
Annales Mathematicae et Informaticae

35 (2008) pp. 163–172
http://www.ektf.hu/ami

ICT teaching methods – Programming
languages

Zsuzsanna Papp-Varga, Péter Szlávi, László Zsakó

Department of Media and Educational Informatics
Eötvös Loránd University, Budapest, Hungary

Submitted 7 March 2008; Accepted 9 December 2008

Abstract

Today the important ICT topics are taught with the help of various meth-
ods. Some of them are unsuitable for successful teaching-learning whereas
others may bring about success in certain age groups and class types.

Programming languages were first taught shortly after the appearance of
high-level programming languages. First it was done rather as an “art”, but
later more and more consciously and systematically. However, it should be
stated that the methods used in teaching programming languages, as “lan-
guages”, are far from being near to those of natural languages with respect
to their elaborateness, quality and, unfortunately, efficiency.

1. Introduction

The most important teaching methods of the various fields of information and
communication technology (ICT) have already been developed [15]. As ICT teach-
ing cannot boast with a long history, in most cases they have not been clearly
formulated, and their formation has not been so conscious but rather instinctive,
which results in the fact that most teachers do not use one single method but a
sort of blend of methods, where one of them is represented dominantly.

This methodological “uncertainty” also ensues that there are teachers who are
capable of teaching successfully even when they use a method labelled below as
being negative. The negative label can be principally explained by the fact that
these methods do not “automatically” ensure good teaching; what is more, it is
fairly easy to teach very badly when one relies on them.

Hereinafter the most widespread programming language teaching methods are
listed and reviewed:

163

164 Zs. Papp-Varga, P. Szlávi, L. Zsakó

Statement-oriented (the language is seen as a set of statements, and the indi-
vidual elements of the set are taught in a certain order).

Using as a tool (when teaching programming and database management, it con-
siders the aspects of database-teaching to be of primary concern, and thus
introduces language tools in the necessary extent).

Software technology-oriented (a programming language teaching method ad-
apted to a software developing methodology and technology, where the meth-
odology motivates the choice of a language or even languages).

Task type-oriented (the method is identical with the one discussed at the pro-
gramming teaching method; it introduces new programming language knowl-
edge in a way that the problems to be solved necessitate).

Language-oriented (the method sees a language as a structural unit, bringing
the logic of the language to front, and introducing the concrete elements of a
language in the necessary extent and order).

Action-oriented (the statements of a language are taught in a way that it traces
them back to an implementation in another language – formerly to assembly
statements, now rather to other high-level languages).

Sample task-based (the method presents a language through an analysis of sam-
ple tasks).

2. Statement-oriented

The statement-oriented method defines a programming language as a set of
statements [1]. It conceives teaching a language as teaching the elements of a set.
(And to top it all, in alphabetical order, in the worst case.1) The idea of the set
also refers to the fact that each element of the set, i.e. each statement of a language
must be taught (which leads to a common ICT teaching delusion2). Nevertheless,
it is easy to foresee the depth of acquiring a language: it is only a mere set of lexical
elements lacking any connections among statements or with the modus operandi.

Neither does this notion promote deciding which elements are important and
which are not. Moreover, there is no guarantee that one will ever make any use of
the elements learned.

If one pictures a language this way, one can claim that a language is an un-
structured unity of elements and thus there is no need for any further knowledge
to construct programs from the elements: it will develop by “itself”.

1This idea evolved based on books on programming languages. These books have not yet
reached the advanced state of those on natural languages. In most cases the same book is meant
to be the manual of a given language (which is practically in alphabetical order), the language
coursebook, the dictionary etc.

2The notion of popular delusion see in [16].

ICT teaching methods – Programming languages 165

3. Applying as a tool

There are many programming teaching methods where program writing is more
or less an automated activity, and can be done with the help of coding rules and
coding conventions. In this case the programming language appears as a result of
the coding process. One always needs only that amount that one needs for coding
one’s algorithms [17, 13].

Let us see some examples for the above (Pascal encoding rules):

Algorithmic statement (with

Hungarian keywords)

Pascal code equivalents

Be: variables [conditions] Repeat

 write('question?');

 readln(variables)

until conditions;

Ha conditions akkor

 statements

 statements

If condition then begin

 statements

 end

else begin

 statements

end;

 condition

 statement

While condition do begin

 statements

end;

When using this method, it is guaranteed that the acquired language elements will later be
When using this method, it is guaranteed that the acquired language elements

will later be used again. Since the structures, algorithmic elements and data types
recur regularly in programming craft, one can also state that the acquired elements
have to be often used.

4. Software technology-oriented

Relying on the above principle, Tibor Temesvári has constructed object-oriented
programming (OOP) and its implementation in the Pascal and C++ programming
languages. First, he discusses object-oriented programming in general (1. Char-
acteristics of OOP, 1.1. Classes and Objects, 1.2. Encapsulation, 1.3. Inheritance,
1.4. Implementation of Inheritance, 1.5. Using Inheritance, 1.6. Multiple Inheri-
tance, 1.7. Type Compatibility, 1.8. Polimorphism, 1.9. Dynamic Binding, 1.10. Vir-
tual Method, 1.11. Execution of Methods 1.12. Object-oriented Programming Lan-
guages), in which he does not touch upon concrete programming language knowl-
edge, but only deals with the object-oriented technology.

In Chapter 2 the above are followed by teaching the implementation possibilities
i.e. programming language skills (2. OOP in Pascal, 2.1. Planning, 2.2. Defining
a Class 2.3. Interface Part, 2.4. Implementation Part, 2.5. Self, 2.6. The Declara-
tion of Objects, 2.7. Using Objects, 2.8. Inheritance, 2.9. Procedure Calls Defined

166 Zs. Papp-Varga, P. Szlávi, L. Zsakó

in the Ancestor, 2.10. Redefined Methods, 2.11. Virtual Method Table – VMT,
2.12. Constructors (procedures), 2.13. Dynamic Methods, 2.14. Dynamic Method
Table (DMT), 2.15. Type Compatibility, 2.16. Dynamic Objects, 2.17. Cleaning up
Dynamic Objects, Destructors). [18]

Similarly, some software technology (the OOP, database management, COM-
and web-programming) denotes the guideline of Delphi language processing in a
book by Marco Cantù: [8]. There is also a good example for this in the topic of web
design in a book by Kris Jamsa et al. [4]. New paradigms including aspect-oriented
and generic programming may also affect teaching programming languages. [10]

5. Task type-oriented

In this case the elements of a programming language are introduced because
they are needed in the process of problem solving. The various elements do not
turn up because some educational objective requires them, but because the next
task cannot be solved without them. [12, 19]

The task below comes from a class introducing PROLOG that we developed
(relying on Turbo PROLOG system):

Step 1: facts

one’sfather(father,child).

one’smother(mother,child).

Step 2: clauses

one’sparent(X,Y) if one’smother(X,Y).

one’sparent(X,Y) if one’sfather(X,Y).

Step 3: or operation in clauses

one’sparent(X,Y) if one’smother(X,Y) or one’sfather(X,Y).

Step 4: and operation in clauses

one’sgrandparent(X,Y) if one’sparent(X,Z) and one’sparent(Z,Y).

Step 5: recursion in clauses

one’sancestor(X,Y) if one’sparent(X,Y)

or one’sparent(X,Z) and one’sancestor(Z,Y).

Step 6: “any” value in the place of parameters

parent(X) if one’sparent(X,_).

Step 7: “not” operation i.e. negation in clauses

ICT teaching methods – Programming languages 167

notparent(X) if one’sparent(_,X) and not (one’sparent(X,_)).

Step 8: cut operation in clauses

oneparent(X) if parent(X) and !.

Step 9: display, and equally false formula in clauses

allparent if parent(X) and write(X) or fail or nl.

Step 10: equivalency check in clauses

twochilded(X) if one’sparent(X,Y) and one’sparent(X,Z) and

not (Y=Z).

Step 11: new programming skill without new language element

onechilded(X) if one’sparent(X,_) and not (twochilded(X)).

Similar examples can be found in the syllabus on teaching Logo programming
language developed at Eötvös Loránd University. Its subjects and the new language
elements to be learned in brackets are as follows:

• Drawing elementary shapes (forward, back, right, left, repeat)

• Constructing from shapes (learn, penup, pendown)

• Principles of making complex figures

• Circles, arcs (setpencolor, setpenwidth!)

• Recursion, trees (if)

• Line patterns, shape patterns (fill, setfillcolor, setfillpattern)

• Logo and the frame of reference (setx, sety, setheading)

• Fractals

An important development in teaching programming languages is that the
statement-oriented method is often merged with this one [20], since the abstract,
“crystal clear” know-how of the previous notion, which is free from programming
problems, are completed with the real-life experience of statements. It is the way
that makes the level of language teaching rise significantly!

6. Language-oriented

The language-oriented variant regards the language as a structured unit. It
examines the calculation model belonging to the language [2] (in primary and sec-
ondary education only von Neumann-principled, automaton-principled, functional,
and logical languages can be present). Then it reviews the main framework of the
build-up of programs e.g. in the Pascal language:

168 Zs. Papp-Varga, P. Szlávi, L. Zsakó

Program name;

declarations

begin

statements

end.

Declarations: label definitions

constant definitions

type definitions

variable declarations

procedure and function definitions

Becoming familiar with the basic concepts used in a programming language and
their possible implementations in that language (e.g. compilation unit, program
unit, block structure, memory management, declaration evaluation, concepts re-
garding variables, concepts regarding type, parameter pass etc.) also tightly belong
to the build-up of a program [18].

The next step might be that certain elements of the language are examined and
it is given how the programming structures are implemented in that given language.
For example as for Pascal, one might claim the following about conditional loops
(before setting the concrete syntactic rules):

The Pascal language can have pre-test or post-test conditional loops. For pre-test
loops the condition is first evaluated – if the condition is true, the code within the
block is then executed. This repeats until the condition becomes false. On the other
hand, for post-test loops the exit condition must be set. The core of a pre-test
loop can be one single statement. If more statements are necessary, they must
be surrounded by statement brackets. Contrarily, the core of a post-test loop can
contain any number of statements.

Finally, only after the above can one give the syntax and semantics of the
statements. As opposed to higher education, in primary and secondary education
it is usually not a formal method that is used but a demonstration via examples. To
define syntax, only the format of the statement is given (pl. while condition do

statement). For semantics, however, smaller programs are used, through which the
operation of the given statement can be understood (with the help of the method
described in the next chapter).

It should be noted that in higher education this method is becoming more
and more widespread in demonstrating the possible elements of a programming
language, bringing examples parallelly from several languages [9, 18]. For instance,
the course Functional languages, taught by Zoltán Horváth at bachelor’s degree
courses for programmers at the Faculty of Informatics, Eötvös Loránd University,
follows the same structure. Of course, both the objective and the presupposed
basics are different from those in primary and secondary education.

ICT teaching methods – Programming languages 169

7. Action-oriented

Here the primary criterion is to understand how the statements operate i.e.
to make students able to visualize what happens when the statements are being
executed. In the simplest case one can give the statements of the language in
another known language, perhaps in assembly language.

The example explaining DO statement below comes from a classical FORTRAN
coursebook [6]:[LV]:

 K=1

17 T=0.0

 J=1

18 T=T+A(I,J)*B(J,K)

 J=J+1

 IF(J-N)18,18,20

20 C(I,K)=T

 K=K+1

 IF(K-N)17,17,21

21

 DO 20 K=1,N

 T=0.0

 J=1

18 T=T+A(I,J)*B(J,K)

 J=J+1

 IF(J-N)18,18,20

20 C(I,K)=T

21

In a book on C# one can read the following explanation about the ++ operator [3]:

a = ++b; // b = b+1; a = b;

a = b++; // a = b; b = b+1;

The above examples show that one should not necessarily go back to another lan-
guage to describe the operation of a statement, but one can define it with the help
of other elements of the same language.

In a sense, a possible solution belonging here is when the semantics of the
elements of a new programming language is defined with the elements of a “well-
known” algorithmic language. This results in an extra educational profit: while the
elements of a language are demonstrated, the students can practise programming
in an algorithmic language, as well.

8. Sample task-based

According to this notion, if students are shown quite a lot of examples, they
will be able to acquire a programming language well [7]. Here is a quotation from
a book by Zsuzsanna Márkusz called “It is Easy to Write PROLOG Programs”:

“My PROLOG teaching experience has convinced me that the easiest way to learn
programming is through sample programs. Therefore, instead of any scientific
introduction (notations, definitions, theorems) the book foreshows twelve sample
programs, which are explained in great detail.”

Although it shows some resemblance to the task type-oriented method, their basic
principles are different. There the root of the matter is that the set of tasks makes
it necessary to introduce new language elements. As for this method, it is just the
opposite: the language elements are given in the tasks and their build-up follows

170 Zs. Papp-Varga, P. Szlávi, L. Zsakó

the language elements. That is why it is not certain that the acquired language
elements will need to be used in the future and they might be forgotten if not
practised.

8.1. A short evaluation of the above methods

We think that the statement-oriented method is unsuitable for teaching pro-
gramming languages because a programming language is not equal to a set of
statements. Behind a programming language there is always an idea, and in order
to apply a programming language properly, it is inevitable to learn it3. Program-
ming languages use basic language concepts like type, block structure, parameter
pass etc., which might be different in various language types, or even in languages
and their knowledge is connected primarily not to statements, but to languages.
In each programming language a program has some structure, some constructing
rule.

The “Applying as a tool” approach is the one that is needed in algorithm- and
data-oriented teaching of programming, and thus this method can be used paral-
lelly with the above programming teaching methods, that is with teenage students
considering ICT as a carrier.

The software technology-oriented method is, actually, an improvement of the
previous one (applying as a tool) for higher education, ICT specialists’ education;
so it can be a very powerful method there. On the other hand, in primary and
secondary education it could have a role maximum in ICT vocational training.

The task type-oriented method is the only one that can be used in each level
of primary and secondary education, where the main objective is the implementa-
tion and try-out of algorithms, and not a thorough knowledge of a programming
language (quotation from the justification in the Hungarian National Curriculum:
It is enough to teach a programming language to that depth that is necessary for
implementing and trying out algorithms. The language itself is not a crucial part
of the ICT curriculum. [21]).

The language-oriented concept may be excellent to summarize the elements of
a language as completing language learning. For those considering information
science as a carrier, it is also possible to introduce a new language that is fairly
similar to the ones learnt before (e.g. after Pascal Delphi, C++ can be taught
this way; or after C++, C#, . . .), as in this case the students’ previous language
knowledge can be used effectively.

The action-oriented idea greatly resembles to the statement-oriented one, since
it teaches statements, as well. On the other hand, here the definitions are given
on the level of the “operation” of statement (i.e. how they work) instead of their
“specification” level (i.e. what they should do). If used exclusively for beginners, it
will not bring any success.

Teaching with the help of sample tasks is a “medieval” concept. This way one
can train “artists” of programming and not its conscious doers.

3It is the “cost” of how to discover this world of ideas that qualifies the language itself. That
is why it has such special importance in education. [14]

ICT teaching methods – Programming languages 171

Note. The presentation of language teaching methods is somehow dangerous
when relying on books on programming languages. The reason for this is that
today the methodological background of books on programming languages is much
weaker than that of those on natural languages. That is why the same book dis-
cusses a language in several ways from several aspects.4

References

[1] Alcock, D., Illustrating BASIC! Cambridge University Press, 1977. (Hungarian
translation: Ismerd meg a BASIC nyelvet! Műszaki Könyvkiadó, 1984.)

[2] Horowitz, E., Fundamentals of programming languages, Springer Verlag, 1983.
(Hungarian translation: Magasszintű programnyelvek, Műszaki Könyvkiadó, 1987.)

[3] Illés Z., Programozás C# nyelven, Jedlik Oktatási Stúdió, 2004.

[4] Jamsa, K., Lalani, S., Weakley, S., Web-programming, Jamsa Press, 1996.
(Hungarian translation: A Web programozása, Kossuth Kiadó, 1997.)

[5] Lischner, R., Delphi in Nutshell, O’Reilly & Associates, Inc., 2000.

[6] Lőcs Gy., Vigassy J., A FORTRAN programozási nyelv, Műszaki Könyvkiadó,
1973.

[7] Márkusz Zs., PROLOG-ban programozni könnyű, Novotrade, 1988.

[8] Cantù, M., Mastering Delphi 5, Sybex, 1999.

[9] Nyékiné Gaizler J. (szerk.), Programozási nyelvek, Kiskapu Kft., 2003.

[10] Porkoláb Z., Kozsik T., Zsók V., Új szoftverparadigmák nyelvi támogatása: a
jelen oktatása – a holnap technológiája, Informatika a felsőoktatásban’05. Debrecen,
aug. 24–26, 2005. http://aszt.inf.elte.hu/~fun_ver/2005/papers/if05_paper_
zsv.pdf

[11] Stroustrup, What is “Object-Oriented Programming”? (1991 revised version),
Proc. 1st European Software Festival, February, 1991.
http://www.research.att.com/~bs/whatis.pdf

[12] Szentpéteriné Király T., Comenius Logo teknőcgrafika, Kossuth Kiadó, 2000.

[13] Szlávi P., A programkészítés didaktikai kérdései, PhD thesis, 2004.

[14] Szlávi P., Programozási nyelvek értékelése, electronic script, 1999. http://digo.
inf.elte.hu/~szlavi/InfoOkt/SzoftErt/Szoftverek%20értékelése.pdf

[15] Szlávi P., Zsakó L., Methods of teaching programming, Teaching Mathematics

and Computer Science 1, No. 2 (2003) 247–258.

[16] Szlávi P., Zsakó L., Delusions in informatics education, Teaching Mathematics

and Computer Science 2, No. 1 (2004) 151–152.

[17] Szlávi P., Zsakó L., Temesvári T., Módszeres programozás: A programkészítés
technológiája, ELTE IK, 2007.

4In most cases the same book can be used as a manual and a coursebook of a programming
language. Moreover, it often contains programming know-how. Now let us compare them with
books on natural languages, where one can find monolingual dictionaries, bilingual dictionaries,
coursebooks, workbooks, books to develop speaking skills etc.

172 Zs. Papp-Varga, P. Szlávi, L. Zsakó

[18] Szlávi P., Zsakó L., Temesvári T., Programozási nyelvi alapfogalmak, ELTE IK,
2005.

[19] Turcsányiné Szabó M., Zsakó L., Comenius Logo gyakorlatok, Kossuth Kiadó,
1997.

[20] Végh Cs., Juhász I., Java – start! Logos 1999, 2000.

[21] Zsakó L., Az informatika ismeretkörei, ELTE IK, 2005.

Zsuzsanna Papp-Varga

Péter Szlávi

László Zsakó

Department of Media and Educational Informatics
Eötvös Loránd University
Budapest
Hungary

e-mail:
vzsuzsa@elte.hu

szlavi@ludens.elte.hu

zsako@ludens.elte.hu

