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Abstract

In this note we deal with the zeros of polynomials defined recursively,
where the coefficients of these polynomials are the terms of a given second
order linear recursive sequence of integers. Some results on the Fibonacci-
coefficient polynomials obtained by D. Garth, D. Mills and P. Mitchell will
be generalized.
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1. Introduction

Let R0 = 0, R1 = 1, A and B be fixed positive integers and let Rn denote the
nth term of the second order linear recursive sequence

R = {Rn}∞n=0,

where for n > 2
Rn = ARn−1 + BRn−2. (1.1)

According to the known Binet-form, for n > 0

Rn =
αn − βn

α − β
,

where α and β are the zeros of the characteristic polynomial x2 − Ax − B of the
sequence R. We can suppose that α > 0 and β < 0.

∗Research has been supported by the Hungarian OTKA Foundation No. T048945.

71



72 F. Mátyás

In the special case A = B = 1 we can get the Fibonacci-sequence, that is, with
the usual notation

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n > 2).

We can similarly define the most known second order linear recursive sequences
of polynomials, such as the Chebishev-polynomials

{Un(x)}∞n=0

of the second kind and the Fibonacci-polynomials

{Fn(x)}∞n=0,

where

U0(x) = 0, U1(x) = 1, Un(x) = 2xUn−1(x) − Un−2(x) (n > 2)

and

F0(x) = 0, F1(x) = 1, Fn(x) = xFn−1(x) + Fn−2(x) (n > 2). (1.2)

It is well-known that for n > 2, Un(z) = 0 if and only if z = cos kπ

n
for k =

1, 2, . . . , n − 1 and so z ∈ R and |z| < 1, while for n > 2 Fn(z′) = 0 if and only
if z′ = 2i cos kπ

n
for k = 1, 2, . . . , n − 1 and so z′s are purely imaginary complex

numbers except 0 if n is even, and |z′| < 2.

According to D. Garth, D. Mills and P. Mitchell [1] the definition of the Fibo-
nacci-coefficient polynomial pn(x) is the following:

pn(x) =
n

∑

k=0

Fk+1x
n−k = F1x

n + F2x
n−1 + · · · + Fnx + Fn+1. (1.3)

It is worth mentioning that (1.3) is not a suitable (linear) transformation of (1.2).

The aim of this paper is to investigate the zeros of the polynomials qn(x), where

qn(x) =

n
∑

k=0

Rk+1x
n−k = R1x

n + R2x
n−1 + · · · + Rnx + Rn+1, (1.4)

that is, our results concern to a family of the linear recursive sequences of second
order instead of the only one Fibonacci-sequence.

Naturally, with the notation

q⋆

n(x) = xnqn(1/x) = R1 + R2x + R3x
2 + · · · + Rn+1x

n (1.5)

we can find information on the zeros of the polynomials q⋆
n(x).
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2. Preliminary and known results

At first we mention that the polynomials qn(x) can easily be rewritten in a
recursive manner. That is, if q0(x) = 1 then for n > 1

qn(x) = xqn−1(x) + Rn+1.

Lemma 2.1. Let for n > 1, gn(x) = (x2 − Ax − B)qn(x). Then

gn(x) = xn+2 − Rn+2x − BRn+1. (2.1)

Proof. Using (1.4) we get q1(x) = R1x + R2 and by (1.1) g1(x) = (x2 − Ax −
B)q1(x) = (x2 − Ax − B)(R1x + R2) = · · · = x3 − R3x − BR2. Continuing the
proof with induction on n, we suppose that the statement is true for n− 1 and we
prove it for n. Applying (1.4) and (1.1), after some numerical calculations one can
get that

gn(x) = (x2 −Ax−B)qn(x) = (x2 −Ax−B)(R1x
n +R2x

n−1 + · · ·+Rnx+Rn+1)

= · · · = xn+2 − Rn+2x − BRn+1.

�

Lemma 2.2 (Theorem of S. Kakeya [3]). If every coefficients of the polynomial
f(x) = a0+a1x+· · ·+anxn are positive numbers and the roots of equation f(x) = 0
are denoted by z1, z2, . . . , zn, then

γ 6 |zi| 6 δ

holds for every 1 6 i 6 n, where γ is the minimal, while δ is the maximal value in
the sequence

a0

a1

,
a1

a2

, . . . ,
an−1

an

.

The following lemma can be found in [2].

Lemma 2.3. Let us consider the sequence R defined by (1.1). The increasing order
of the elements of the set

{

Ri+1

Ri

: 1 6 i 6 n

}

is
R2

R1

,
R4

R3

,
R6

R5

, . . . ,
R7

R6

,
R5

R4

,
R3

R2

.
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3. Results and proofs

At first we deal with the number of the real zeros of the polynomials qn(x)
defined in (1.4).

Theorem 3.1. a) If n > 2 and even, then the polynomial qn(x) has not any real
zero, that is, every zeros are non-real complex numbers.

b) If n > 3 and odd, then the polynomial qn(x) has only one real zero and this
is negative. That is, every but one zeros are non-real complex numbers.

Proof. Because of the definition (1.1) of the sequence R the coefficients of the
polynomials qn(x) are positive ones, thus positive real root of the equation qn(x) =
0 does not exist. That is, it is enough to deal with only the existence of negative
roots of the equation qn(x) = 0.

a) Since n is even, by (2.1), the coefficients of the polynomial gn(−x) =
(−x)n+2 − Rn+2(−x) − BRn+1 = xn+2 + Rn+2x − BRn+1 have only one change
of sign, thus according to the Descartes’ rule of signs, the polynomial gn(x) has
exactly one negative real zero. But gn(x) = (x2 − Ax − B)qn(x) implies that
gn(β) = 0, where β < 0, and so the polynomial qn(x) can not have any negative
real zero.

b) Since n > 3 is odd, thus the existence of at least one negative real zero is
obvious. We have only to prove that exactly one negative real zero exists. The
polynomial

gn(−x) = (−x)n+2 − Rn+2(−x) − BRn+1 = −xn+2 + Rn+2x − BRn+1

shows that among its coefficients there are two changes of signs, thus according
to the Descartes’ rule of signs, the polynomial gn(x) has either two negative real
zeros or no one. But gn(x) = (x2 −Ax−B)qn(x) implies that for β < 0 gn(β) = 0.
Although, gn(α) = 0 also holds, but α > 0. That is, an other negative real zero of
gn(x) must exist. Because of gn(x) = (x2 − Ax − B)qn(x) this zero must be the
zero of the polynomial qn(x).

This terminated the proof of the theorem. �

In this part of the paper we deal with the localization of the zeros of the poly-
nomials qn(x) defined in (1.4).

Theorem 3.2. Let z ∈ C denote an arbitrary zero of the polynomial qn(x). For
n > 1

A 6 |z| 6 A +
B

A
,

where A and B are positive integers from (1.1).

Proof. To apply Lemma 2.2 for the polynomial qn(x) we have to determine the
minimal and maximal values in the sequence

Rn+1

Rn

,
Rn

Rn−1

, . . . ,
R2

R1

.
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According to Lemma 2.3, these are R2

R1

and R3

R2

, respectively. But by (1.1), R2

R1

= A

and R3

R2

= A
2
+B

A
= A + B

A
, which match the statement of the theorem. �

Remarks. 1) If n > 3 and is odd then for the only one negative real zero zn of
the polynomial qn(x)

−A − B

A
6 zn 6 −A. (3.1)

2) If we know the exact value of A and B then the estimation in (3.1) can be
improved. E.g. in the case of the Fibonacci-sequence (A = B = 1) (see in [1])

−2 < −1 +
√

5

2
< zn 6 −1.

3) For arbitrary zero z⋆ of the polynomial q⋆
n(x) (1.5)

1

A + B

A

6 |z⋆| 6
1

A

holds.
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