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1. Introduction

In this paper we consider three-dimensional systems of neutral differential equa-
tions of the form:

(

y1(t) − p y1(t − τ)
)

′

= p1(t) f1(y2(h2(t))),

y′

2(t) = p2(t) f2(y3(h3(t))), (1.1)

y′

3(t) = σ p3(t) f3(y1(h1(t))),

where t ∈ R+ = [0,∞), σ = 1 or σ = −1 and the following conditions are assumed
to hold without further mention:

(a) τ > 0, 0 < p < 1;

(b) pi ∈ C(R+, R+), i = 1, 2, 3 are not identically zero on any subinterval
[T,∞) ⊂ R+ and

∞
∫

pj(t) dt = ∞ for j = 1, 2;
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(c) hi ∈ C(R+, R) and

lim
t→∞

hi(t) = ∞ for i = 1, 2, 3;

(d) fi(u) = |u|αi sgn u where αi ∈ R, αi > 0, i = 1, 2, 3.

The assumption (d) implies that

(e) ufi(u) > 0 for u 6= 0 and fi ∈ C(R,R), i = 1, 2, 3 are nondecreasing func-
tions.

Surveying the rapidly expanding literature devoted to the study of oscillatory
and asymptotic properties of neutral differential equations, one finds that few pa-
pers concern systems of neutral equations (for example [1-9]). The purpose of this
paper is to establish some criteria for the oscillation of the system (1.1) for the
following cases

I) σ = −1 and 0 < α1 α2 α3 < 1;

II) σ = −1 and α1 α2 α3 = 1;

III) σ = 1.

Another cases (for example σ = −1 and α1 > 1, 0 < α2 6 1, α3 > 1) are
studied in [6]. Theorem 1 and Theorem 2 are generalizations of results of V. N.
Shevelo, N. V. Varech, A. G. Gritsai in paper [7].

For any y1(t) we define z(t) by

z(t) = y1(t) − p y1(t − τ).

Let t0 > 0 be such that

t1 = min

{

t0 − τ, inf
t>t0

hi(t), i = 1, 2, 3

}

> 0.

A vector function y = (y1, y2, y3) is a solution of the system (1.1) if there exists
a t0 > 0 such that y is continuous on [t1,∞), z(t), y2(t), y3(t) are continuously
differentiable on [t0,∞) and y satisfies system (1.1) on [t0,∞).

Denote by W the set of all solutions y = (y1, y2, y3) of the system (1.1) which
exist on some ray [Ty,∞) ⊂ R+ and satisfy

sup

{ 3
∑

i=1

| yi(t)| : t > T

}

> 0 for any T > Ty.

Such a solution is called a proper solution. A proper solution y ∈ W is defined to
be nonoscillatory if there exists a Ty > 0 such that its every component is different
from zero for all t > Ty. Otherwise a proper solution y ∈ W is defined to be
oscillatory.
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2. Some basic lemmas

We begin with some lemmas which will be useful in the sequel.

Lemma 2.1. ([2, Lemma1]) Let (a)–(d) hold and y ∈ W be a nonoscillatory solu-
tion of (1.1). Then there exists a t0 > 0 such that z(t), y2(t), y3(t) are monotone
functions of constant sign on the interval [t0,∞).

Let y = (y1, y2, y3) ∈ W be a nonoscillatory solution of (1.1). Taking into
account the Lemma 2.1 we obtain:

y1(t) z(t) > 0 for t > t0 (2.1)

or
y1(t) z(t) < 0 for t > t0. (2.2)

Denote by N+ (or N−) the set of components y1(t) of all nonoscillatory solutions
y of system (1.1) such that (2.1) (or (2.2)) is satisfied.

For the components y1(t) of the nonoscillatory solutions hold the following
lemmas.

Lemma 2.2. ([5, Lemma3]) Let (a) hold and y1(t) ∈ N−. Then lim
t→∞

y1(t) = 0,

lim
t→∞

z(t) = 0.

Lemma 2.3. ([3, Lemma2]) Let (a) hold and y1(t) ∈ N+. If lim
t→∞

z(t) = 0, then

lim
t→∞

y1(t) = 0.

3. Oscillation theorems

Theorem 3.1. Assume that σ = −1 and

(A1) h3(h2(h1(t))) 6 t, hi(t) are nondecreasing functions for i = 2, 3;

(A2) 0 < α1 α2 α3 < 1.

If

(A3)
∞
∫

p3(v)
[

h1(v)
∫

0

p1(u)
(

h2(u)
∫

0

p2(s)ds
)α1

du
]α3

dv = ∞,

(A4)
∞
∫

p2(t)
(

∞
∫

h3(t)

p3(s)ds
)α2

dt = ∞,
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then every proper solution y ∈ W of (1.1) is either oscillatory or yi(t), i=1,2,3 tend
monotonically to zero as t → ∞.

Proof. Let y(t) ∈ W be a nonoscillatory solution of (1.1). According to Lemma 2.1
there exists a t0 > 0 such that z(t), y2(t), y3(t) are monotone functions of con-
stant sign on the interval [t0,∞). Without loss of generality we may assume that
y1(t) > 0 for t > t0. Then either y1(t) ∈ N+ or y1(t) ∈ N− for t > t0.

I. Let y1(t) ∈ N+, t > t0. Then z(t) > 0, t > t0 and using the assumptions (c),
(d) and (b), the third equation of (1.1) implies that y3(t) is a decreasing function
for t > t1 > t0.

I.1 Let y3(t) < 0, t > t2 > t1. In regard of (c) there exists a t3 > t2 such that
y3(h3(t)) < 0 for t > t3. The assumptions (d), (b) and the second equation of (1.1)
imply that y2(t) is a decreasing function for t > t3.

In view of (c) there exists a t4 > t3 such that h3(t) > t3 for t > t4. Using
the monotonicity of y3(t) we have y3(h3(t)) 6 y3(t3) and hence | y3(h3(t)) |> K1,
where K1 = −y3(t3) > 0 for t > t4. Raising this inequality to the power of α2 and
multiplying by −p2(t) the second equation of (1.1) implies

y′

2(t) 6 −Kα2

1 p2(t), t > t4. (3.1)

Integrating (3.1) from t4 to t and in regard of (b) we obtain lim
t→∞

y2(t) = −∞.

Therefore y2(t) < 0 for t > t5 > t4.
In view of (c) there exists a t6 > t5 such that h2(t) > t5 for t > t6. Using

the monotonicity of y2(t) we have y2(h2(t)) 6 y2(t5) and hence | y2(h2(t)) |> K2,
where K2 = −y2(t5) > 0, t > t6. Raising the last inequality to the power of α1

and multiplying by −p1(t) the first equation of (1.1) implies

z′(t) 6 −Kα1

2 p1(t), t > t6. (3.2)

Integrating (3.2) from t6 to t and in regard of (b) we obtain lim
t→∞

z(t) = −∞.

Therefore z(t) < 0 for t > t7 > t6 which is a contradiction with positivity of z(t)
for t > t0.

I.2 Assume that y3(t) > 0 for t > t2 > t1. In view of (c) there exists a t3 > t2
such that y3(h3(t)) > 0 for t > t3. The assumptions (d), (b) and the second equa-
tion of (1.1) imply that y2(t) is an increasing function for t > t3.

I.2.a Let y2(t) > 0 for t > t4 > t3. Integrating the second equation of (1.1)
from t4 to t we obtain

y2(t) > y2(t) − y2(t4) =

t
∫

t4

(

y3(h3(s))
)α2

p2(s) ds, t > t4. (3.3)
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In regard of monotonicity of functions h3(t), y3(t) the inequality t4 6 s 6 t may

be rewritten as
(

y3(h3(t4))
)α2

>

(

y3(h3(s))
)α2

>

(

y3(h3(t))
)α2

. Then from (3.3)

we get

y2(t) >

(

y3(h3(t))
)α2

t
∫

t4

p2(s) ds, t > t4.

In view of (c) there exists a t5 > t4 such that h2(t) > t4 for t > t5. Then the last
inequality holds for h2(t), t > t5, too:

y2(h2(t)) >

(

y3(h3(h2(t)))
)α2

h2(t)
∫

t4

p2(s) ds, t > t5. (3.4)

Raising (3.4) to the power of α1 and multiplying by p1(t) the first equation of (1.1)
implies:

z′(t) > p1(t)
(

y3(h3(h2(t)))
)α1α2

(

h2(t)
∫

t4

p2(s) ds
)α1

, t > t5.

Integrating this inequality from t5 to t and using the inequality y1(t) > z(t) >

z(t) − z(t5) we have

y1(t) >

t
∫

t5

p1(u)
(

y3(h3(h2(u)))
)α1α2

(

h2(u)
∫

t4

p2(s) ds
)α1

du, t > t5. (3.5)

In regard of monotonicity of functions h2(t), h3(t) and y3(t) the inequality t5 6

u 6 t may be rewritten as

(

y3(h3(h2(u)))
)α1α2

>

(

y3(h3(h2(t)))
)α1α2

for t > t5.

Combining the last inequality and (3.5) we obtain

y1(t) >

(

y3(h3(h2(t)))
)α1α2

t
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du, t > t5. (3.6)

In view of (c) there exists a t6 > t5 such that h1(t) > t5 for t > t6. Then (3.6)
holds for h1(t), t > t6, too and raising to the power of α3 we get

(

y1(h1(t))
)α3

>

(

y3(h3(h2(h1(t))))
)α1α2α3

[

h1(t)
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du
]α3

(3.7)
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for t > t6. Multiplying (3.7) by −p3(t) and using the third equation of system (1.1)
we have

y′

3(t) 6 −p3(t)
(

y3(h3(h2(h1(t))))
)α1α2α3

[

h1(t)
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du
]α3

(3.8)
for t > t6. Taking into account (A1) and the monotonicity of y3(t) we obtain

(

y3(h3(h2(h1(t))))
)α1α2α3

> (y3(t))
α1α2α3 for t > t6.

Therefore (3.8) may be rewritten as

y′

3(t)

(y3(t))α1α2α3

6 −p3(t)
[

h1(t)
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du
]α3

, t > t6. (3.9)

Integrating (3.9) from t6 to t and using the substitution x = y3(w) from (3.9) we
get

lim
t→∞

y3(t)
∫

y3(t6)

dx

xα1α2α3

6 −

∞
∫

t6

p3(v)
[

h1(v)
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du
]α3

dv. (3.10)

We know that y3(t) is a decreasing function and y3(t) > 0. Thus lim
t→∞

y3(t) = K1 >

0 and in view of (A2) we obtain lim
t→∞

y3(t)
∫

y3(t6)

dx
xα1α2α3

= K2, where K2 is a finite real

number. This fact contradicts the assumption (A3).

I.2.b Let y2(t) < 0, t > t4 > t3. In regard of (c) there exists a t5 > t4 such that
y2(h2(t)) < 0, for t > t5. The assumptions (d), (b) and the first equation of (1.1)
imply that z(t) is a decreasing function for t > t5. On the interval [t5,∞) hold:

• y1(t) > 0;

• z(t) is a decreasing function and z(t) > 0;

• y2(t) is an increasing function and y2(t) < 0;

• y3(t) is a decreasing function and y3(t) > 0.

Therefore exist lim
t→∞

y3(t) = A > 0, lim
t→∞

y2(t) = B 6 0 and lim
t→∞

z(t) = C > 0. We

shall show that A = 0, B = 0 and C = 0.
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(i) Let A > 0. Then y3(t) > A for t > T0 > t5. In view of (c) and raising to the
power of α2 we have (y3(h3(t)))

α2 > Aα2 for t > T1 > T0. Integrating the second
equation of (1.1) from T1 to t and using the last inequality we get

y2(t) − y2(T1) > Aα2

t
∫

T1

p2(s) ds, t > T1. (3.11)

(3.11) and (b) imply that lim
t→∞

y2(t) = ∞. Therefore y2(t) > 0 for t > T2 > T1,

which contradicts y2(t) < 0 for t > t5. Then lim
t→∞

y3(t) = 0.

(ii) Assume that B < 0. Then y2(t) 6 B for t > T0 > t5 and in regard of (c) we
have y2(h2(t)) 6 B for t > T1 > T0 . Hence | y2(h2(t)) |= −y2(h2(t)) > K1,K1 =
−B, t > T1. Raising this inequality to the power of α1, multiplying by −p1(t) and
using the first equation of (1.1) we obtain

z′(t) 6 −Kα1

1 p1(t), t > T1.

Integrating the last inequality from T1 to t and in view of (b) we get lim
t→∞

z(t) =

−∞. Therefore z(t) < 0 for t > T2 > T1 which is a contradiction with positivity of
z(t) for t > t5.

(iii) Let C > 0. Then z(t) > C for t > T0 > t5. Taking into account the
definition of z(t) we are led to y1(t) > z(t) > C for t > T0. In view of (c) we have
y1(h1(t)) > C for t > T1 > T0 and the third equation of (1.1) implies

y′

3(t) 6 −Cα3 p3(t), t > T1.

Integrating the last inequality from T1 to t and multiplying by (−1) we obtain

y3(T1) > y3(T1) − y3(t) > Cα3

t
∫

T1

p3(s) ds, t > T1.

Hence for t → ∞ we get

y3(T1) > Cα3

∞
∫

T1

p3(s) ds. (3.12)

In view of (c) there exists a T2 > T1 such that h3(t) > T1 for t > T2. Then (3.12)
holds for h3(t), t > T2, too:

y3(h3(t)) > Cα3

∞
∫

h3(t)

p3(s) ds, t > T2 > T1.
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Using the second equation of (1.1) we have

y′

2(t) > Cα2 α3p2(t)
(

∞
∫

h3(t)

p3(s) ds
)α2

, t > T2. (3.13)

Integrating (3.13) from T2 to t and in regard of (A4) we obtain lim
t→∞

y2(t) = ∞.

Hence y2(t) > 0 pre t > T3 > T2 which is a contradiction with y2(t) < 0 for t > t5.
Therefore lim

t→∞

z(t) = 0 and from Lemma 2.3 we obtain that lim
t→∞

y1(t) = 0.

II. Let y1(t) ∈ N−, t > t0. Then z(t) < 0, t > t0. Using the assumptions
(c), (d) and (b), the third equation of (1.1) implies that y3(t) is a decreasing func-
tion for t > t1 > t0.

II.1 Assume that y3(t) < 0, t > t2 > t1. Then we can proceed the same way
as in the case I.1 to get lim

t→∞

z(t) = −∞ which is contrary to Lemma 2.2.

II.2 Let y3(t) > 0 for t > t2 > t1. In view of (c) there exists a t3 > t2 such
that y3(h3(t)) > 0 for t > t3. The assumptions (d),(b) and the second equation of
(1.1) imply that y2(t) is an increasing function for t > t3.

II.2.a Let y2(t) > 0 for t > t4 > t3. In regard of (c) and monotonicity of y2(t)
holds: y2(h2(t)) > y2(t4) for t > t5 > t4. Raising this inequality to the power of α1,
multiplying by p1(t) and using the first equation of (1.1) we get z′(t) > Mα1p1(t)
where M = y2(t4), t > t5. Integrating this inequality from t5 to t we obtain

z(t) − z(t5) > Mα1

t
∫

t5

p1(s)ds, t > t5.

Hence lim
t→∞

z(t) = ∞ which is a contradiction with Lemma 2.2.

II.2.b Let y2(t) < 0 for t > t4 > t3. In view of assumptions (c), (d), (b) and
first equation of (1.1) we get that z(t) is a decreasing function for t > t5 > t4.
Therefore lim

t→∞

z(t) = A < 0 which contradicts the Lemma 2.2. �

Theorem 3.2. Let σ = −1 and assume that (A1) and (A4) hold. Moreover, let

(A5) α1 α2 α3 = 1;

(A6)
∞
∫

p3(t)
[

h1(t)
∫

0

p1(u)
(

h2(u)
∫

0

p2(s)ds
)α1

du
](1−ǫ)α3

dt = ∞, 0 < ǫ < 1.
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Then every proper solution y ∈ W of (1.1) is either oscillatory or yi(t), i=1,2,3
tend monotonically to zero as t → ∞.

Proof. Assume that y(t) ∈ W is a nonoscillatory solution of (1.1) and y1(t) > 0
for t > t0. We can proceed exactly as in the proof of Theorem 3.1. We shall discuss
only the possibility I.2.a. The proofs of cases I.1, I.2.b and II. are the same.

I. Let y1(t) ∈ N+, t > t0. Then z(t) > 0, t > t0 and the third equation of (1.1)
implies that y3(t) is a decreasing function for t > t1 > t0.

I.2 Assume that y3(t) > 0 for t > t2 > t1. The assumptions (c), (d), (b) and
the second equation of (1.1) imply that y2(t) is an increasing function for t > t3.

I.2.a Let y2(t) > 0 for t > t4 > t3. Then we can proceed the same way as for
the case I.2.a of Theorem 3.1 to get (3.7):

(

y1(h1(t))
)α3

>

(

y3(h3(h2(h1(t))))
)α1α2α3

[

h1(t)
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du
]α3

for t > t6. In view of monotonicity of y3(t), assumptions (A1), (A5) and raising to
the power of 1 − ǫ we are led to

(y1(h1(t)))
(1−ǫ) α3 > (y3(t))

1−ǫ
[

h1(t)
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du
](1−ǫ) α3

(3.14)

for t > t6. The property y2(t) > 0, t > t4 and the first equation of (1.1) imply
that z(t) is an increasing function for all sufficiently large t. From the proof of
Theorem 3.1 we know that h1(t) > t5 for t > t6. Therefore z(h1(t)) > z(t5) for
t > t6 and from y1(t) > z(t), t > t0 we get y1(h1(t)) > z(t5), t > t6. Hence

1 >
K1

(y1(h1(t)))α3

, K1 = (z(t5))
α3 > 0, t > t6.

Raising to the power of ǫ and multiplying by (y1(h1(t)))
α3 may be the last inequality

rewritten as

(y1(h1(t)))
(1−ǫ) α3 6 K2 (y1(h1(t)))

α3 , kde K2 = K−ǫ
1 , t > t6.

Combining this inequality and (3.14), multiplying by −p3(t) and using the third
equation of (1.1) we obtain

K2 (y3(t))
ǫ−1 y′

3(t) 6 −p3(t)
[

h1(t)
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du
](1−ǫ) α3

, t > t6.

(3.15)



102 T. Mihály

Integrating (3.15) from t6 to t we have

K2

ǫ

[

(y3(t))
ǫ − (y3(t6))

ǫ
]

6 −

t
∫

t6

p3(x)
[

h1(x)
∫

t5

p1(u)
(

h2(u)
∫

t4

p2(s) ds
)α1

du
](1−ǫ) α3

dx

for t > t6.
The last inequality and the assumption (A6) imply that lim

t→∞

(y3(t))
ǫ = −∞.

But (y3(t))
ǫ is a decreasing function and (y3(t))

ǫ > 0. Therefore lim
t→∞

(y3(t))
ǫ =

A > 0 and this is a contradiction with lim
t→∞

(y3(t))
ǫ = −∞. �

Theorem 3.3. Assume that σ = 1 and the assumptions (A3), (A4) of Theorem 3.1
are fulfilled. Then every proper solution y ∈ W of (1.1) is either oscillatory or
| yi(t) |, i = 1, 2, 3 tend monotonically to infinity as t → ∞ or yi(t), i=1,2,3 tend
monotonically to zero as t → ∞.

Proof. Let y(t) ∈ W be a nonoscillatory solution of (1.1). According to Lemma 2.1
there exists a t0 > 0 such that z(t), y2(t), y3(t) are monotone functions of con-
stant sign on the interval [t0,∞). Without loss of generality we may assume that
y1(t) > 0 for t > t0. Then either y1(t) ∈ N+ or y1(t) ∈ N− for t > t0.

I. Let y1(t) ∈ N+, t > t0. Therefore z(t) > 0 for t > t0. Using the assumptions
(c), (d) and (b), the system (1.1) implies that the following four cases may occur:

I.1 y1(t) > 0 y2(t) is increasing y3(t) is increasing z(t) is increasing
and y2(t) > 0 and y3(t) > 0 and z(t) > 0

I.2 y1(t) > 0 y2(t) is increasing y3(t) is increasing z(t) is decreasing
and y2(t) < 0 and y3(t) > 0 and z(t) > 0

I.3 y1(t) > 0 y2(t) is decreasing y3(t) is increasing z(t) is increasing
and y2(t) > 0 and y3(t) < 0 and z(t) > 0

I.4 y1(t) > 0 y2(t) is decreasing y3(t) is increasing z(t) is decreasing
and y2(t) < 0 and y3(t) < 0 and z(t) > 0

I.1 In view of (c) and monotonicity of y3(t) we get y3(h3(t)) > y3(t5) for
t > t6 > t5. Raising this inequality to the power of α2, multiplying by p2(t) and
using the second equation of (1.1) we have:

y′

2(t) > Lα2

1 p2(t), L1 = y3(t5), t > t6.

Integrating the last equation from t6 to t we obtain

y2(t) > y2(t) − y2(t6) > Lα2

1

t
∫

t6

p2(s)ds, t > t6. (3.16)
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Hence lim
t→∞

y2(t) = ∞, i.e. lim
t→∞

|y2(t)| = ∞.

In regard of (c) and monotonicity of y2(t) we are led to y2(h2(t)) > y2(t5),
t > t6 > t5. Raising this inequality to the power of α1, multiplying by p1(t) and
using the first equation of (1.1) we get:

z′(t) > Lα1

2 p1(t), t > t6, L2 = y2(t5).

Integrating the last inequality from t6 to t and using y1(t) > z(t) for t > t0 we
have:

y1(t) > Lα1

2

t
∫

t6

p1(s)ds, t > t6.

Therefore lim
t→∞

y1(t) = ∞ and lim
t→∞

|y1(t)| = ∞.

In view of (c) there exists a t7 > t6 such that h2(t) > t6 for t > t7. Then (3.16)
holds for h2(t), t > t7, too:

y2(h2(t)) > Lα2

1

h2(t)
∫

t6

p2(s)ds, t > t7.

Hence we have

z′(t) = p1(t)
(

y2(h2(t))
)α1

> L3 p1(t)
(

h2(t)
∫

t6

p2(s)ds
)α1

, L3 = Lα1 α2

1 , t > t7.

Integrating this inequality from t7 to t and taking into account y1(t) > z(t) we get

y1(t) > L3

t
∫

t7

p1(u)
(

h2(u)
∫

t6

p2(s)ds
)α1

du, t > t7. (3.17)

In regard of (c) the last inequality holds for h1(t), t > t8 > t7, too:

y1(h1(t)) > L3

h1(t)
∫

t7

p1(u)
(

h2(u)
∫

t6

p2(s)ds
)α1

du, t > t8.

Hence using the third equation of (1.1) we obtain

y′

3(t) > L4 p3(t)
(

h1(t)
∫

t7

p1(u)
(

h2(u)
∫

t6

p2(s)ds
)α1

du
)α3

, L4 = Lα3

3 , t > t8. (3.18)
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Integrating (3.18) from t8 to t we get

y3(t) > L4

t
∫

t8

p3(v)
(

h1(v)
∫

t7

p1(u)
(

h2(u)
∫

t6

p2(s)ds
)α1

du
)α3

dv, t > t8.

In view of (A3) the last inequality implies lim
t→∞

y3(t) = ∞. Then lim
t→∞

|y3(t)| = ∞.

I.2 We can proceed the same way as for the case I.1 to get (3.16):

y2(t) > y2(t) − y2(t6) > Lα2

1

t
∫

t6

p2(s)ds, t > t6.

Therefore lim
t→∞

y2(t) = ∞, i.e. y2(t) > 0 for t > t7 > t6. But this is a contradiction

with y2(t) < 0 for t > t5.

I.3 Using (c), monotonicity of z(t) and y1(t) > z(t) we have: y1(h1(t)) > L5,
L5 = z(t5), t > t6 > t5. Then the third equation of (1.1) may be rewritten as
y′

3(t) > Lα3

5 p3(t), t > t6. Integrating this inequality from t6 to t we obtain:

−y3(t6) > y3(t) − y3(t6) > Lα3

5

t
∫

t6

p3(s)ds, t > t6.

Hence for t → ∞ we see that

−y3(t6) > Lα3

5

∞
∫

t6

p3(s)ds.

In regard of (c) the last inequality holds for h3(t), t > t7 > t6, too:

−y3(h3(t)) = |y3(h3(t))| > L6

∞
∫

h3(t)

p3(s)ds, L6 = Lα3

5 , t > t7.

Hence

y′

2(t) = −p2(t)|y3(h3(t))|
α2 6 −Lα2

6 p2(t)
(

∞
∫

h3(t)

p3(s)ds
)α2

, t > t7,

and integrating from t7 to t we are led to

y2(t) − y2(t7) 6 −Lα2

6

t
∫

t7

p2(u)
(

∞
∫

h3(u)

p3(s)ds
)α2

du, t > t7.
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Therefore in view of (A4) we get lim
t→∞

y2(t) = −∞. It means that y2(t) < 0 for

t > t8 > t7 which is contrary to y2(t) > 0 for t > t5.

I.4 In regard of (c) and monotonicity of y2(t) we have |y2(h2(t))| > L7, L7 =
(−y2(t5)), t > t6 > t5. Hence z′(t) = −p1(t)|y2(h2(t))|

α1 6 −Lα1

7 p1(t), t > t6 and
integrating from t6 to t we obtain

z(t) − z(t6) 6 −Lα1

7

t
∫

t6

p1(s)ds, t > t6.

Using (b) the last inequality imply that lim
t→∞

z(t) = −∞. Therefore z(t) < 0 for

t > t7 > t6 which is a contradiction with z(t) > 0 for t > t5.

II. Let y1(t) ∈ N−. Hence z(t) < 0 for t > t0 and the third equation of (1.1)
implies that y3(t) is an increasing function for t > t1.

II.1 Assume that y3(t) > 0, t > t2 > t1. Then y3(h3(t)) > 0 for t > t3 > t2
and from the second equation of (1.1) we get that y2(t) is an increasing function
for t > t3.

II.1.a Let y2(t) > 0 for t > t4. In view of (c) and monotonicity of y2(t) we have
(y2(h2(t)))

α1 > (y2(t4))
α1 for t > t5 > t4. Integrating the first equation of (1.1)

from t5 to t and using the last inequality we are led to

z(t) − z(t5) > (y2(t4))
α1

t
∫

t5

p1(s)ds, t > t5.

Hence in view of (b) we get lim
t→∞

z(t) = ∞ which contradicts Lemma 2.2.

II.1.b Let y2(t) < 0, t > t4. Taking into account assumptions (b), (c), (d) the
first equation of (1.1) implies that z(t) is a decreasing function for t > t5. It means
that lim

t→∞

z(t) = A < 0 which is contrary to Lemma 2.2.

II.2 Assume that y3(t) < 0, t > t2 > t1. From the second equation of (1.1) we
get that y2(t) is a decreasing function for t > t3.

Function y3(t) is increasing. Therefore exists lim
t→∞

y3(t) = B 6 0. We shall

show that B = 0.
Let B < 0. Then y3(h3(t)) 6 B < 0 for t > t4 > t3. Hence |y3(h3(t))| > C,

C = −B and

y′

2(t) = −p2(t)|y3(h3(t))|
α2 6 −Cα2p2(t), t > t4.

Integrating the last inequality from t4 to t and using (b) we obtain lim
t→∞

y2(t) = −∞,

i.e. y2(t) < 0, t > t5 > t4. In regard of assumptions (b), (c) and (d) the first
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equation of (1.1) implies that z(t) is a decreasing function for t > t6. Therefore
lim

t→∞

z(t) = D < 0 which is a contradiction with Lemma 2.2. Then lim
t→∞

y3(t) = 0.

II.2.a Let y2(t) < 0, t > t4. From the first equation of (1.1) we have that z(t)
is a decreasing function. Therefore lim

t→∞

z(t) = E < 0 which contradicts Lemma 2.2.

II.2.b If y2(t) > 0, t > t4 > t3, then exists lim
t→∞

y2(t) = F > 0. We shall show

that F = 0.
Assume that F > 0. Then y2(h2(t)) > F , t > t5 > t4 and hence

z′(t) = p1(t)(y2(h2(t)))
α1 > Fα1p1(t), t > t5.

Integrating the last inequality from t5 to t and using (b) we obtain lim
t→∞

z(t) = ∞.

Therefore z(t) > 0 for t > t6 > t5 which is a contradiction with z(t) < 0. Then
lim

t→∞

y2(t) = 0.

Because y2(t) > 0, the first equation of (1.1) implies that z(t) is an increasing
function such that z(t) < 0. In regard of Lemma 2.2 we obtain lim

t→∞

z(t) = 0 and

lim
t→∞

y1(t) = 0. �
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