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Dedicated to the memory of Professor Péter Kiss

I. Introduction

The problem presented here is originated during our joint research activity
with Z. Daréczy and some others for the Rényi—Parry expansions [1-11].

Let C* denote the space of sequences ¢ = (co,c1,...) the coordinates ¢, of
which are complex numbers. The shift operator o: C* — C* is defined by

o(c) = (c1,ca,...).
Let tg =1, t, € C (v =1,2,...) be bounded, and t = (to,t1,...). We define
(1.1) R(z)=to+tiz+---.

Let 1 be the linear space of the sequences b € C*, for which 3 |b,| < o0
holds.

The scalar product of a bounded sequence ¢ and a b € C™ is defined as

cb=bc= ibucw
v=0

Let
(1.2) He={bel |o'()t=0, 1=0,1,2,...}.

It is clear that H; is a closed linear subspace of [;.

Let Hg)) C H; be the set of those b € H; for which

(1.3) |b,| < C(e,b)e™" (v >0)

holds with suitable € > 0 and C(g,b) (< 00).
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If p is a root of R(2), |p| < 1, then b, = p” satisfies o' (b)t =0 (1=0,1,2,...)

and even |b,| < Ce™ %", where ¢ can be defined from e™¢ = |p|, and C = 1.
If p is a root of R(z) of multiplicity m, then b, = v7p” (v > 0) are solutions
of a!(b)t = 0 (I > 0) for every j = 0,...,m — 1, furthermore (1.3) holds with

suitable €, and constant C(g,b). The sequences b, = v7p” (v > 0) are called
elementary solutions.

Let Hf) be the space of finite linear combinations of elementary solutions.

Let furthermore ﬂie) be the closure of 'ng).
It is obvious that ﬁie) C H;.

Conjecture 1. ﬂie) = H;.
Conjecture 2. Assume that R(z) # 0 in |z| < 1. Then H; = {0}.

Theorem 1. We have
HY = H.

Proof. Hf) - Hg)) obviously holds. We shall prove that HEO) C ng), i.e. that if
alt=0 (1=0,1,2,...), and

by < Clbse) - e,

then there exist p1, ..., pg suitable roots of R(z), |ps] <1/ec (s=1,...,k) such
that

k
b, = ZPS(V)PZ (v=0,1,2,...),
s=1

ps are polynomials, deg ps = ms — 1, where my is the multiplicity of the root p;
for R(z).

Let b be a solution of

(1.4) dt=0 (1=0,1,2,...), |b,|<C(gb) e .

1
Let furthermore pi, ..., pp be all the roots of R(z) in the disc |2| < — + &1,
e

where €1 is an arbitrary small positive number. Let mgs be the multiplicity of ps,
ie.

R(j)(ps) =0 (j=0,...,ms—1), R(mS)(pS) #0.

p p
Let o(z) = [[(z —pj)™, (2) = [[(1 —p;z)"™, and E be defined for a
j=1 =1
sequence agayj ... such that Fa,, = amy1.
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If b is a solution of the equation (1.4), and p is an arbitrary polynomial in
Clz], then e,, = p(E)b,, is a solution of (1.4) as well.

Let
en = Y(E)b, (n € Np).

Let furthermore

oo by 0o ¢
v=0 v=0

Observe that
(1.6) o) =T1(1-2)" 5o =v (1) Ba),
and that

(1.7) ¢<1) M=), M=mi+- - +m,.

1
The function B(z) is regular outside |2| < e™%, and bounded in [2] > — + &2,
e
1
where €2 > 0 is an arbitrary constant. We assume that — + e2 < 1. In the ring
e

1
— +¢e2 < |z] <1 we have
e

R(2)B(z) = (Z tuz“> <Z by - z‘”) = Z Krz",
u=0 v=0

T=—00

where

Ky = Z tuby.

u—v=r
u,v>0

Due to (1.4), k, = 0if r <0, and &, = O(1), for r > 0. Thus

(1.8) C(z) =
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1
The right hand side of (1.8) is regular in |z| < — + €1, and bounded there.
e

1
Otherhand B(z) and so C(z) is bounded in |z| > — + 2. If we choose 2 < e1, we
e

conclude that C(z) is bounded on the whole plane and so, it is constant, C'(z) = D,

bl/ = z :L and so
2o =P = gy

ib z¥ = —D
v=0 ' H(l _pVZ)mV.

The right hand side can be splitted into partial fractions,

whence we obtain immediately that

P
Cp = va(n)pg deg Pv S my — 17
v=1
and so the theorem holds.

II.

Let {A\,}52; be a strictly monotonic sequence of positive numbers, A; > Ay >
-+-(>0), and assume that L,, = A,,+1 + ... is finite, furthermore that

(2.1) A <L, (n=0,1,2,..)).

The condition (2.1) implies that

H= {x ‘ :Z::an/\n, En € {0,1}}

is the whole interval [0, Lo]. This assertion is due to Kakeya.

In some of our papers with Daroczy, we have investigated expansions generated
by A, satisfying (2.1).

A sequence {\,} is called interval filling, if (2.1) holds.

In a paper written jointly with Z. Dardczy and G. Szab6 [12] we proved the
following assertion.
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Theorem 2. Let A\, be an interval filling sequence. Let {a,, }$2; € l; be a sequence
with the following property: if

> endn =0, £, €{-1,0,1},
n=1

then
Z enan = 0.

We have a,, = c\,, with some constant c.

Conjecture 3. Let {\,}52, be such a sequence of positive numbers for which
M > >, Y N, < oo, and H = {x | =Y e \n, €5 €1{0,1}} contains
an interval. Assume furthermore that {a,}22, € li such a sequence for which
S 0nAn =0, 8, €{-1,0,1} implies that 3 dpa, = 0.

Then ay /A, = constant.

Remarks. 1. If H = {d e\, | en € {0,1}} is totally disconnected, then each
x € H has a unique expansion, therefore

01A1 +d2do + - =0, §; € {-1,0,1}

implies that §; = § = --- = 0, consequently every {a,} € [; is a solution.

2. Assume that A := {\,} is interval filling and even that there is a non-trivial
subsequence A, (= w;) for which Q = {w;} is interval-filling.
Let M denote the set of the following sequences (e, ez,...) = e.

1.If e, € {—1,0,1} for every v and e, =0 for v & {ny,na,...}, then e € M.
2. For every n, let A, be expanded in the system  with some digits {0, 1}:

A =300 N,
j=1

where 55 = 0 if m Z {n1,ng,...}.
Then
(0,0,...,0, ~1, 60, 55;22,...) e M,
if n > ny, where n; is a constant.

3. For every n = 1,...,n1 — 1 choose an arbitrary sequence (egn), eg"), . ) such
that

(a) el(n) =0ifl < n,
(b) ™ £0,
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(c) e e {~1,0,1}.
Let (eﬁ"), egn), . ) e M.

Assertion: Let {a,} € l1 be a sequence for which

anan =0
Zan/\n =0

whenever

and (e1,€2,...) € M.

Then ap, = ch, (n €N).

The assertion is an easy consequence of our Theorem 2.

Indeed, by using Theorem 2 for €, we obtain that a,, = cAn; (i =1,2,...).

Let now j > 1 be fixed and consider the set of the integers n € [n;+1,n;41—1].
Since (2 is interval filling, therefore A\,,; < Ay, , +Ap;,, +- - consequently for every
n there is a suitable sequence defined in (ii).

We have a,, = Zéflrzj Anyj = 025,(;2]» Antj = cAn. Thus a, = ¢\, if n > ny.
From (i7i), we obtain that a,, =cA, forn=mny — 1, ny —2,...,1.

The assertion is proved.

1 (C]

Let A\, := 0", O € 5,1 , Lo = -6 A sequence €1, ...,eny € {—1,0,1}

is said to be continuable if

‘61®—|—"'+6N®N| < ONL,.

Let £(0) = 2, t(+1) = 1 and
N
7(e1,...,eN) = H t(ej).
j=1

Let mn(©) = > 7(e1,...,en), where the summation is extended over the
continuable sequences. One can see easily that

my(0) > c(40)Y, ¢>0.

Let F be a set of sequences € = e165..., &, € {—1,0, 1}, furthermore let Fy
be the set of those sequences 6; ...dx € {—1,0,1}", which can be continued with
suitable ¢, € {—1,0,1} (v > N +1) such that §;...0n5 enyt1EN42... € F.
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Let
WN(@lf): Z T(51,...75N).

61..0NEFN
Conjecture 4. If a = a1as... €11 and
Zanan =0 whenever

e e F, and
7N (O|F) = 0 (N — o0)

then a, = O™ (n=1,2,...).
IT1.

1 C)
Let © € 5,1 , ¢q=1/0, L:m.LetnE [©,0L] and T = T,, be the

mapping [0, L] — [0, L] defined as follows.
If z € [0, L], then let

0, if z<mn,
61:51(3:):{1 ifx>z

and let 1 = Tz be defined from
r =10+ Ox.

Continuing this process, 2, = €,4+10 + Ox,41 (n = 1,2,...), an expansion
of x

(3.1) =610 407+

is given. We say that it is a representation of level 1 of x.

We can see that T:[0,qn) — [0,qn). Let us consider the expansion of level 7
of gn, and n:

(3.2) M=t0+t0%+..., n=m0+mO>+ ..

Letﬁztltg..., T=T1T2....
Let
€:={e§) | § €[ n)}.

Let furthermore F be the set of those sequences f = fif2... € {0,1} for
which:
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(1) o/(f) <t (j=0,1,2,...),

(2) if f, = 1, then
o M) = fufpsr... > m

Theorem 3. We have £ = F.

Remark. The expansion T for n = © was defined by A. Rényi [1]. W. Parry
proved the relation £ = F for n = © in [2].

Proof of Theorem 3. The relation & C F is obvious. Let t = e1(2)O+---, z €
[0, gn]. Since for every couples y1,ys2, if 0 < y1 < y2 < gn, then £(y1) < £(y2), thus
e(x) < t. Since z,, = €p41(2)O + -+ < gn, therefore 0" (g(x)) < t. If e,(z) = 1,
then x,—1 = €,()© + - -+ > n, thus (e,(x),...) > 7. Thus & C F is true.

Let f€F, y:T = f1O+ fo02+ ... We shall prove that y < ¢n and that if
fr =1, then f© + -+ > n. Hence it would follow that e(y) = f.

Let f; =1; (j=1,...,k1 — 1), fi, =0, tg, = 1. Furthermore let frii+i =1t
for (j =1,...,ka — 1), fr, =0, tg, = 1, and so on. We allow the choice k, = 1,
when (j=1,...,k, — 1) is an empty condition.

Thus we have

y:t1@—|—...—|—tk1_1@k1—1+®k1 (t1@+"'+tk2_1®k2_1)—|—

3.3
(33) +OF R (1@ 4ty 1OF )

If t, = 1, then O + t,4,10% +--- > n, and so ;0 + --- + 0% 1 <
(¢©)(1 — %)
From (3.3) we obtain that

y < (¢0)(1 - OM) + (¢0)- 0" (1 - 0™) + ... =¢6.
The estimation from below is the same. Assume that fi =m, f=7; j=
17'- 'a(kl_l)a fk1 = 13 Ty = 07 fk1+j = Ty, .] = 17'- 'akQ—la fk1+k2 = 1? Tky = 07
and so on. Then
y= MmO+ +my_10F ) + O (1O 4+ 7,108 4
+ ®(k1_1)+(k2_1) (7‘(1@ +...+ 7Tk3_1@k3_1) + -

If k is such an integer for which 7, = 0, then n = m© + - -+ + m,_ 0%~ 4
Ok-1¢, ¢ <, and so

O+ + M OF > (1-0F ).

Therefore
y>n (1 — @kl_l) + @kt (1 — @kz_l) +...=mn.
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Hence the assertion easily follows.

Theorem 4. Let 11 < n2, 1,72 € [©,OL]. Furthermore let H(n1,n2) be the set
of those x € [0, L] for which their expansions of level n1 and of level 1y are the
same. Then the Lebesgue measure of H(n,n2) is zero.

We shall not prove this theorem presently.
IV.

Let ¢ > 1 be a Pisot number, © =1/q, k= [q], A={0,1,...,k},

H = {Z €nOn

Let g(x) = e1(x)e2(x) . .. be the sequence of digits in the regular (that is the
Rényi-Parry) expansion of z (= > ¢,(0)O™). Let t = t1t2... be the sequence of
digits in the quasi-regular expansion of 1.

cne Al =0k, L=—"g.

The digit €1 (z) for the regular expansion of z is defined as
e1(z) = [qa],

while in the quasi-regular expansions by [gz], if gz is not an integer, and by gz — 1
if it is an integer. Since ¢ is a Pisot number, therefore o*(t) (k = 0,1,...) is
ultimately periodic, that is

(4.1) ot (t) = o"(t)

holds with suitable p > 0, k£ > 0.

Let B={|/, |oo;---,| v} be a set of distinct integers such that by =0, —K; =
minb, < 0, K9 = maxb, > 0.

We would like to find those sequences fi, fa,... € B for which

(4.2) O=f10+ f,0%+ ...

holds.
Let o =0, m=—fi, vy =qvj-—1—f; (G=12,...).
Then

(4.3) Vi = fi+10 + fi+20° + - € [ K1 L, K, L.

The numbers +; are integers in ((q). Let the conjugates of ¢ be ¢ =
q1, q2,---,qn- We have |¢,| <1 (v =2,...,n).
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Consequently,

Inax(Kl, KQ)

'Yj(ql):_(flqu_l'i"'"f'fj)a Ivi (@)l < Tl

(] =2,... ,n), v € [—KlL,KgL].
Since the vectorials {v;(q;) | I = 1,...,n} belong to a bounded domain,
therefore they are taken from a finite set which is denoted by F:

max(Kl, Kg)

1>9), pel|-KiL L.
L) (120, pe-KaL Lo

f:{mpm%ﬂmQ@JMMK

The construction of the graph G(F)

The edges of the graph are the elements of F. We shall draw an edge from
p € F topqg— fif pg— f € F. This (directed) edge is labeled with f.

It is clear that all solutions f1, f2,... of (4.2) can be getting by walking on the
graph starting from 0, and noting the sequence of the labels of the graph.

By using this construction we can solve some interesting problems.

Problem. Let A = {0,1,...,k}, £(x) be the sequence of digits in the regular
expansion of z. Let us determine those sequences (01, ...,dy5) € A" which can be
continued appropriately, by dn4; € A (j =1,2,...) such that z = > §,0".

1

This can be done as follows. We consider the set B=A—-A={N—-C |MN,C e A}
and define F as earlier, then G(F) by drawing the edge p1 — pao, if p2 = gp1 — f.
After then we delete the edge labeled with f, and substitute it with as many edges
as many solutions f = v — v, u,v € A has, and we label them with (u,v). Let
G*(F) be this directed multigraph.

Let us walk on G*(F) starting from 0 and note the sequence of labels:

(ul,vl), (UQ,'UQ), e

Let us consider only those routes for which u; =¢;(x) (j =1,...,N). Then
the sequence of the second components will give a suitable continuable sequence
é1,...,0n, and all appropriate sequences can be getting on this way.

Let us see G(F) and G*(F) in the simplest case

V5 —1 V5 +1

6 =
2 ’ q 2 ’

A=1{0,1}, B={—o0,1 00}
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G(F):
Kjl) />(-1)
i g
U] U]
oy
-1
It D 0 > ]
) (1) -1
(1 1
g-1 -+
GHF):
/D(L“) /)(n,l)
¢ -4
@.0)] (11
@.0)] | (LI
0,0 (LD
i @.1) m (1,0} y
1
AL @0 |0 A.D| 0,0
(1,0) @.1)
3
g-1 - ar)

)

(LI
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Let f:N — C be a completely multiplicative arithmetical function, |f(n)| =
1 (n€N), and let §¢(n) = f(n+1)f(n).

E. Wirsing proved in 1984 that if 67(n) — 1 (n — o), then f(n) = n'" [13],
[14].

Daro6ezy and 1 proved the following assertion [15].

If G is a compact Abelian group, f:N — G is completely additive, i.e. f(mn) =
f(m) + f(n) for every myn € N, and f(n+1) — f(n) - 0 (n — o0), then there
is a continuous homomorphism ®: R, — G such that

f(n) =¢(n) (neN).

Conjecture 5. Let G be a compact Abelian group, f:N — G be completely additive,
and closure f(N) = G (closure f(N) always is a closed subgroup in G). Let U be
the set of those u for which there exists an infinite sequence of integers n, /', such
that f(n, +1) — f(n,) — w.

Then U is a subspace in G, furthermore
f(n) :=@(n) +V(n),

where @ is a continuous homomorphism, ¢:R, — G, V(N) C U, clos V(N)="U.
We formulate our conjecture for complex valued completely multiplicative
functions.

Conjecture 6. Let f be completely multiplicative, |f(n)] =1 (n € N), df(n) =

f(n+1)f(n). Let A = {au,...,ar} be the set of limit points of {6y(n) | n =
1,2,...}. Then Ay = {w|w* = 1}, furthermore f(n) = n'"F(n), and

(ii) for every w € Ay, there is some infinite sequence n,, such that F(n,+1)F(n,) =
w (v=12,...).

A weaker conjecture, namely that under the conditions of Conjecture 6 there is
an s such that F(N) = {w | w® = 1}, was proved by E. Wirsing [18] in his brilliant
paper.

VI.

Let Py, be the set of integers n = p; - - - p, where py, ..., py are distinct primes.
Let o be a fixed irrational number. Let e(3) := €™, Let ¢1 < g2 < --- < ¢
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be the whole sequence of the primes up to z. Let X, (j =1,...,7) be complex
numbers,

n € Py

p1 pe < Pl"'XPke(nO‘) :

Qk(Xiha' . ,er) = ‘Z n =

Let us define

5k($)_ ma Qk(XQI?"'7Xq7‘)’

= X
Iqulgll"'7|XQ7“§l ﬂ—k(x)

0 = limsup 0y (z).

r— 00

Conjecture 7. We have 6 < 1 if k > 2. Furthermore §;, — 0 (k — 00).

H. Daboussi proved several years ago that for every irrational «, for every
multiplicative function f, such that |f(n)] <1 (n € N), the relation

i Zf(n)e(na) -0 (z— o0).

n<zx

The order of the convergence may depend on «, but does not depend on f. In our
recent paper written jointly with Indlekofer [19] we proved:

If o is irrational, w(n) is the number of the prime divisors of n, P =
{n | wn) = k}, 7x(z) = #{’ﬁk(x) N [1,96]}, n > 0 is a small constant,

then uniformly for multiplicative functions f restricted by the conditions |f(n)| <
1 (n eN) we have

1 n<x
max ——— T n)e(na 0 as < —<2- x 0.
kxfrk(x) ZnEPKf()( )= g Z9 K -
I hope that Conjecture 7 is true.
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