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LINEAR DIOPHANTINE EQUATION WITH
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Abstract. In this note, we study the diophantine equation A(n

k)+B( n

k+1)+C( n

k+2)=0 in

positive integers (n,k), where A, B and C are fixed integers.
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1. Introduction

D. Singmaster (see [3]) found infinitely many positive integer solutions (n, k)
to the diophantine equation

(1)

(

n

k

)

=

(

n − 1

k + 1

)

.

All such solutions arise in a natural way from the sequence of Fibonacci
numbers (Fm)m≥0 given by F0 = 0, F1 = 1 and Fm+2 = Fm+1 + Fm for m ≥ 0.
Goetgheluck (see [1]) extended the above result and found infinitely many positive
integer solutions (n, k) for the diophantine equation

2

(

n

k

)

=

(

n − 1

k + 1

)

.

These solutions arise in a natural way from the positive integer solutions of the Pell
equation x2 − 3y2 = −2. Several other diophantine equations involving binomial
coefficients have been considered in [2], [4] and [5].

In this note, we fix three integers A, B, C, not all zero, and look at the
positive integer solutions (n, k) of the equation A

(

n

k

)

+ B
(

n

k+1

)

+ C
(

n

k+2

)

= 0. To

avoid degenerate cases, we shall assume that 1 ≤ k < k + 2 ≤ n − 1. We shall also
assume that AC 6= 0. Indeed, say if A = 0, then the above equation simplifies to
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(2) B

(

n

k + 1

)

+ C

(

n

k + 2

)

= 0.

Obviously, equation (2) has no solution if BC > 0. Suppose that BC < 0 (say,
up to changing signs, that B < 0 and C > 0) and that gcd(B, C) = 1. Then
equation (2) implies B(k + 2) + C(n − k − 1) = 0, which can be rewritten as
n = ((C − B)k + C − 2B)/C = k + 1 − B(k + 2)/C. Thus, n is an integer if and
only if k ≡ −2 (mod C). Moreover, the conditions 1 ≤ k < k + 2 ≤ n − 1 are
always fulfilled if k > 1 and k ≥ −2(1+C/B), and therefore (2) has infinitely many
solutions.

The case when C = 0 can be reduced to the case when A = 0 by using the
symmetry of the binomial coefficients and the substitution (A, C, k) 7−→ (C, A, n−
k − 2).

Acknowledgements. This paper was written during a very enjoyable visit
by the first author to University of West Hungary in Sopron; he wishes to express
his thanks to that institution for the hospitality and support.

2. Main Result

It is clear that we may assume that gcd(A, B, C) = 1 and that A > 0. Our
main result is the following.

Theorem. Let A, B and C be integers with A > 0, C 6= 0 and gcd(A, B, C) = 1.
If the diophantine equation

(3) A

(

n

k

)

+ B

(

n

k + 1

)

+ C

(

n

k + 2

)

= 0.

admits infinitely many integer solutions 1 ≤ k < k + 2 ≤ n − 1, then one of the
following holds:
(i) B = A + C and C < 0, case in which all the solutions (n, k) are on the line

A(k + 2) + C(n − k) = 0,

(ii) A = A2
0, B = −2A0C0, C = C2

0 hold with some positive coprime integers A0

and C0, case in which all solutions (n, k) with 1 ≤ k < k + 2 ≤ n − 1 of (3) are of
the form

(4) k + 2 =
t(t + C0)

A0(A0 + C0)
and n − k =

t(t − A0)

C0(A0 + C0)



Linear diophantine equations with three consecutive binomial coefficients 55

for some positive integer t.
(iii) B 6= A + C, D = B2 − 4AC > 0 is not a perfect square, and

(5) X2 − DY 2 = E

holds, where X = (B2 − 4AC)(n− k)−A(B− 2C), Y = 2A(k +2)+B(n− k)−A,
E = 4A2C(A−B+C), case in which all positive integer solutions (n, k) of equation
(3) can be found by solving the Pell like equation (5).

Proof. After simplifications, equation (3) becomes

A(k + 1)(k + 2) + B(k + 2)(n − k) + C(n − k)(n − k − 1) = 0.

Writing k + 2 = x, n − k = y we get

Ax(x − 1) + Bxy + Cy(y − 1) = 0,

or, equivalently,

(6) Ax2 + Bxy + Cy2 − Ax − Cy = 0.

We shall assume that D := B2 − 4AC 6= 0, and we shall return to the case
when D = 0 later.

With the substitution x = u + α, y = v + β, we get that the above relation
becomes

(7) (Au2 + Buv + Cv2) + (2Aα + Bβ − A)u + (Bα + 2Cβ − C)v

= −(Aα2 + Bαβ + Cβ2) + Aα + Cβ.

We choose α and β such that the coefficients of the linear terms in u and v in
equation (7) vanish. These lead to the system of equations

2Aα + Bβ = A,

Bα + 2Cβ = C,

whose rational solution is

α =
C(B − 2A)

B2 − 4AC
,

β =
A(B − 2C)

B2 − 4AC
.
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Note that we may divide by D = B2 − 4AC, because D 6= 0. With the above
formulas for α and β, we get that

−(Aα2 + Bαβ + Cβ2) + Aα + Cβ =
−AC(A − B + C)

B2 − 4AC
,

and so equation (7) becomes

Au2 + Buv + Cv2 =
−AC(A − B + C)

B2 − 4AC
.

This last equation implies that

(2Au + Bv)2 − (B2 − 4AC)v2 =
−4A2C(A − B + C)

B2 − 4AC
,

and since

2Au + Bv = (2Ax + By) − (2Aα + Bβ)

= (2Ax + By) − 2AC(B − 2A) + AB(B − 2C)

B2 − 4AC
= 2Ax + By − A,

while

v = y − β =
(B2 − 4AC)y − A(B − 2C)

B2 − 4AC
,

it follows that if we write

X := (B2 − 4AC)y − A(B − 2C),

Y := 2Ax + By − A,

E := 4A2C(A − B + C),

we get that X, Y ∈ ZZ and

(8) X2 − DY 2 = E.

We thus see that if D < 0, then the diophantine equation (3) has at most
finitely integer solutions 1 ≤ k < k + 2 ≤ n − 1. We now assume that D > 0. If
E = 0, then since AC 6= 0, it follows that B = A+C. In this case, D = B2−4AC =
(A − C)2, and so pairs of integers X, Y satisfying equation (8) satisfy either

X = (C − A)Y or X = (A − C)Y.

In terms of the variables x and y, the above lines become

x + y = 1 or Ax + Cy = 0.
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It is clear that the first one admits no integer solutions x = k + 2 and y = n − k
for 1 ≤ k < k + 2 ≤ n − 1, while the second one admits infinitely many such
solutions if and only if C < 0 (whereas if C > 0, then the second one does not
admit any such solutions either). Finally, if E 6= 0, then equation (8) admits only
finitely many solutions (or none) if D is a perfect square, while if D is not a perfect
square, the above equation (8) is a Pell like equation, which either has no solutions,
or it has infinitely many, and in this later case all integer solutions (X, Y ) of such
equation belong to finitely many binary recurrent sequences whose roots are the

fundamental unit ζ of norm 1 in the quadratic order IK = IQ[
√

D] and its conjugate
ζ1, respectively.

Finally, we deal with the case D = 0. In this case, B2 = 4AC, so B = 2B0, and
B2

0 = AC. Since gcd(A, B, C) = 1, and A > 0, it follows that gcd(A, C) = 1, and
then that A = A2

0 and C = C2
0 hold with some positive integers A0 and C0. Hence,

B0 = ±A0C0. When B0 = A0C0, it is clear that the left hand side of equation (3)
is positive whenever 1 ≤ k < k + 2 ≤ n − 1. Thus, B0 = −A0C0, and therefore
B = −2A0C0. Equation (6) becomes

A2
0x

2 − 2A0C0xy + C2
0y2 = A2

0x + C2
0y,

which can be rewritten as

(A0x − C0y)2 = A2
0x + C2

0y = A0(A0x − C0y) + C0(A0 + C0)y.

Setting t := A0x − C0y, we get that

C0(A0 + C0)y = t2 − A0t,

leading to

y =
t(t − A0)

C0(A0 + C0)
,

and since A0x = C0y + t, we get that

x =
t(t + C0)

A0(A0 + C0)
,

which lead to formulae (4) via the fact that x = k + 2, and y = n − k. Note that
since x, t, and y are integers, it follows that t is in certain arithmetical progressions
modulo A0C0(A0 + C0), and from the fact that x ≥ 3 and y ≥ 3, it follows that
either t > G1 := G1(A0, C0), or t < G2 := G1(A0, C0), where G1 and G2 are two
constants which depend on A0 and C0 and which can be easily computed by solving
the coresponding quadratic inequalities.

This completes the proof of the Theorem.
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3. Examples

Example 1. The equation

(9)

(

n

k

)

−
(

n

k + 1

)

− 2

(

n

k + 2

)

= 0

is a particular case of equation (3) for A = 1, B = −1 and C = −2. Since
B = A + C, all solutions of equation (9) satisfy

(k + 2) − 2(n − k) = 0,

which is equivalent to 2n− 3k = 2. The integer solutions of the above equation are
given by n = 1 + 3t and k = 2t with some integer t, and since n and k must be
positive, we must have t > 1. Conversely, one verifies easily that

(

3t + 1

2t

)

−
(

3t + 1

2t + 1

)

− 2

(

3t + 1

2t + 2

)

= 0

holds for all positive integers t.

Example 2. The equation

(10)

(

n

k + 2

)

− 2

(

n

k + 1

)

+

(

n

k

)

= 0

has A = C = 1 and B = 2, therefore D = 0. Moreover, A0 = C0 = 1, so all
solutions (n, k) of the above diophantine equation (10) have

k + 2 =
t(t + 1)

2
and n − k =

t(t − 1)

2
,

which gives

k =
t2 + t − 4

2
and n = t2 − 2.

Since n > k > 0, it follows that either t ≥ 3, or t ≤ −3. Conversely, one may check
that if t is any integer which is ≤ −3, or ≥ 3, then

(

t2 − 2
t2+t−4

2

)

− 2

(

t2 − 2
t2+t−2

2

)

+

(

t2 − 2
t2+t

2

)

= 0.
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Example 3. The equation

(11)

(

n

k + 2

)

=

(

n

k + 1

)

+

(

n

k

)

reduces to equation (3) for A = 1, B = 1, and C = −1. In this case, D =
B2−4AC = 5, E = 4A2C(A−B +C) = 4, X = (B2−4AC)(n−k)−A(B−2C) =
5(n − k) − 3, and Y = 2A(k + 2) + B(n − k) − A = 2(k + 2) + (n − k) − 1. Since
X2 − 5Y 2 = 4, it follows that X = Lm and Y = Fm hold with some even positive
integer m, where (Lℓ)ℓ≥0 is the Lucas sequence given by L0 = 2, L1 = 1, and
Lℓ+2 = Lℓ+1 + Lℓ for all ℓ ≥ 0, and (Fℓ)ℓ≥0 is the Fibonacci sequence. We now get
that n − k = (X + 3)/5 = (Lm + 3)/5, and that k + 2 = (Y − (n − k) + 1)/2 =
(5Fm−Lm +2)/10. Hence, k = (5Fm−Lm−18)/10, and n = (5Fm +Lm−12)/10.
Since n and k are integers, we need that 5|Lm + 3, and that 10|5Fm − Lm + 2.
Thus, 5|Lm + 3 and 2|Fm + Lm. The second relation is always fulfilled, while the
first one is fulfilled precisely if m ≡ 0 (mod 4). Thus, n = (5F4t + L4t − 12)/10,
and k = (5F4t − L4t − 18)/10. Since k > 0, we also need that 5F4t > L4t + 18,
which forces t ≥ 2. One can now easily verify that

(5F4t+L4t−12
10

5F4t−L4t+2
10

)

=

(5F4t+L4t−12
10

5F4t−L4t−8
10

)

+

(5F4t+L4t−12
10

5F4t−L4t−18
10

)

holds for all integers t ≥ 2. Note also that since

(

n

k + 1

)

+

(

n

k

)

=

(

n + 1

k + 1

)

,

it follows that the diophantine equation (11) reduces to the diophantine equation
(11), which in turn is a consequence of our Theorem.

Remark. We remark that at instance (iii) of our Theorem, it could be possible
that the Pell equation (5) has integer solutions (X, Y ), and yet none such that the
additional congruence X ≡ −A(B−2C) (mod B2−4AC) (necessary in order for
n − k to be an integer) is satisfied.
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