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Abstract

This contribution is a continuation of [1, 3, 14]. The concept of subcom-
patibility between single maps and between single and multivalued maps is
used as a tool for proving existence and uniqueness of common fixed points
on complete metric and symmetric spaces. Extensions of known results, in
particularly results given by Djoudi and Aliouche, Elamrani and Mehdaoui,
Pathak et al. are thereby obtained.
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1. Introduction and preliminaries

Let (X , d) be a metric space and let B(X ) be the class of all nonempty bounded
subsets of X . For all A,B in B(X ), define

δ(A,B) = sup {d(a, b) : a ∈ A, b ∈ B} .

If A = {a}, we write δ(A,B) = δ(a,B). Also, if B = {b}, it yields that δ(A,B) =
d(a, b).

From the definition of δ(A,B), for all A,B,C in B(X ) it follows that

δ(A,B) = δ(B,A) > 0,

δ(A,B) 6 δ(A,C) + δ(C,B),

43



44 H. Bouhadjera, A. Djoudi

δ(A,A) = diamA,

δ(A,B) = 0 iff A = B = {a} .

In his paper [15], Sessa introduced the notion of weak commutativity which
generalized the notion of commutativity.

Later on, Jungck [6] gave a generalization of weak commutativity by introducing
the concept of compatibility.

Again, to generalize weakly commuting maps, the same author with Murthy
and Cho [8] introduced the concept of compatible maps of type (A).

Extending type (A), Pathak and Khan [13] made the notion of compatible maps
of type (B).

In [11], the concept of compatible maps of type (P ) was introduced and com-
pared with compatible and compatible maps of type (A).

In 1998, Pathak, Cho, Kang and Madharia [12] defined the notion of compatible
maps of type (C) as another extension of compatible maps of type (A).

In his paper [7], Jungck generalized all the concepts of compatibility by giving
the notion of weak compatibility (subcompatibility).

The authors of [9] extended the concept of compatible maps to the setting of
single and multivalued maps by giving the notion of δ-compatible maps.

Also, the same authors [10] extended the definition of weak compatibility to the
setting of single and multivalued maps by introducing the concept of subcompatible
maps.

In their paper [2], Djoudi and Khemis introduced the notion of D-maps which
is a generalization of δ-compatible maps.

Definition 1.1 ([4]). A sequence {An} of nonempty subsets of X is said to be
convergent to a subset A of X if:

(i) each point a ∈ A is the limit of a convergent sequence {an}, where an ∈ An

for n ∈ N,
(ii) for arbitrary ǫ > 0, there exists an integer m such that An ⊆ Aǫ for n > m,

where Aǫ denotes the set of all points x in X for which there exists a point a in A,
depending on x, such that d(x, a) < ǫ.

Lemma 1.2 ([4, 5]). If {An} and {Bn} are sequences in B(X ) converging to A

and B in B(X ), respectively, then the sequence {δ(An, Bn)} converges to δ(A,B).

Lemma 1.3 ([5]). Let {An} be a sequence in B(X ) and y be a point in X such
that δ(An, y) → 0. Then the sequence {An} converges to the set {y} in B(X ).

Definition 1.4 ([15]). The self-maps f and g of a metric space X are said to be
weakly commuting if d(fgx, gfx) 6 d(gx, fx) for all x ∈ X .

Definition 1.5 ([6, 8, 13, 12, 11]). The self-maps f and g of a metric space X are
said to be

(1) compatible if
lim

n→∞
d(fgxn, gfxn) = 0,
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(2) compatible of type (A) if

lim
n→∞

d(fgxn, g
2xn) = 0 and lim

n→∞
d(gfxn, f

2xn) = 0,

(3) compatible of type (B) if

lim
n→∞

d(fgxn, g
2xn) 6

1

2

[

lim
n→∞

d(fgxn, f t) + lim
n→∞

d(ft, f2xn)
]

,

lim
n→∞

d(gfxn, f
2xn) 6

1

2

[

lim
n→∞

d(gfxn, gt) + lim
n→∞

d(gt, g2xn)
]

,

(4) compatible of type (C) if

lim
n→∞

d(fgxn, g
2xn) 6

1

3

[

lim
n→∞

d(fgxn, f t)

+ lim
n→∞

d(ft, f2xn) + lim
n→∞

d(ft, g2xn)
]

,

lim
n→∞

d(gfxn, f
2xn) 6

1

3

[

lim
n→∞

d(gfxn, gt)

+ lim
n→∞

d(gt, g2xn) + lim
n→∞

d(gt, f2xn)
]

,

(5) compatible of type (P ) if

lim
n→∞

d(f2xn, g
2xn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some

t ∈ X .

Definition 1.6 ([7]). The self-maps f and g of a metric space X are called weakly
compatible if fx = gx, x ∈ X implies fgx = gfx.

Definition 1.7 ([9]). The maps f : X → X and F : X → B(X ) are δ-compatible
if

lim
n→∞

δ(Ffxn, fFxn) = 0

whenever {xn} is a sequence in X such that fFxn ∈ B(X ), fxn → t and Fxn → {t}
for some t ∈ X .

Definition 1.8 ([10]). Maps f : X → X and F : X → B(X ) are subcompatible if
they commute at coincidence points; i.e., for each point u ∈ X such that Fu =
{fu}, we have Ffu = fFu.

Definition 1.9 ([2]). The maps f : X → X and F : X → B(X ) are said to be
D-maps iff there exists a sequence {xn} in X such that for some t ∈ X

lim
n→∞

fxn = t and lim
n→∞

Fxn = {t} .
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Recently in 2007, Pathak et al. [14] established a general common fixed point
theorem for two pairs of weakly compatible maps satisfying integral type implicit
relations. The first main object of this paper is to prove a common fixed point
theorem for a quadruple of maps satisfying certain integral type implicit relations.
Our result extended the result of [14] to the setting of single and multivalued maps.

For this consideration we need the following:
Let Φ = {ϕ : R+ → R is a Lebesgue-integrable map which is summable} and

let F be the set of all continuous functions F : R6
+ → R+ satisfying the following

conditions:
(Fa)

∫ F (u,0,0,u,u,0)

0
ϕ(t)dt 6 0 implies u = 0;

(Fb)
∫ F (u,0,u,0,0,u)

0 ϕ(t)dt 6 0 implies u = 0.

The function F satisfies the condition (F1) if
∫ F (u,u,0,0,u,u)

0 ϕ(t)dt > 0 for all
u > 0.

2. Main results

Theorem 2.1. Let f, g be self-maps of a metric space (X , d) and let F,G : X →
B(X ) be two multivalued maps such that

(1) FX ⊆ gX and GX ⊆ fX ,
(2)

∫ F (δ(Fx,Gy),d(fx,gy),δ(fx,Fx),δ(gy,Gy),δ(fx,Gy),δ(gy,Fx))

0

ϕ (t) dt 6 0

for all x, y in X , where F ∈ F and ϕ ∈ Φ. If either
(3) f and F are subcompatible D-maps; g and G are subcompatible and FX is

closed, or
(3′) g and G are subcompatible D-maps; f and F are subcompatible and GX is

closed.
Then, f, g, F and G have a unique common fixed point t ∈ X such that

Ft = Gt = {ft} = {gt} = {t} .

Proof. Suppose that f and F are D-maps, then, there exists a sequence {xn}
in X such that fxn → t and Fxn → {t} for some t ∈ X . Since FX is closed
and FX ⊆ gX , then, there is a point u ∈ X such that gu = t. We show that
Gu = {gu} = {t}. Using inequality (2), we have

∫ F (δ(Fxn,Gu),d(fxn,gu),δ(fxn,Fxn),δ(gu,Gu),δ(fxn,Gu),δ(gu,Fxn))

0

ϕ (t) dt 6 0.

Since F is continuous, we get at infinity

∫ F (δ(gu,Gu),0,0,δ(gu,Gu),δ(gu,Gu),0)

0

ϕ (t) dt 6 0
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which implies, by using condition (Fa), δ (gu,Gu) = 0; i.e., Gu = {gu} = {t}.
Since the pair (g,G) is subcompatible, it follows that Ggu = gGu; i.e., Gt = {gt}.
If t 6= gt, using (2) we have

∫ F (δ(Fxn,Gt),d(fxn,gt),δ(fxn,Fxn),δ(gt,Gt),δ(fxn,Gt),δ(gt,Fxn))

0

ϕ (t) dt 6 0.

Taking limit as n→ ∞, we get

∫ F (d(t,gt),d(t,gt),0,0,d(t,gt),d(gt,t))

0

ϕ (t) dt 6 0,

which contradicts (F1). Hence, Gt = {gt} = {t}. Since GX ⊆ fX , there is v ∈ X
such that {t} = Gt = {fv}. If Fv 6= {t}, using (2) again, we have

∫ F (δ(Fv,Gt),d(fv,gt),δ(fv,Fv),δ(gt,Gt),δ(fv,Gt),δ(gt,Fv))

0

ϕ (t) dt

=

∫ F (δ(Fv,t),0,δ(t,Fv),0,0,δ(t,Fv))

0

ϕ (t) dt 6 0,

which implies by using condition (Fb) that δ (Fv, t) = 0, hence, Fv = {t} = {fv}.
Since F and f are subcompatible, it follows that Ffv = fFv; i.e., Ft = {ft}. If
t 6= ft, using (2) we have

∫ F (δ(Ft,Gt),d(ft,gt),δ(ft,F t),δ(gt,Gt),δ(ft,Gt),δ(gt,F t))

0

ϕ (t) dt

=

∫ F (d(ft,t),d(ft,t),0,0,d(ft,t),d(t,ft))

0

ϕ (t) dt 6 0,

which contradicts (F1). Thus, {ft} = {t} = Ft.
We get the same conclusion if we use (3′) instead of (3).
The uniqueness of the common fixed point follows easily from conditions (2)

and (F1). �

Corollary 2.2. Let f be a map from a metric space (X , d) into itself and let F be
a map from X into B(X ). If

(i) FX ⊆ fX ,
(ii) f and F are subcompatible D-maps,
(iii)

∫ F (δ(Fx,Fy),d(fx,fy),δ(fx,Fx),δ(fy,Fy),δ(fx,Fy),δ(fy,Fx))

0

ϕ (t) dt 6 0

for all x, y in X , where ϕ ∈ Φ and F is continuous and satisfies conditions (Fa)
and (F1) or (Fb) and (F1). If FX is closed, then, f and F have a unique common
fixed point in X .
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The next Theorem is a generalization of Theorem 2.1.

Theorem 2.3. Let f, g be self-maps of a metric space (X , d) and let Fn : X →
B(X ), where n = 1, 2, . . . be multivalued maps such that

(i) FnX ⊆ gX and Fn+1X ⊆ fX ,
(ii)

∫ F (δ(Fnx,Fn+1y),d(fx,gy),δ(fx,Fnx),δ(gy,Fn+1y),δ(fx,Fn+1y),δ(gy,Fnx))

0

ϕ (t) dt 6 0

for all x, y in X , where F ∈ F and ϕ ∈ Φ. If either
(iii) f and Fn are subcompatible D-maps; g and Fn+1 are subcompatible and

FnX is closed, or
(iii)′ g and Fn+1 are subcompatible D-maps; f and Fn are subcompatible and

Fn+1X is closed.
Then, f, g and Fn have a unique common fixed point t ∈ X such that

Fnt = {ft} = {gt} = {t} .

Now, let Ψ be the set of all maps ψ : R+ → R+ such that ψ is a Lebesgue-
integrable which is summable, nonnegative and satisfies

∫ ǫ

0
ψ(t)dt > 0 for each

ǫ > 0.
In [3], a common fixed point theorem for a pair of generalized contraction self-

maps and a pair of multivalued maps in a complete metric space was obtained.
Our second main subject is to complement and improve the result of [3] by relax-
ing the notion of δ-compatibility to subcompatibility, removing the assumption of
continuity imposed on at least one of the four maps and deleting some conditions
required on the functions Φ, a, b and c by using an integral type in a metric space
instead of a complete metric space.

Theorem 2.4. Let f, g be self-maps of a metric space (X , d) and let F,G be maps
from X into B(X ) satisfying the following conditions

(1′) f and g are surjective,
(2′)

∫ ̥(δ(Fx,Gy))

0

ψ(t)dt 6 a (d (fx, gy))

∫ ̥(d(fx,gy))

0

ψ(t)dt

+ b (d (fx, gy))

∫ ̥(δ(fx,Fx))+̥(δ(gy,Gy))

0

ψ(t)dt

+ c (d (fx, gy))

∫ min{̥(δ(fx,Gy)),̥(δ(gy,Fx))}

0

ψ(t)dt

for all x, y in X , where ̥ : [0,∞) → [0,∞) is an upper semi-continuous map such
that ̥(t) = 0 iff t = 0; a, b, c : [0,∞) → [0, 1) are upper semi-continuous such that
a(t) + c(t) < 1 for every t > 0 and ψ ∈ Ψ. If either

(3′) f and F are subcompatible D-maps; g and G are subcompatible, or
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(3′′) g and G are subcompatible D-maps; f and F are subcompatible.
Then, f, g, F and G have a unique common fixed point t ∈ X such that

Ft = Gt = {ft} = {gt} = {t} .

Proof. Suppose that f and F are D-maps, then, there is a sequence {xn} in X
such that lim

n→∞
fxn = t and lim

n→∞
Fxn = {t} for some t ∈ X . By condition (1′), there

exist points u, v in X such that t = fu = gv. First, we show that Gv = {gv} = {t}.
Using inequality (2′) we get

∫ ̥(δ(Fxn,Gv))

0

ψ(t)dt

6 a (d (fxn, gv))

∫ ̥(d(fxn,gv))

0

ψ(t)dt

+ b (d (fxn, gv))

∫ ̥(δ(fxn,Fxn))+̥(δ(gv,Gv))

0

ψ(t)dt

+ c (d (fxn, gv))

∫ min{̥(δ(fxn,Gv)),̥(δ(gv,Fxn))}

0

ψ(t)dt.

Taking the limit as n→ ∞, one obtains

∫ ̥(δ(gv,Gv))

0

ψ(t)dt 6 b (0)

∫ ̥(δ(gv,Gv))

0

ψ(t)dt <

∫ ̥(δ(gv,Gv))

0

ψ(t)dt

this contradiction implies that Gv = {gv} = {t}. Since the pair (g,G) is sub-
compatible, then, Ggv = gGv; i.e., Gt = {gt}. We claim that Gt = {gt} = {t}.
Suppose not, then, by condition (2′) we have

∫ ̥(δ(Fxn,Gt))

0

ψ(t)dt 6 a (d (fxn, gt))

∫ ̥(d(fxn,gt))

0

ψ(t)dt

+ b (d (fxn, gt))

∫ ̥(δ(fxn,Fxn))+̥(δ(gt,Gt))

0

ψ(t)dt

+ c (d (fxn, gt))

∫ min{̥(δ(fxn,Gt)),̥(δ(gt,Fxn))}

0

ψ(t)dt.

When n→ ∞ we obtain

∫ ̥(δ(t,Gt))

0

ψ(t)dt =

∫ ̥(d(t,gt))

0

ψ(t)dt

6 [a (d (t, gt)) + c (d (t, gt))]

∫ ̥(d(t,gt))

0

ψ(t)dt

<

∫ ̥(d(t,gt))

0

ψ(t)dt



50 H. Bouhadjera, A. Djoudi

which is a contradiction. Hence, {gt} = {t} = Gt. Next, we claim that Fu =
{fu} = {t}. If not, then, by (2′) we get

∫ ̥(δ(Fu,fu))

0

ψ(t)dt =

∫ ̥(δ(Fu,Gt))

0

ψ(t)dt

6 a (d (fu, gt))

∫ ̥(d(fu,gt))

0

ψ(t)dt

+ b (d (fu, gt))

∫ ̥(δ(fu,Fu))+̥(δ(gt,Gt))

0

ψ(t)dt

+ c (d (fu, gt))

∫ min{̥(δ(fu,Gt)),̥(δ(gt,Fu))}

0

ψ(t)dt

= b (0)

∫ ̥(δ(fu,Fu))

0

ψ(t)dt <

∫ ̥(δ(fu,Fu))

0

ψ(t)dt

which is a contradiction. Thus, Fu = {fu} = {t}. Since F and f are subcompati-
ble, then, Ffu = fFu; i.e., Ft = {ft}. Suppose that ft 6= t. Then, the use of (2′)
gives

∫ ̥(d(ft,t))

0

ψ(t)dt =

∫ ̥(δ(Ft,Gt))

0

ψ(t)dt

6 a (d (ft, gt))

∫ ̥(d(ft,gt))

0

ψ(t)dt

+ b (d (ft, gt))

∫ ̥(δ(ft,F t))+̥(δ(gt,Gt))

0

ψ(t)dt

+ c (d (ft, gt))

∫ min{̥(δ(ft,Gt)),̥(δ(gt,F t))}

0

ψ(t)dt

= [a (d (ft, t)) + c (d (ft, t))]

∫ ̥(d(ft,t))

0

ψ(t)dt

<

∫ ̥(d(ft,t))

0

ψ(t)dt

this contradiction implies that ft = t and hence Ft = {ft} = {t}. Therefore t is a
common fixed point of both f, g, F and G.

The uniqueness of the common fixed point follows easily from condition (2′).
We get the same conclusion if we consider (3′′) in lieu of (3′). �

Remark 2.5. Theorem 3.1 of [3] becomes a special case of Theorem 2.4 with
ψ(x) = 1.

If we put f = g in Theorem 2.4, we get the next corollary.

Corollary 2.6. Let (X , d) be a metric space and let f : X → X ; F,G : X → B(X )
be maps. Suppose that
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(i) f is surjective,
(ii)

∫ ̥(δ(Fx,Gy))

0

ψ(t)dt 6 a (d (fx, fy))

∫ ̥(d(fx,fy))

0

ψ(t)dt

+ b (d (fx, fy))

∫ ̥(δ(fx,Fx))+̥(δ(fy,Gy))

0

ψ(t)dt

+ c (d (fx, fy))

∫ min{̥(δ(fx,Gy)),̥(δ(fy,Fx))}

0

ψ(t)dt

for all x, y in X , where ̥, ψ, a, b, c are as in Theorem 2.4. If either
(iii) f and F are subcompatible D-maps; f and G are subcompatible, or
(iii)′ f and G are subcompatible D-maps; f and F are subcompatible.
Then, f, F and G have a unique common fixed point t ∈ X such that

Ft = Gt = {ft} = {t} .

For a single map f : X → X (resp. a multivalued map F : X → B(X )), Ff

(resp. FF ) will denote the set of fixed point of f (resp. F ).

Theorem 2.7. Let F,G : X → B(X ) be multivalued maps and let f, g : X → X be
single maps on the metric space X . If inequality (2′) holds for all x, y in X , then,

(Ff ∩ Fg) ∩ FF = (Ff ∩ Fg) ∩ FG.

Proof. We can check the above equality by using inequality (2′). �

Theorems 2.4 and 2.7 imply the next one.

Theorem 2.8. Let f, g be self-maps of a metric space (X , d) and let Fn, where
n = 1, 2, . . . be maps from X into B(X ) such that

(i) f and g are surjective,
(ii)

∫ ̥(δ(Fnx,Fn+1y))

0

ψ(t)dt

6 a (d (fx, gy))

∫ ̥(d(fx,gy))

0

ψ(t)dt

+ b (d (fx, gy))

∫ ̥(δ(fx,Fnx))+̥(δ(gy,Fn+1y))

0

ψ(t)dt

+ c (d (fx, gy))

∫ min{̥(δ(fx,Fn+1y)),̥(δ(gy,Fnx))}

0

ψ(t)dt

for all x, y in X , where ̥, ψ, a, b, c are as in Theorem 2.4. If either
(iii) f and F1 are subcompatible D-maps; g and F2 are subcompatible, or
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(iii)′ g and F2 are subcompatible D-maps; f and F1 are subcompatible.
Then, f, g and Fn have a unique common fixed point t ∈ X such that

Fnt = {ft} = {gt} = {t} for n = 1, 2, . . . .

Let Ω be the family of all maps ω : R+ → R+ such that ω is upper semi-
continuous and ω(t) < t for each t > 0.

In [1], Djoudi and Aliouche proved a common fixed point theorem of Greguš
type for four maps satisfying a contractive condition of integral type in a metric
space using the concept of weak compatibility. Our aim henceforth is to extend
this result to multivalued maps by using the concept of D-maps.

Theorem 2.9. Let (X , d) be a metric space and let f, g : X → X ; Fk : X → B(X )
be single and multivalued maps, respectively. Suppose that

(i) FkX ⊆ gX and Fk+1X ⊆ fX ,
(ii)

(

∫ δ(Fkx,Fk+1y)

0

ψ(t)dt

)p

6 ω

(

a

(

∫ d(fx,gy)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(

∫ δ(fx,Fkx)

0

ψ(t)dt

)p

,

β

(

∫ δ(gy,Fk+1y)

0

ψ(t)dt

)p

,

(

∫ δ(fx,Fkx)

0

ψ(t)dt

)
p

2
(

∫ δ(gy,Fkx)

0

ψ(t)dt

)
p

2

,

(

∫ δ(gy,Fkx)

0

ψ(t)dt

)
p

2
(

∫ δ(fx,Fk+1y)

0

ψ(t)dt

)
p

2

,

1

2

((

∫ δ(fx,Fkx)

0

ψ(t)dt

)p

+

(

∫ δ(gy,Fk+1y)

0

ψ(t)dt

)p)})

for all x, y in X , where k ∈ N∗ = {1, 2, . . . }, ω ∈ Ω, ψ ∈ Ψ, 0 < a < 1, 0 < α, β 6 1
and p is an integer such that p > 1. If either

(iii) f and Fk are subcompatible D-maps; g and Fk+1 are subcompatible and
FkX is closed, or

(iii)′ g and Fk+1 are subcompatible D-maps; f and Fk are subcompatible and
Fk+1X is closed.

Then, f, g and Fk have a unique common fixed point t ∈ X such that

Fkt = {ft} = {gt} = {t} .

Proof. Suppose that f and Fk are D-maps, then, there exists a sequence {xn}
in X such that lim

n→∞
fxn = t and lim

n→∞
Fkxn = {t} for some t ∈ X . Since FkX is

closed and FkX ⊆ gX , then, there is u ∈ X such that gu = t. If Fk+1u 6= {gu},
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using inequality (ii) we get
(

∫ δ(Fkxn,Fk+1u)

0

ψ(t)dt

)p

6 ω

(

a

(

∫ d(fxn,gu)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(

∫ δ(fxn,Fkxn)

0

ψ(t)dt

)p

, β

(

∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p

,

(

∫ δ(fxn,Fkxn)

0

ψ(t)dt

)
p

2
(

∫ δ(gu,Fkxn)

0

ψ(t)dt

)
p

2

,

(

∫ δ(gu,Fkxn)

0

ψ(t)dt

)
p

2
(

∫ δ(fxn,Fk+1u)

0

ψ(t)dt

)
p

2

,

1

2

((

∫ δ(fxn,Fkxn)

0

ψ(t)dt

)p

+

(

∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p)})

.

Letting n→ ∞ we obtain
(

∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p

6 ω

(

(1 − a)max

{

β,
1

2

}

(

∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p)

< (1 − a)max

{

β,
1

2

}

(

∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p

<

(

∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p

which is a contradiction. Then Fk+1u = {gu} = {t}. Since the pair (g, Fk+1) is
subcompatible, we have Fk+1gu = gFk+1u; i.e., Fk+1t = {gt}. If t 6= gt, using
inequality (ii) we obtain

(

∫ δ(Fkxn,Fk+1t)

0

ψ(t)dt

)p

6 ω

(

a

(

∫ d(fxn,gt)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(

∫ δ(fxn,Fkxn)

0

ψ(t)dt

)p

, β

(

∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p

,

(

∫ δ(fxn,Fkxn)

0

ψ(t)dt

)
p

2
(

∫ δ(gt,Fkxn)

0

ψ(t)dt

)
p

2

,
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(

∫ δ(gt,Fkxn)

0

ψ(t)dt

)
p

2
(

∫ δ(fxn,Fk+1t)

0

ψ(t)dt

)
p

2

,

1

2

((

∫ δ(fxn,Fkxn)

0

ψ(t)dt

)p

+

(

∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p)})

.

At infinity we get
(

∫ d(t,gt)

0

ψ(t)dt

)p

6 ω

((

∫ d(t,gt)

0

ψ(t)dt

)p)

<

(

∫ d(t,gt)

0

ψ(t)dt

)p

which is a contradiction. Therefore Fk+1t = {gt} = {t}. Since Fk+1X ⊆ fX , there
exists v ∈ X such that Fk+1t = {t} = {fv}. We claim that Fkv = {fv}, suppose
not, then by condition (ii) we have

(

∫ δ(Fkv,Fk+1t)

0

ψ(t)dt

)p

6 ω

(

a

(

∫ d(fv,gt)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(

∫ δ(fv,Fkv)

0

ψ(t)dt

)p

,

β

(

∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p

,

(

∫ δ(fv,Fkv)

0

ψ(t)dt

)
p

2
(

∫ δ(gt,Fkv)

0

ψ(t)dt

)
p

2

,

(

∫ δ(gt,Fkv)

0

ψ(t)dt

)
p
2
(

∫ δ(fv,Fk+1t)

0

ψ(t)dt

)
p
2

,

1

2

((

∫ δ(fv,Fkv)

0

ψ(t)dt

)p

+

(

∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p)})

,

that is,
(

∫ δ(Fkv,fv)

0

ψ(t)dt

)p

6 ω

(

(1 − a)

(

∫ δ(Fkv,fv)

0

ψ(t)dt

)p)

< (1 − a)

(

∫ δ(Fkv,fv)

0

ψ(t)dt

)p

<

(

∫ δ(Fkv,fv)

0

ψ(t)dt

)p

which is a contradiction. Hence Fkv = {fv} = {t}. Since the pair (f, Fk) is
subcompatible, then, Fkfv = fFkv; i.e., Fkt = {ft}. The use of (ii) gives

(

∫ δ(Fkt,Fk+1t)

0

ψ(t)dt

)p
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6 ω

(

a

(

∫ d(ft,gt)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(

∫ δ(ft,Fkt)

0

ψ(t)dt

)p

,

β

(

∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p

,

(

∫ δ(ft,Fkt)

0

ψ(t)dt

)
p

2
(

∫ δ(gt,Fkt)

0

ψ(t)dt

)
p

2

,

(

∫ δ(gt,Fkt)

0

ψ(t)dt

)
p
2
(

∫ δ(ft,Fk+1t)

0

ψ(t)dt

)
p
2

,

1

2

((

∫ δ(ft,Fkt)

0

ψ(t)dt

)p

+

(

∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p)})

,

i.e.,
(

∫ d(ft,t)

0

ψ(t)dt

)p

6 ω

((

∫ d(ft,t)

0

ψ(t)dt

)p)

<

(

∫ d(ft,t)

0

ψ(t)dt

)p

this contradiction implies that {ft} = {t} = Fkt. Thus, t is a common fixed point
of f, g and Fk.

The uniqueness of the common fixed point follows from inequality (ii).
If one uses condition (iii)′ instead of (iii), one gets the same conclusion. �

Theorem 2.10. Let (X , d) be a metric space and let f, g : X → X ; Fn : X → B(X )
be single and multivalued maps such that

(i) FnX ⊆ gX and Fn+1X ⊆ fX ,
(ii)

(

∫ δ(Fnx,Fn+1y)

0

ψ(t)dt

)p

6 ω

(

a

(

∫ d(fx,gy)

0

ψ(t)dt

)p

+ (1 − a)max

{

∫ δ(fx,Fnx)

0

ψ(t)dt,

∫ δ(gy,Fn+1y)

0

ψ(t)dt,

(

∫ δ(fx,Fnx)

0

ψ(t)dt

)
1
2
(

∫ δ(gy,Fnx)

0

ψ(t)dt

)
1
2

,

(

∫ δ(gy,Fnx)

0

ψ(t)dt

)
1
2
(

∫ δ(fx,Fn+1y)

0

ψ(t)dt

)
1
2







p



for all x, y in X , where ω ∈ Ω, ψ ∈ Ψ, 0 < a < 1 and p is an integer such that
p > 1. If either

(iii) f and Fn are subcompatible D-maps; g and Fn+1 are subcompatible and
FnX is closed, or

(iii)′ g and Fn+1 are subcompatible D-maps; f and Fn are subcompatible and
Fn+1X is closed.
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Then, f, g and Fn have a unique common fixed point t ∈ X such that

Fnt = {ft} = {gt} = {t} for n = 1, 2, . . . .

Proof. It is similar to the proof of Theorem 2.9. �

Now, we prove a unique common fixed point theorem of Greguš type by using a
strict contractive condition of integral type for two pairs of single and multivalued
maps in a metric space.

Theorem 2.11. Let f and g be self-maps of a metric space (X , d) and let {Fn},
n = 1, 2, . . . be multivalued maps from X into B(X ) such that

(1′′) f and g are surjective,
(2′′)

∫ δ(F1x,Fky)

0

ψ(t)dt

< α

∫ d(fx,gy)

0

ψ(t)dt+ (1 − α) max

{

a

∫ δ(fx,F1x)

0

ψ(t)dt,

b

∫ δ(gy,Fky)

0

ψ(t)dt, c

(

∫ δ(fx,F1x)

0

ψ(t)dt

)
1
2
(

∫ δ(gy,F1x)

0

ψ(t)dt

)
1
2

,

d

(

∫ δ(gy,F1x)

0

ψ(t)dt

)
1
2
(

∫ δ(fx,Fky)

0

ψ(t)dt

)
1
2







for all x, y in X and some k > 1 for which the right hand side is positive, where
ψ ∈ Ψ, 0 < α, a, b, c, d < 1 and α+ d(1 − α) < 1. If either

(3′′) f and F1 are subcompatible D-maps; g and Fk are subcompatible, or
(3′′′) g and Fk are subcompatible D-maps; f and F1 are subcompatible.
Then, f, g and {Fn} have a unique common fixed point t ∈ X such that

Fnt = {ft} = {gt} = {t} , for n = 1, 2, . . . .

Proof. Suppose that condition (3′′) holds, then, there is a sequence {xn} in X
such that fxn → t and F1xn → {t} as n → ∞ for some t ∈ X . By condition
(1′′), there are two elements u and v in X such that t = fu = gv. We show that
{t} = Fkv. Indeed, using inequality (2′′) we get

∫ δ(F1xn,Fkv)

0

ψ(t)dt

< α

∫ d(fxn,gv)

0

ψ(t)dt+ (1 − α) max

{

a

∫ δ(fxn,F1xn)

0

ψ(t)dt,

b

∫ δ(gv,Fkv)

0

ψ(t)dt, c

(

∫ δ(fxn,F1xn)

0

ψ(t)dt

)
1
2
(

∫ δ(gv,F1xn)

0

ψ(t)dt

)
1
2

,
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d

(

∫ δ(gv,F1xn)

0

ψ(t)dt

)
1
2
(

∫ δ(fxn,Fkv)

0

ψ(t)dt

)
1
2







.

Taking limit as n→ ∞, we obtain

∫ δ(t,Fkv)

0

ψ(t)dt 6 b (1 − α)

∫ δ(t,Fkv)

0

ψ(t)dt <

∫ δ(t,Fkv)

0

ψ(t)dt

thus, we have Fkv = {t} = {gv} and since g and Fk are subcompatible, we have
Fkgv = gFkv; that is, Fkt = {gt}. Again, by (2′′) we obtain

∫ δ(F1xn,Fkt)

0

ψ(t)dt

< α

∫ d(fxn,gt)

0

ψ(t)dt+ (1 − α) max

{

a

∫ δ(fxn,F1xn)

0

ψ(t)dt,

b

∫ δ(gt,Fkt)

0

ψ(t)dt, c

(

∫ δ(fxn,F1xn)

0

ψ(t)dt

)
1
2
(

∫ δ(gt,F1xn)

0

ψ(t)dt

)
1
2

,

d

(

∫ δ(gt,F1xn)

0

ψ(t)dt

)
1
2
(

∫ δ(fxn,Fkt)

0

ψ(t)dt

)
1
2







.

When n→ ∞, we get

∫ d(t,gt)

0

ψ(t)dt 6 [α+ d (1 − α)]

∫ d(t,gt)

0

ψ(t)dt <

∫ d(t,gt)

0

ψ(t)dt

this contradiction implies that {t} = {gt} = Fkt = {fu}. We claim that F1u = {t}.
By condition (2′′) we have

∫ δ(F1u,t)

0

ψ(t)dt =

∫ δ(F1u,Fkt)

0

ψ(t)dt

< α

∫ d(fu,gt)

0

ψ(t)dt+ (1 − α)max

{

a

∫ δ(fu,F1u)

0

ψ(t)dt,

b

∫ δ(gt,Fkt)

0

ψ(t)dt, c

(

∫ δ(fu,F1u)

0

ψ(t)dt

)
1
2
(

∫ δ(gt,F1u)

0

ψ(t)dt

)
1
2

,

d

(

∫ δ(gt,F1u)

0

ψ(t)dt

)
1
2
(

∫ δ(fu,Fkt)

0

ψ(t)dt

)
1
2







= (1 − α) max {a, c}

∫ δ(F1u,t)

0

ψ(t)dt <

∫ δ(F1u,t)

0

ψ(t)dt
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this contradiction demands that F1u = {t} = {fu}. Since f and F1 are subcom-
patible, then, F1fu = fF1u; that is, F1t = {ft}. Moreover, by (2′′) one may
get

∫ d(ft,t)

0

ψ(t)dt =

∫ δ(F1t,Fkt)

0

ψ(t)dt

< α

∫ d(ft,gt)

0

ψ(t)dt + (1 − α)max

{

a

∫ δ(ft,F1t)

0

ψ(t)dt,

b

∫ δ(gt,Fkt)

0

ψ(t)dt, c

(

∫ δ(ft,F1t)

0

ψ(t)dt

)
1
2
(

∫ δ(gt,F1t)

0

ψ(t)dt

)
1
2

,

d

(

∫ δ(gt,F1t)

0

ψ(t)dt

)
1
2
(

∫ δ(ft,Fkt)

0

ψ(t)dt

)
1
2







= [α+ d (1 − α)]

∫ d(ft,t)

0

ψ(t)dt <

∫ d(ft,t)

0

ψ(t)dt

which is a contradiction. Thus, {ft} = {t} = F1t. Therefore, F1t = Fkt = {ft} =
{gt} = {t}.

Uniqueness follows easily from condition (2′′). The proof is thus completed. �

Important remark. Every contractive or strict contractive condition of integral
type automatically includes a corresponding contractive or strict contractive con-
dition, not involving integrals, by setting ϕ(t) = 1 (resp. ψ(t) = 1) over R+. So,
our results extend, generalize and complement several various results existing in
the literature.
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