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Abstract

In this paper we give an effective method for determination of all solutions
of the Ljunggren’s Diophantine equation

x
2

+ 3y
2

+ 12z = 4M, (L)

in odd positive integers x, y and non-negative integers z, where M = a2
+

ab+ b2, N = 10M +2 and a, b are given non-negative integers. Equation (L)
is strictly connected with virus structure.

1. Introduction

In virology are known (see [3, pp. 171–200]) different groups of viruses. One of
such groups has been found by Stoltz [5], [6] and by Wrigley [7], [8] and is called as
symmetrons. Virus particles are invariably enclosed by shells of protein subunits
and these are packed geometrically according to symmetry rules. More of known
examples are close packed with each subunit surrounded by six neighbours, except
the twelve vertices which have five neighbours. In the paper [1], Goldberg indicated
that total number of nearly identical subunits which may be regularly packed on
the closed icosahedral surface is given by the following formula:

N = 10
(

a2 + ab + b2
)

+ 2, (G)

where a, b are given non-negative integers.

Stoltz ([5], [6]) and Wrigley ([7], [8]) discovered that the symmetrons have the
construction of linear, triangular and pentagonal and are called: disymmetrons,
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trisymmetrons and pentasymmetrons, respectively. Moreover, it is known [7], that
an icosahedron has 30 axes of twofold symmetry, 20 of threefold symmetry and 12
of fivefold symmetry. Hence, the subunits on the surface of an icosahedral virus
may be divided into 30, 20 or 12 corresponding previously listed groups symmetry.
Let the 30 disymmetrons contain du subunits, the 20 trisymmetrons contain tv
subunits and the 12 pentasymmetrons contain pw subunits, then we have

N = 30du + 20tv + 12pw, (S-W)

where

du = u − 1, tv =
(v − 1) v

2
, pw =

5w (w − 1)

2
+ 1 (1.1)

and u, v, w are positive integers.

Now, we remark that for each value of N given by the equation (G) the number
f(N) of the solutions of the equation (S-W) corresponds to the number theoretically
possible ways of making a virus with N subunits, but with different combinations
of symmetrons.

Putting

x = 2v − 1, y = 2w − 1, z = u − 1, N = 10M + 2, M = a2 + ab + b2

and using (1.1) Ljunggren [2] transformed the equation (S-W) to the following
form:

x2 + 3y2 + 12z = 4M. (L)

Moreover, he proved that total number f(N) of solutions of the Diophantine equa-
tion (L) is equal to

f(N) =
π
√

3

180
N + k1

√
N, (L1)

where k1 is bounded and is independent of N . From (L1) immediately follows that

lim
N→∞

f(N)

N
=

π
√

3

180
≈ 0.03.

Geometrically, the formula (L1) denote that the points (x, y) satisfying of the equa-
tion (L) all lie in the neighbourhood of the two lines:

y = 0.03x, y = 0.015x.

On page 54 of the paper [2] Ljunggren remarked (see [2, p. 54]) that the following
problem is important for applications in virology:

Ljunggren’s Problem. Find all odd, positive integers x, y and all non-negative
integers z satisfying the equation (L) for given non-negative integers values of a

and b.

In this paper we give an effective method for the solution of this Ljunggren’s
Problem.
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2. Solution of the Ljunggren’s Problem

The Diophantine equation (L) we can present in the following form

x2 + 3y2 = 4(M − 3z), (2.1)

where M = a2 +ab+b2 and a, b are given non-negative integers. Since x2 +3y2 > 0
and z > 0, then by (2.1) it follows that

0 6 z 6
1

3
M. (2.2)

From (2.2) follows that there is only finite number of integers z satisfying (2.2),
because for given non-negative a, b the number M = a2 + ab + b2 is fixed.

Now, let z = z0 ∈
[

0, 1
3M

]

and let

M0 = M − 3z0. (2.3)

From (2.1) and (2.3) we have

x2 + 3y2 = 4M0. (2.4)

Since M0 is non-negative integer then we can present this number in the form

M0 = 2αpα1
1 pα2

2 · · · pαr

r , (2.5)

where α > 0, αj > 1 are integers for j = 1, 2, . . . , r and pj are odd distinct primes.
Substituting (2.5) to (2.4) we obtain

x2 + 3y2 = 2α+2pα1
1 pα2

2 · · · pαr

r . (2.6)

From (2.6) and well-known properties of the divisibility and congruence relations
we get

pj | x2 + 3y2 ⇔ x2 ≡ −3y2 (mod pj), (2.7)

for each j = 1, 2, . . . , r.

By (2.7) and the properties of the Legendre’s symbol it follows that

(−3y2

pj

)

=

(−3

pj

)(

y2

pj

)

=

(−3

pj

)(

y

pj

)2

=

(−3

pj

)

= +1.

It is to observe that the equality
(

−3
pj

)

= +1, imply that for each j = 1, 2, . . . , r

the prime pj is the form pj = 6kj + 1.

Indeed, suppose that for some j = 1, 2, . . . , r the equality
(

−3
pj

)

= +1, imply

that pj 6= 6kj + 1. Since pj is prime, then pj = 6mj + 5.
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Hence, by well-known properties of Legendre’s symbol it follows that

(−3

pj

)

=

(−1

pj

)(

3

pj

)

= (−1)
pj−1

2

(

3

pj

)

. (2.8)

On the other hand from the Gauss reciprocity law we have

(

3

pj

)

(pj

3

)

= (−1)
(3−1)(pj−1)

2 = (−1)
pj−1

2 .
(2.9)

Since pj = 6mj + 5, then we have

(pj

3

)

=

(

6mj + 5

3

)

=

(

2

3

)

= −1. (2.10)

By (2.9) and (2.10) it follows that

(

3

pj

)

= (−1)
pj−1

2 +1
. (2.11)

From (2.11) and (2.8) follows that

(−3

pj

)

= (−1)
pj = (−1)

6mj+5
= −1, (2.12)

so proves our assertion. This fact implies that every odd prime pj of the right hand
of (2.6) is the form

pj = 6kj + 1, j = 1, 2, . . . , r.

By the Theorem 5 of the monograph [4, p. 349] it follows that every prime p which
is of the form p = 6k + 1 is of the form p = m2 + 3n2, where m,n are positive
integers. Therefore, we have

pj = x2
j + 3y2

j , for every j = 1, 2, . . . , r.

Now, we note that if the equation (2.6) has a solution in odd positive integers
x, y then we have

2α+2 | x2 + 3y2. (2.13)

Since x = 2v − 1 and y = 2w − 1 then

x2 + 3y2 = (2v − 1)2 + 3(2w − 1)2 = 4[v(v − 1) + 3w(w − 1) + 1]. (2.14)

By (2.13) and (2.14) it follows that

2α | v (v − 1) + 3w (w − 1) + 1. (2.15)

It is easy to see that the sum v (v − 1) + 3w (w − 1) + 1 is odd positive integer for
any positive integers v, w and consequently the relation (2.15) is impossible for any
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positive integers α > 1. Since α > 0, then we have α = 0 and the equation (2.6)
reduces to the form:

x2 + 3y2 = 4pα1
1 pα2

2 · · · pαr

r , (2.16)

where

pj = x2
j + 3y2

j , αj > 1, j = 1, 2, . . . , r. (2.17)

The representation pj in the form (2.17) is unique. This fact follows by the Theo-
rem 10 on page 221 of [4].

Further, we note that the following identity is true,

(

u2 + 3v2
) (

r2 + 3s2
)

= (ur − 3vs)
2

+ 3 (us + vr)
2
. (2.18)

From (2.18) and by uniqueness representation the prime number pj in the form
(2.17) it follows that

p
αj

j =
(

x2
j + 3y2

j

)αj
= R2

j + 3S2
j , j = 1, 2, . . . , r, (2.19)

where Rj , Sj are positive integers of different parity and representation (2.19) is
also unique.

Moreover, we remark that we can determine Rj and Sj in explicit form. Namely,
we have

Rj =
(xj+i

√
3yj)

αj +(xj−i
√

3yj)
αj

2 , Sj =
(xj+i

√
3yj)

αj −(xj−i
√

3yj)
αj

i
√

3
, (2.20)

for j = 1, 2, . . . , r. By (2.19), (2.16) and (2.18) it follows that

x2 + 3y2 = 4
r

∏

j=1

(

R2
j + 3S2

j

)

= 4
(

R2 + 3S2
)

, (2.21)

where R,S are positive integers of different parity and are effectively determined
by (2.18), (2.20) and (2.21).

Now, we observe that

4 = 12 + 3 × 12. (2.22)

From (2.22) and (2.18) we get

4
(

R2 + 3S2
)

=
(

12 + 3 × 12
) (

R2 + 3S2
)

= (R − 3S)
2

+ 3 (R + S)
2
. (2.23)

By (2.21) and (2.23) it follows that odd positive integers satisfy the following
equation:

x2 + 3y2 = (R − 3S)
2

+ 3 (R + S)
2
. (2.24)

Immediately, from (2.24) we get that

x = |R − 3S|, y = R + S, (2.25)
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and the positive integers x, y determined by the formula (2.25) are both odd and
satisfy the virulogical Ljunggren’s Diophantine equation (L).

On the other hand we note that the representation of (2.24) can be nonuniqu-
enes and for determined eventuelle other solutions of (2.24) we can applied the
following estimate, whose immediately follows from (2.21);

x < 4max {R,S} , y < 3max {R,S} . (2.26)

In this way we determine all odd positive integers solutions of the Ljunggren’s
Diophantine equation (L).

3. Remark and an example

We note that if the equation (2.6) has a solution in odd positive integers x, y

then the number M − 3z on the right hand of (2.6) must be odd non-negative
integer. Therefore, if M is odd then it suffices consider only even non-negative
integers z ∈

[

0, 1
3M

]

.

The following example is illustration of our method for this case:

Let a = 5, b = 3. Then M = a2 +ab+b2 = 52 +5×3+32 = 49 and consequently
the equation (2.6) has the form:

x2 + 3y2 = 4(49 − 3z), (3.1)

where 0 6 z 6 49 1
3 . Since z must be even integer then we can consider only the

case when z = 0, 2, 4, 6, 8, 10, 12, 14 and 16.

If z = 0 then the equation (3.1) has the form:

x2 + 3y2 = 4 × 72.

Since 7 = 6 × 1 + 1 = 22 + 3 × 12, then by (2.18) it follows that 72 = 12 + 3 × 42

and we have R = 1, S = 4, so

x = |R − 3S| = |1 − 12| = 11, y = R + S = 1 + 4 = 5.

Moreover, using (2.26) we obtain second solution, x = y = 7.

If z = 2, then M − 6 = 49 − 6 = 43 = 6 × 7 + 1 = 42 + 3 × 32, so R = 4, S = 3
and x = 5, y = 7 or x = 13, y = 1.

If z = 4, then M − 12 = 37 = 6 × 6 + 1 = 52 + 3 × 22, so R = 5, S = 2 and we
have x = 1, y = 7 or x = 11, y = 3.

If z = 6, then we obtain M − 18 = 31 = 6 × 5 + 1 = 22 + 3 × 32, so R = 2,
S = 3, and x = 7, y = 5 or x = 11, y = 1.
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If z = 8, then M − 24 = 25 = 52 and 5 6= 6k + 1, so the equation (2.6) has no
solutions.

If z = 10, then M − 30 = 19 = 6 × 3 + 1 = 42 + 3 × 12, so R = 4, S = 1 and
x = 1, y = 5 or x = 7, y = 3.

If z = 12, then M − 36 = 13 = 6 × 2 + 1 = 12 + 3 × 22, so R = 1, S = 2 and
x = 5, y = 3 or x = 7, y = 1.

If z = 14, then M − 42 = 7 = 6 × 1 + 1 = 22 + 3 × 12, so R = 2, S = 1 and
x = 1, y = 3 or x = 5, y = 1.

If z = 16, then M − 48 = 1 and we have x2 + 3y2 = 4, so there is only one
trivial solution in odd positive integers, namely x = y = 1.
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