ := a0 +
a1

b1
+

a2

b1b2
+

a3

b1b2b3
+ . . . (2.1)
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is called Cantor series.

Example 2.2. The number e is a Cantor series. For see that, take a0 = 2, an =
1, bn = n + 1 for n > 1.

We recall the following theorem due to Cantor [1].

Theorem 2.3 (Cantor). Let θ be a Cantor series. Suppose that each prime divides
infinitely many of the bn. Then θ is irrational if and only if both an > 0 and
an < bn − 1 hold infinitely often.

Proof. For proving the necessary condition, observe that if an = 0 for n > n0,
then the series is a finite sum, hence θ is rational. If an > 0 infinitely often, let
us to construct a nested sequence of closed intervals In with intersection θ. Let
I1 = [a0 + a1

b1
, a0 + a1+1

b1
]. Proceeding inductively, we have two possibilities, the

first one, if an = 0, so define In = In−1. When an 6= 0, divide the interval In−1

into bn − an + 1 (> 2) subintervals, the first one with length an

b1···bn
and the other

ones with equal length, namely, 1
b1···bn

, and let the first one be In. By construction,

|In| > 1
b1···bn

, for all n ∈ N and when an 6= 0, the length of In is exactly 1
b1···bn

. By

hypothesis on an, there exist infinitely many n ∈ N, such that |In| = 1
b1···bn

. Thus,
we have

In =
[

a0 + a1

b1
+ . . . + an

b1···bn

, a0 + a1

b1
+ . . . + an+1

b1···bn

]

=
[

An

b1···bn

, An+1
b1···bn

]

where An ∈ Z for each n ∈ N. Also θ ∈ In for all n > 1. In fact, by hypothesis
it is easy see that θ > An

b1···bn
, for all n > 1. For the other inequality, note that

am

bm

6 1 − 1
bm

, for all m ∈ N, therefore

b1 · · · bn(θ − (a0 +
a1

b1
+ . . . +

an

b1 · · · bn

)) 6 1. (2.2)

Now if an = bn − 1 for n > n0, then θ is the right-hand endpoint of In0−1, because
each In contains that endpoint and the lengths of the In tend to zero. Hence again
θ is rational. For showing the sufficient condition, note that if am < bm − 1, then
holds the strict inequality in (2.2), for each n < m. Since an > 0 holds infinitely
often,

∞
⋂

n=1

In = θ.

Suppose that θ = p

q
∈ Q. Each prime number divides infinitely many bn, so there

exist n0 sufficiently large such that q|b1 · · · bn0
and an0

6= 0. Hence b1 · · · bn0
= kq

for some k ∈ N. Take N > n0, such that, aN+1 < bN+1 − 1. Hence θ lies in
interior of IN . Also IN = In0+k for some k > 0. Suppose IN = In0

. We can

write θ = kp

b1···bn0

, thus
An0

b1···bn0

< kp

b1···bn0

<
An0

+1

b1···bn0

. But that is a contradiction.

If IN = In0+k, for k > 1, then we write θ =
kpbn0+1···bn0+k

b1···bn0+k

. But that is again a

contradiction. Therefore, it follows the irrationality of θ. �
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3. Irrationality measure

The next step is to give an irrationality measure for some Cantor series. Now,
we construct an uncountable family of functions, where one of them is exactly a
well-known function for us.

Definition 3.1. Given σ = (b1, b2, . . . ) ∈ N∞, satisfying

(∗) For all p prime number, the set {n ∈ N | p|bn} is infinite.

We define the function D(·, σ) : Z∗ → N, by

D(q, σ) := min{n ∈ N | q|b1 · · · bn}

Note that D(·, σ) is well defined, by condition (∗) and the well-ordering theorem.

In [2], J. Sondow showed that for all integers p and q with q > 1,

∣

∣

∣

∣

e −
p

q

∣

∣

∣

∣

>
1

(S(q) + 1)!
, (3.1)

where S(q) is the smallest positive integer such that S(q)! is a multiple of q (the
so-called Smarandache function, see [3]). Note that if η = (1, 2, 3, . . . ), then
D(q, η) = S(q). Since e is a Cantor series and D(·, σ) is a generalization of Smaran-
dache function, it is natural to think in a generalization or an improvement to the
inequality in (3.1).

Lemma 3.2. Given n ∈ N, we have

∣

∣

∣

∣

θ −
m

b1 · · · bn

∣

∣

∣

∣

> min

{
∣

∣

∣

∣

θ −
An

b1 · · · bn

∣

∣

∣

∣

,

∣

∣

∣

∣

θ −
An + 1

b1 · · · bn

∣

∣

∣

∣

}

(3.2)

for all m ∈ Z.

Proof. Suppose that the result fail for some m ∈ Z. So, m
b1···bn

lies in interior of
In. Contradiction. Hence (3.2) holds for all m ∈ Z. �

Proposition 3.3. Suppose that a Cantor series θ, like in (2.1) and satisfying (∗),
is an irrational number. For all integers p ∈ Z and q ∈ Z∗, with D(q, σ) > 1, let
k be the smallest integer greater than D(q, σ) such that the interval Ik lies in the
interior of ID(q,σ). Then

∣

∣

∣

∣

θ −
p

q

∣

∣

∣

∣

>
min{ak, bk − ak − 1}

b1 · · · bk

(3.3)

where σ = (b1, b2, . . . ).
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Proof. Let σ = (b1, b2, . . . ). Set n = D(q, σ) and m = pb1···bn

q
. Therefore m and

n are integers and

∣

∣

∣

∣

θ −
p

q

∣

∣

∣

∣

=

∣

∣

∣

∣

θ −
m

b1 · · · bn

∣

∣

∣

∣

> min

{
∣

∣

∣

∣

θ −
An

b1 · · · bn

∣

∣

∣

∣

,

∣

∣

∣

∣

θ −
An + 1

b1 · · · bn

∣

∣

∣

∣

}

(3.4)

>
min{ak, bk − ak − 1}

b1 · · · bk

. (3.5)

The inequalities (3.4) and (3.5) follow respectively by Lemma 3.2 and the hypoth-
esis on k. �

The result below gives a slight improvement to (3.1).

Corollary 3.3. If p and q are integers, with q 6= 0, then

∣

∣

∣

∣

e −
p

q

∣

∣

∣

∣

>
1

(D(q, σ) + 2)!
, (3.6)

where σ = (2, 3, 4, . . . ).

Proof. Since that minp∈Z |e − p| > 0.28 > 1
6 , then (3.6) holds in the case q = ±1.

In case q 6= ±1 the inequality also holds by Proposition 3.3 and Example 2.2.
Moreover, in this case we have S(q) − 1 ∈ {n ∈ N | q|(n + 1)!} and D(q, σ) + 1 ∈
{n ∈ N | q|n!}. Thus S(q) = D(q, σ) + 1. Hence

∣

∣

∣

∣

e −
p

q

∣

∣

∣

∣

>
1

(D(q, σ) + 2)!
=

1

(S(q) + 1)!
.

�

Actually, the improvement happens only because (3.6) also holds for q = ±1.

Example 3.4. The number ξ := 1
(1!)5 + 1

(2!)5 + 1
(3!)5 +. . . = 1.031378 . . . is irrational,

moreover for p, q ∈ Z with q 6= 0, we have

∣

∣

∣

∣

ξ −
p

q

∣

∣

∣

∣

>
1

(D(q, σ) + 2)!5

where σ = (25, 35, . . . ).
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