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ON SOME RESEARCH PROBLEMS IN MATHEMATICS

Imre Kátai (Budapest, Hungary)

Dedicated to the memory of Professor Péter Kiss

I. Introduction

The problem presented here is originated during our joint research activity
with Z. Daróczy and some others for the Rényi–Parry expansions [1–11].

Let C
∞ denote the space of sequences c = (c0, c1, . . .) the coordinates cν of

which are complex numbers. The shift operator σ: C∞ → C
∞ is defined by

σ(c) = (c1, c2, . . .).

Let t0 = 1, tν ∈ C (ν = 1, 2, . . .) be bounded, and t = (t0, t1, . . .). We define

(1.1) R(z) = t0 + t1z + · · · .

Let l1 be the linear space of the sequences b ∈ C
∞, for which

∑

|bν | < ∞
holds.

The scalar product of a bounded sequence c and a b ∈ C
∞ is defined as

c b = bc =

∞
∑

ν=0

bνcν .

Let

(1.2) Ht =
{

b ∈ l1 | σl(b)t = 0, l = 0, 1, 2, . . .
}

.

It is clear that Ht is a closed linear subspace of l1.

Let H(0)
t ⊆ Ht be the set of those b ∈ Ht for which

(1.3) |bν | ≤ C(ε, b)e−εν (ν ≥ 0)

holds with suitable ε > 0 and C(ε, b) (<∞).
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If ρ is a root of R(z), |ρ| < 1, then bν = ρν satisfies σl(b)t = 0 (l = 0, 1, 2, . . .)
and even |bν | ≤ Ce−εν , where ε can be defined from e−ε = |ρ|, and C = 1.

If ρ is a root of R(z) of multiplicity m, then bν = νjρν (ν ≥ 0) are solutions
of σl(b)t = 0 (l ≥ 0) for every j = 0, . . . ,m − 1, furthermore (1.3) holds with
suitable ε, and constant C(ε, b). The sequences bν = νjρν (ν ≥ 0) are called
elementary solutions.

Let H(e)
t be the space of finite linear combinations of elementary solutions.

Let furthermore H(e)

t be the closure of H(e)
t .

It is obvious that H(e)

t ⊆ Ht.

Conjecture 1. H(e)

t = Ht.

Conjecture 2. Assume that R(z) 6= 0 in |z| < 1. Then Ht = {0}.

Theorem 1. We have

H(0)
t = H(e)

t .

Proof. H(e)
t ⊆ H(0)

t obviously holds. We shall prove that H(0)
t ⊆ H(e)

t , i.e. that if

σl(b)t = 0 (l = 0, 1, 2, . . .), and

|bν | < C(b, ε) · e−εν ,

then there exist ρ1, . . . , ρk suitable roots of R(z), |ρs| ≤ 1/eε (s = 1, . . . , k) such
that

bν =
k
∑

s=1

ps(ν)ρ
ν
s (ν = 0, 1, 2, . . .),

ps are polynomials, deg ps = ms − 1, where ms is the multiplicity of the root ρs

for R(z).

Let b be a solution of

(1.4) σl(b)t = 0 (l = 0, 1, 2, . . .), |bν | ≤ C(ε, b) · e−εν .

Let furthermore ρ1, . . . , ρp be all the roots of R(z) in the disc |z| < 1

eε
+ ε1,

where ε1 is an arbitrary small positive number. Let ms be the multiplicity of ρs,
i.e.

R(j)(ρs) = 0 (j = 0, . . . ,ms − 1), R(ms)(ρs) 6= 0.

Let ϕ(z) =
p
∏

j=1

(z − ρj)
mj , ψ(z) =

p
∏

j=1

(1 − ρjz)
mj , and E be defined for a

sequence a0a1 . . . such that Eam = am+1.
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If b is a solution of the equation (1.4), and p is an arbitrary polynomial in
C[z], then en = p(E)bn is a solution of (1.4) as well.

Let
cn := ψ(E)bn (n ∈ N0).

Let furthermore

(1.5) B(z) =

∞
∑

ν=0

bν
zν
, C(z) =

∞
∑

ν=0

cν
zν
.

Observe that

(1.6) C(z) =
∏

(

1 − ρν

z

)mν

B(z) = ψ

(

1

z

)

B(z),

and that

(1.7) ψ

(

1

z

)

zM = ϕ(z), M = m1 + · · · +mp.

The function B(z) is regular outside |z| ≤ e−ε, and bounded in |z| ≥ 1

eε
+ ε2,

where ε2 > 0 is an arbitrary constant. We assume that
1

eε
+ ε2 < 1. In the ring

1

eε
+ ε2 < |z| < 1 we have

R(z)B(z) =

(

∞
∑

u=0

tuz
u

)(

∞
∑

v=0

bν · z−v

)

=

∞
∑

r=−∞

κrz
r,

where
κr =

∑

u−v=r

u,v≥0

tubv.

Due to (1.4), κr = 0 if r < 0, and κr = O(1), for r > 0. Thus

R(z)B(z) = K(z), K(z) = κ0 + κ1z + · · · ,

K(z) is regular in |z| < 1. Consequently, B(z) =
K(z)

R(z)
,

(1.8) C(z) =
K(z)ψ

(

1
z

)

R(z)
.
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The right hand side of (1.8) is regular in |z| < 1

eε
+ ε1, and bounded there.

Otherhand B(z) and so C(z) is bounded in |z| ≥ 1

eε
+ ε2. If we choose ε2 < ε1, we

conclude that C(z) is bounded on the whole plane and so, it is constant, C(z) = D,
∑ bν

zν
= B(z) =

D

ψ(1/z)
, and so

∞
∑

ν=0

bνz
ν =

D
∏

(1 − ρνz)mν
.

The right hand side can be splitted into partial fractions,

D
∏

(1 − ρνz)mν
=

p
∑

ν=1

mν
∑

j=0

eν,j

(1 − ρνz)j
, (eν,j ∈ C),

whence we obtain immediately that

cn =

p
∑

ν=1

pν(n)ρn
ν deg pν ≤ mν − 1,

and so the theorem holds.

II.

Let {λn}∞n=1 be a strictly monotonic sequence of positive numbers, λ1 > λ2 >
· · · (> 0), and assume that Ln = λn+1 + . . . is finite, furthermore that

(2.1) λn ≤ Ln (n = 0, 1, 2, . . .).

The condition (2.1) implies that

H =
{

x
∣

∣

∣
x =

∑

εnλn, εn ∈ {0, 1}
}

is the whole interval [0, L0]. This assertion is due to Kakeya.

In some of our papers with Daróczy, we have investigated expansions generated
by λn satisfying (2.1).

A sequence {λn} is called interval filling, if (2.1) holds.

In a paper written jointly with Z. Daróczy and G. Szabó [12] we proved the
following assertion.
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Theorem 2. Let λn be an interval filling sequence. Let {an}∞n=1 ∈ l1 be a sequence

with the following property: if

∞
∑

n=1

εnλn = 0, εn ∈ {−1, 0, 1},

then
∑

εnan = 0.

We have an = cλn with some constant c.

Conjecture 3. Let {λn}∞n=1 be such a sequence of positive numbers for which
λ1 > λ2 > · · ·, ∑λn < ∞, and H = {x | x =

∑

εnλn, εn ∈ {0, 1}} contains
an interval. Assume furthermore that {an}∞n=1 ∈ l1 such a sequence for which
∑

δnλn = 0, δn ∈ {−1, 0, 1} implies that
∑

δnan = 0.

Then an/λn = constant.

Remarks. 1. If H = {∑ εnλn | εn ∈ {0, 1}} is totally disconnected, then each
x ∈ H has a unique expansion, therefore

δ1λ1 + δ2λ2 + · · · = 0, δj ∈ {−1, 0, 1}

implies that δ1 = δ2 = · · · = 0, consequently every {an} ∈ l1 is a solution.

2. Assume that Λ := {λn} is interval filling and even that there is a non-trivial
subsequence λnj

(= wj) for which Ω = {wj} is interval-filling.

Let M denote the set of the following sequences (e1, e2, . . .) = e.

1. If eν ∈ {−1, 0, 1} for every ν and eν = 0 for ν 6∈ {n1, n2, . . .}, then e ∈ M.

2. For every n, let λn be expanded in the system Ω with some digits {0, 1}:

λn =
∞
∑

j=1

δ
(n)
n+jλn+j ,

where δ
(n)
m = 0 if m 6∈ {n1, n2, . . .}.

Then
(

0, 0, . . . , 0, −
n

1, δ
(n)
n+1, δ

(n)
n+2, . . .

)

∈ M,

if n ≥ n1, where n1 is a constant.

3. For every n = 1, . . . , n1 − 1 choose an arbitrary sequence
(

e
(n)
1 , e

(n)
2 , . . .

)

such

that

(a) e
(n)
l = 0 if l < n,

(b) e
(n)
u 6= 0,
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(c) e
(n)
m ∈ {−1, 0, 1}.

Let
(

e
(n)
1 , e

(n)
2 , . . .

)

∈ M.

Assertion: Let {an} ∈ l1 be a sequence for which

∑

εnan = 0

whenever
∑

εnλn = 0

and (ε1, ε2, . . .) ∈ M.

Then an = cλn (n ∈ N).

The assertion is an easy consequence of our Theorem 2.

Indeed, by using Theorem 2 for Ω, we obtain that anj
= cλnj

(j = 1, 2, . . .).

Let now j ≥ 1 be fixed and consider the set of the integers n ∈ [nj+1, nj+1−1].
Since Ω is interval filling, therefore λnj

≤ λnj+1
+λnj+2

+ · · · consequently for every
n there is a suitable sequence defined in (ii).

We have an =
∑

δ
(n)
n+j an+j = c

∑

δ
(n)
n+j λn+j = cλn. Thus an = cλn if n ≥ n1.

From (iii), we obtain that an = cλn for n = n1 − 1, n1 − 2, . . . , 1.

The assertion is proved.

Let λn := Θn, Θ ∈
(

1

2
, 1

)

, L0 =
Θ

1 − Θ
. A sequence ε1, . . . , εN ∈ {−1, 0, 1}

is said to be continuable if

∣

∣ε1Θ + · · · + εNΘN
∣

∣ ≤ ΘNL0.

Let t(0) = 2, t(±1) = 1 and

τ(ε1, . . . , εN ) =
N
∏

j=1

t(εj).

Let mN (Θ) =
∑

τ(ε1, . . . , εN ), where the summation is extended over the
continuable sequences. One can see easily that

mN (Θ) ≥ c(4Θ)N , c > 0.

Let F be a set of sequences ε = ε1ε2 . . . , εν ∈ {−1, 0, 1}, furthermore let FN

be the set of those sequences δ1 . . . δN ∈ {−1, 0, 1}N , which can be continued with
suitable εν ∈ {−1, 0, 1} (ν ≥ N + 1) such that δ1 . . . δN εN+1εN+2 . . . ∈ F .
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Let
πN (Θ|F) =

∑

δ1...δN∈FN

τ(δ1, . . . , δN ).

Conjecture 4. If a = a1a2 . . . ∈ l1 and

∑

εnan = 0 whenever

ε ∈ F , and
πN (Θ|F) → ∞ (N → ∞)

then an = cΘn (n = 1, 2, . . .).

III.

Let Θ ∈
(

1

2
, 1

)

, q = 1/Θ, L =
Θ

1 − Θ
. Let η ∈ [Θ,ΘL] and T = Tη be the

mapping [0, L] → [0, L] defined as follows.

If x ∈ [0, L], then let

ε1 = ε1(x) =

{

0, if x < η,
1, if x ≥ η,

and let x1 = Tx be defined from

x = ε1Θ + Θx1.

Continuing this process, xn = εn+1Θ + Θxn+1 (n = 1, 2, . . .), an expansion
of x

(3.1) x = ε1Θ + ε2Θ
2 + · · ·

is given. We say that it is a representation of level η of x.

We can see that T : [0, qη) → [0, qη). Let us consider the expansion of level η
of qη, and η:

(3.2) qη = t1Θ + t2Θ
2 + . . . , η = π1Θ + π2Θ

2 + · · · .

Let t = t1t2 . . . , π = π1π2 . . . .

Let
E := {ε(§) | § ∈ [′,∐η)} .

Let furthermore F be the set of those sequences f = f1f2 . . . ∈ {0, 1}∞ for
which:
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(1) σj(f) < t (j = 0, 1, 2, . . .),

(2) if fν = 1, then

σν−1(f) = fνfν+1 . . . ≥ π.

Theorem 3. We have E = F .

Remark. The expansion T for η = Θ was defined by A. Rényi [1]. W. Parry
proved the relation E = F for η = Θ in [2].

Proof of Theorem 3. The relation E ⊆ F is obvious. Let x = ε1(x)Θ+ · · · , x ∈
[0, qη]. Since for every couples y1, y2, if 0 ≤ y1 < y2 ≤ qη, then ε(y1) < ε(y2), thus
ε(x) < t. Since xn = εn+1(x)Θ + · · · < qη, therefore σn(ε(x)) < t. If εn(x) = 1,
then xn−1 = εn(x)Θ + · · · ≥ η, thus (εn(x), . . .) ≥ π. Thus E ⊆ F is true.

Let f ∈ F , y : T = f1Θ + f2Θ
2 + · · · . We shall prove that y ≤ qη and that if

fk = 1, then fkΘ + · · · ≥ η. Hence it would follow that ε(y) = f .

Let fj = tj (j = 1, . . . , k1 − 1), fk1
= 0, tk1

= 1. Furthermore let fk1+j = tj
for (j = 1, . . . , k2 − 1), fk2

= 0, tk2
= 1, and so on. We allow the choice kν = 1,

when (j = 1, . . . , kν − 1) is an empty condition.

Thus we have

(3.3)
y = t1Θ + · · · + tk1−1Θ

k1−1 + Θk1
(

t1Θ + · · · + tk2−1Θ
k2−1

)

+

+ Θk1+k2
(

t1Θ + · · · + tk3−1Θ
k3−1

)

+ · · · .

If tk = 1, then tkΘ + tk+1Θ
2 + · · · ≥ η, and so t1Θ + · · · + tk−1Θ

k−1 ≤
(qΘ)(1 − Θk).

From (3.3) we obtain that

y ≤ (qΘ)(1 − Θk1) + (qΘ) · Θk1(1 − Θk2) + · · · = qΘ.

The estimation from below is the same. Assume that f1 = π1, fj = πj j =
1, . . . , (k1−1), fk1

= 1, πk1
= 0, fk1+j = πj , j = 1, . . . , k2−1, fk1+k2

= 1, πk2
= 0,

and so on. Then

y =
(

π1Θ + · · · + πk1−1Θ
k1−1

)

+ Θk1−1
(

π1Θ + · · · + πk2−1Θ
k2−1

)

+

+ Θ(k1−1)+(k2−1)
(

π1Θ + . . .+ πk3−1Θ
k3−1

)

+ · · ·

If k is such an integer for which πk = 0, then η = π1Θ + · · · + πk−1Θ
k−1 +

Θk−1ξ, ξ < η, and so

π1Θ + · · · + πk−1Θ
k−1 ≥ η

(

1 − Θk−1
)

.

Therefore
y ≥ η

(

1 − Θk1−1
)

+ ηΘk1−1
(

1 − Θk2−1
)

+ . . . = η.
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Hence the assertion easily follows.

Theorem 4. Let η1 < η2, η1, η2 ∈ [Θ,ΘL]. Furthermore let H(η1, η2) be the set

of those x ∈ [0, L] for which their expansions of level η1 and of level η2 are the

same. Then the Lebesgue measure of H(η1, η2) is zero.

We shall not prove this theorem presently.

IV.

Let q > 1 be a Pisot number, Θ = 1/q, k = [q], A = {0, 1, . . . , k},

H :=
{

∑

εnΘn

∣

∣

∣
εn ∈ A

}

= [0, kL], L =
Θ

1 − Θ
.

Let ε(x) = ε1(x)ε2(x) . . . be the sequence of digits in the regular (that is the
Rényi–Parry) expansion of x (=

∑

εn(Θ)Θn). Let t = t1t2 . . . be the sequence of
digits in the quasi-regular expansion of 1.

The digit ε1(x) for the regular expansion of x is defined as

ε1(x) = [qx],

while in the quasi-regular expansions by [qx], if qx is not an integer, and by qx− 1
if it is an integer. Since q is a Pisot number, therefore σk(t) (k = 0, 1, . . .) is
ultimately periodic, that is

(4.1) σk+p(t) = σk(t)

holds with suitable p > 0, k > 0.

Let B = {⌊′, ⌊∞, . . . , ⌊∇} be a set of distinct integers such that b0 = 0, −K1 =
min bν < 0, K2 = max bν > 0.

We would like to find those sequences f1, f2, . . . ∈ B for which

(4.2) O = f1Θ + f2Θ
2 + · · ·

holds.

Let γ0 = 0, γ1 = −f1, γj = qγj−1 − fj (j = 1, 2, . . .).

Then

(4.3) γj = fj+1Θ + fj+2Θ
2 + · · · ∈ [−K1L,K2L].

The numbers γj are integers in Q(q). Let the conjugates of q be q =
q1, q2, . . . , qn. We have |qν | < 1 (ν = 2, . . . , n).
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Consequently,

γj(ql) = −
(

f1q
j−1
l + · · · + fj

)

, |γj(ql)| ≤
max(K1,K2)

1 − |ql|

(j = 2, . . . , n), γj ∈ [−K1L,K2L].

Since the vectorials {γj(ql) | l = 1, . . . , n} belong to a bounded domain,
therefore they are taken from a finite set which is denoted by F :

F =

{

ρ, ρ integer in Q(q), |ρ(ql)| ≤
max(K1,K2)

1 − |ql|
(l ≥ 2), ρ ∈ [−K1L,L2L]

}

.

The construction of the graph G(F)

The edges of the graph are the elements of F . We shall draw an edge from
ρ ∈ F to ρq − f if ρq − f ∈ F . This (directed) edge is labeled with f .

It is clear that all solutions f1, f2, . . . of (4.2) can be getting by walking on the
graph starting from 0, and noting the sequence of the labels of the graph.

By using this construction we can solve some interesting problems.

Problem. Let A = {0, 1, . . . , k}, ε(x) be the sequence of digits in the regular
expansion of x. Let us determine those sequences (δ1, . . . , δN ) ∈ AN which can be
continued appropriately, by δN+j ∈ A (j = 1, 2, . . .) such that x =

∑

1
δνΘν .

This can be done as follows. We consider the set B = A−A = {⊓ − ⊑ | ⊓,⊑ ∈ A}
and define F as earlier, then G(F) by drawing the edge ρ1 → ρ2, if ρ2 = qρ1 − f .
After then we delete the edge labeled with f , and substitute it with as many edges
as many solutions f = u − v, u, v ∈ A has, and we label them with (u, v). Let
G∗(F) be this directed multigraph.

Let us walk on G∗(F) starting from 0 and note the sequence of labels:

(u1, v1), (u2, v2), . . . .

Let us consider only those routes for which uj = εj(x) (j = 1, . . . , N). Then
the sequence of the second components will give a suitable continuable sequence
δ1, . . . , δN , and all appropriate sequences can be getting on this way.

Let us see G(F) and G∗(F) in the simplest case

Θ =

√
5 − 1

2
, q =

√
5 + 1

2
, A = {0, 1}, B = {−∞, ′,∞}.
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V.

Let f : N → C be a completely multiplicative arithmetical function, |f(n)| =

1 (n ∈ N), and let δf (n) = f(n+ 1)f(n).

E. Wirsing proved in 1984 that if δf (n) → 1 (n → ∞), then f(n) = niτ [13],
[14].

Daróczy and I proved the following assertion [15].

If G is a compact Abelian group, f : N → G is completely additive, i.e. f(mn) =
f(m) + f(n) for every m,n ∈ N, and f(n+ 1) − f(n) → 0 (n → ∞), then there
is a continuous homomorphism Φ: Rx → G such that

f(n) = φ(n) (n ∈ N).

Conjecture 5. Let G be a compact Abelian group, f : N → G be completely additive,
and closure f(N) = G (closure f(N) always is a closed subgroup in G). Let U be
the set of those u for which there exists an infinite sequence of integers nν ր, such
that f(nν + 1) − f(nν) → u.

Then U is a subspace in G, furthermore

f(n) := Φ(n) + V (n),

where Φ is a continuous homomorphism, φ: Rx → G, V (N) ⊆ U, clos V (N) = U .

We formulate our conjecture for complex valued completely multiplicative
functions.

Conjecture 6. Let f be completely multiplicative, |f(n)| = 1 (n ∈ N), δf (n) =

f(n + 1)f(n). Let Ak = {α1, . . . , αk} be the set of limit points of {δf (n) | n =

1, 2, . . .}. Then Ak = {w|wk = 1}, furthermore f(n) = niτF (n), and

(i) F (N) = Ak,

(ii) for every w ∈ Ak there is some infinite sequence nν such that F (nν +1)F (nν) =
w (ν = 1, 2, . . .).

A weaker conjecture, namely that under the conditions of Conjecture 6 there is
an s such that F (N) = {ω | ωs = 1}, was proved by E. Wirsing [18] in his brilliant
paper.

VI.

Let Pk be the set of integers n = p1 · · · pk where p1, . . . , pk are distinct primes.
Let α be a fixed irrational number. Let e(β) := e2πiβ . Let q1 < q2 < · · · < qr
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be the whole sequence of the primes up to x. Let Xqj
(j = 1, . . . , r) be complex

numbers,

Qk(Xq1
, . . . , Xqr

) :=

∣

∣

∣

∣

∑ n ∈ Pk

n = p1 . . . pk < x
Xp1

· · ·Xpk
e(nα)

∣

∣

∣

∣

.

Let us define

δk(x) = max
|Xq1

|≤1,...,|Xqr |≤1

Qk(Xq1
, . . . , Xqr

)

πk(x)
,

δk = lim sup
x→∞

δk(x).

Conjecture 7. We have δk < 1 if k ≥ 2. Furthermore δk → 0 (k → ∞).

H. Daboussi proved several years ago that for every irrational α, for every
multiplicative function f , such that |f(n)| ≤ 1 (n ∈ N), the relation

1

x

∣

∣

∣

∣

∣

∣

∑

n≤x

f(n)e(nα)

∣

∣

∣

∣

∣

∣

→ 0 (x→ ∞).

The order of the convergence may depend on α, but does not depend on f . In our
recent paper written jointly with Indlekofer [19] we proved:

If α is irrational, w(n) is the number of the prime divisors of n, P̃k =

{n | w(n) = k}, π̃k(x) = #
{

P̃k(x) ∩ [1, x]
}

, η > 0 is a small constant,

then uniformly for multiplicative functions f restricted by the conditions |f(n)| ≤
1 (n ∈ N) we have

max
k

1

π̃k(x)

∣

∣

∣

∣

∑ n ≤ x

n ∈ P̃K

f(n)e(nα)

∣

∣

∣

∣

→ 0 as η <
k

x2
< 2 − η x→ ∞.

I hope that Conjecture 7 is true.
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