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Dedicated to the memory of Professor Péter Kiss

Péter Kiss was born in Nagyréde in 1937. He attended secondary school in
Gyöngyös and in 1955 he entered the Eötvös Lóránd University Faculty of Science
in Budapest. He took his teacher’s diploma in mathematics and physics. After
finishing university, he taught at the Gárdonyi Géza Secondary School in Eger for
12 years.

He began to teach at what is now called the Eszterházy Károly College at
the Department of Mathematics in 1972 and taught there until his death in 2002.
He took a special interest in Number Theory. His doctoral thesis “Second order
linear recurrence and pseudoprime numbers” was submitted in 1977. He obtained
the candidate’s degree in 1980, the title of his dissertation was “Second order
linear recursive sequences and their applications in diophantine problems”. In 1995
Péter Kiss habilitated at the Kossuth Lajos University of Debrecen and he was
inaugurated as professor. He got the Szent-Györgyi Albert prize in 1997. He got
the title of doctor of mathematical science of Hungarian Academy of Sciences in
1999.

His lectures were lucid and meticulously crafted and through him many of
his students grew to like mathematics and research. He brought into existence a
research group in Number Theory and supported the work of his inquiring students
and colleagues. One of his students, Bui Minh Phong, was awarded the Rényi
Kató prize in 1976. He was the supervisor of the doctoral theses of the following
colleagues: Ferenc Mátyás, Sándor Molnár, Béla Zay, Kálmán Liptai, László Szalay,
and helped Bui Minh Phong, László Gerőcs and Pham Van Chung in writing of
their theses.

He took an enthusiastic part in the everyday world of mathematics. He held
several county and national posts in the János Bolyai Mathematical Society. He was
a contributor to the abstracting journals Mathematical Reviews and Zentralblatt
für Mathematik and he was also a permanent member of organizing committee of
the Fibonacci Conference. He was a highly respected member of the community of
mathematicians. This was proved by many joint papers, invitations to conferences
and friends all over the world.

This paper is devoted to the summary of his academic achievements.

Research has been supported by the Hungarian Research Fund (OTKA) Grant T-032898.



8 K. Liptai, F. Mátyás

1. Introduction

In 1202 Leonardo Pisano, or Fibonacci, employed the recurring sequence
1, 2, 3, 5, 8, 13, . . . in a problem on the number of offspring of a pair of rabbits.
Let’s denote by Fn and Fn+1 the n-th and (n + 1)-th term of this sequence,
respectively. In this case Fn+2 = Fn+1 + Fn, where F0 = 0 and F1 = 1. Simple
generalizations of the Fibonacci sequence are the second order linear recurrences.
The sequence {Rn}∞n=0 = R(A, B, R0, R1) is called a second order linear recurrence
if the recurrence relation

Rn = ARn−1 + BRn−2 (n > 1)

holds for its terms, where A, B 6= 0, R0 and R1 are fixed rational integers and
|R0| + |R1| > 0. The sequence R(A, B, 2, A) is called the associate sequence of the
sequence R(A, B, 0, 1).

The polynomial x2 − Ax − B is called the companion polynomial of the
second order linear recurrence R = R(A, B, R0, R1). The zeros of the companion
polynomial will be denoted by α and β. In the sequel we assume that the sequence
is not degenerate, i.e. α/β is not a root of unity, and we order α and β so that
|α| ≥ |β|. Using this notation, we get that

Rn =
aαn − bβn

α − β
,

where a = R1 − R0β and b = R1 − R0α.

Consider now a generalization of second order linear recurrences.

The sequence G(A1, A2, . . . , Ak, G0, G1, . . . , Gk−1) = {Gn}∞n=0 is called a k-th
order linear recursive sequence of rational integers if

Gn = A1Gn−1 + A2Gn−2 + · · · + AkGn−k (n > k − 1),

for certain fixed rational integers A1, A2, . . . , Ak with Ak 6= 0 and G0, G1, . . . ,
Gk−1 not all zero. The companion polynomial of a recurrence with coefficients
A1, A2, . . . , Ak is given by xk − A1x

k−1 − A2x
k−2 − · · · − Ak. Denote by α =

α1, α2, . . . , αs the distinct zeros of the companion polynomial. Assume that
α, α2, . . . , αs has multiplicity 1, m2, . . . , ms respectively and that |α| > |αi| for
i = 2, . . . , s. The zero α is called the dominating root of the polynomial. It is
known that in this case the terms of the sequence can be written in the form

Gn = aαn + r2(n)αn
2 + · · · + rs(n)αn

s (n ≥ 0) ,

where the ri
′s (i = 2, . . . , s) are polynomials of degree mi − 1 and the coefficients

of these polynomials as well as a are elements of the algebraic number field
Q(α, α2, . . . , αs).
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2. Common terms and difference of the terms of linear recurrences

Let G(A1, . . . , Ak, G0, . . . , Gk−1) and H(B1, . . . , Br, H0, . . . , Hr−1) be linear
recurrence sequences having dominating roots. Let p1 < p2 < · · · < ps be different
primes and denote by S the set of rational integers which have only these primes
as prime factors. We suppose that 1 ∈ S.

M. Mignotte (1978) studied the common terms of linear recurrences, that is,
the equation

Gx = Hy.

P. Kiss proved the following theorem in [19].

Theorem 2.1. Let G and H be linear recurrence sequences with dominating roots
α and β, respectively. In this case

Gn = aαn + g2(n)αn
2 + · · · + gs(n)αn

s ,

and

Hn = bβn + q2(n)βn
2 + · · · + qt(n)βn

t .

We suppose that Gi 6= aαi, Hj 6= bβj and s1aαi 6= s2bβ
j for any s1, s2 ∈ S if

max (i, j) > n0. If
s1Gx = s2Hy

for some s1, s2 ∈ S, then max (x, y) < n1, where n1 is effectively computable and
depends on S, n0 and the parameters of the sequences G and H .

P. Erdős asked whether the terms of the recurrence sequences could be close
to each other. P. Kiss answered this question in [30].

Theorem 2.2. Suppose that G and H are linear recurrences satisfying the
conditions of Theorem 2.1. Then for any integers s1, s2 ∈ S

∣

∣|s1Gx| − |s2Hy|
∣

∣ > exp
{

c · max(x, y)
}

for all integers x, y > n2, where c and n2 are effectively computable positive
numbers depending only on S, n0 and the parameters of G and H .

P. Kiss generalized a result of Shorey and Stewart in [30].

Theorem 2.3. Let G be a linear recurrence sequence satisfying the conditions of
Theorem 2.1. If

sxq = Gn

for some positive integers s ∈ S, q, n and x > 1, then q < n3, where n3 is an
effectively computable positive number depending only on S, n0 and the parameters
of G.

A similar result was proved in the same paper.



10 K. Liptai, F. Mátyás

Theorem 2.4. Let G be a linear recurrence sequence as in Theorem 2.1. Further-
more assume that k > 2, |α2| 6= 1, |α2| > |α3| ≥ |αj | (j > 3) and g2(i) 6= 0, if
i > n0. Then

|sxq − Gn| > ecn

for all positive integers s ∈ S, x, q, n and with q, n > n4, where n4 is an effectively
computable positive number depending only on S, n0 and the parameters of G.

3. Prime divisors of second order linear recurrences

Let R(A, B, 0, 1) be a non-degenerate second order linear recurrence sequence
where R0 = 0, R1 = 1 and (A, B) = 1. If p is a prime with p|/B, then there are
terms Rn of R (different from R0 = 0) which are divisible by p. The least index of
these terms is called the rank of apparition of p in the sequence R and is denoted
by r(p). Thus p | Rr(p), but p|/Rm if 0 < m < r(p). If r(p) = n, then we say that p is

a primitive divisor of Rn. If p is a primitive divisor of Rn and pk | Rn (k ≥ 1), but
pk+1|/Rn, then we say pk is a primitive prime power divisor of Rn. P. Kiss proved
the following theorem in [36].

Theorem 3.1. Let Rn be the product of primitive prime power divisors of Rn.
Then

∑

n≤x

logRn =
3 · log |α|

π2
x2 + O(x log x),

provided that x sufficiently large. (The constant involved in O() depends on the
parameters of the sequence.)

In the joint paper [45] P. Kiss and B. M. Phong studied the reciprocal sum
of primitive prime divisors of the terms of second order linear recurrences. To
formulate this, let R(A, B, 0, 1) be a second order linear recurrence and

p (n) =
∑

r(p)=n

1

p

the reciprocal sum of primitive prime divisors of Rn (n > 0), (p(n) = 0, if there is
no primitive prime divisor of Rn). Furthermore let

f(n) =
∑

p|Rn

1

p

be the reciprocal sum of all prime divisors of the term Rn, (f(n) = 0, if there is no
prime divisor). Using this notation they proved that

f(n) < log log log n + c
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for sufficiently large n. This is the best possible result apart from the constant c.

The average of the previous functions was studied in Kiss [47]. The main results
are the following.

Theorem 3.2. There exists a constant c > 0 depends on the sequence R such that

∑

n≤x

f(n) = cx + O(log log x)

for sufficiently large x.

Theorem 3.3. There exists an absolute constant c > 0 such that

p(n) < c
(log log n)2

n

for sufficiently large n. Furthermore

∑

n≤x

p(n) =
∑

r(p)≤x

1

p
= log log x + O(1).

4. Approximation problems

Let G(A, B, R0, R1) be a nondegenerate second order linear recurrence, and
D = A2 + 4B denote the discriminant of its companion polynomial. If D > 0 then
the quotion Rn+1/Rn is a convergent of the irrational number α. The sharpness of
the convergent was studied in Kiss [16].

Theorem 4.1. Suppose that D > 0, G0 = 0, G1 = 1 and that α is an irrational
number. Then the inequality

∣

∣

∣

∣

α − Gn+1

Gn

∣

∣

∣

∣

<
1

c · G2
n

holds for some c > 0 and infinitely many n if and only if |B| = 1 and c ≤
√

D.
Moreover if |B| = 1 and the inequality

∣

∣

∣

∣

α − p

q

∣

∣

∣

∣

<
1√
Dq2

holds for some rational number p/q then p/q = Gn+1/Gn for some positive integer n.

In general Gn+1/Gn is a weaker convergent of α. In the joint paper [55] P. Kiss
and Zs. Sinka proved the following theorem.
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Theorem 4.2. Let G be a non-degenerate second order linear recurrence with
D > 0. Define the numbers k0 and c0 by

k0 = 2 − log |B|
log |α| and c0 =

√
D

k0−1

|ak0−1b|

and let k and c positive real numbers (a and b were defined in the introduction).
Then

∣

∣

∣

∣

α − Gn+1

Gn

∣

∣

∣

∣

<
1

cGk
n

holds for infinetely many integer n if and only if k < k0 and c is arbitrary, or k = k0

and c < c0, or k = k0, c = c0 and B > 0, or k = k0, c = c0, B < 0 and b/a > 0.

P. Kiss and R. F. Tichy [39], [40] have dealt with the convergent of |α| by

rational numbers of the forms
∣

∣

∣

Gn+1

Gn

∣

∣

∣
.

Theorem 4.3. Let G be a non-degenerate second order linear recurrence. If D < 0
then there is a positive number c, depending only on the parameters of the sequence
G, such that

∣

∣

∣

∣

|α| −
∣

∣

∣

∣

Gn+1

Gn

∣

∣

∣

∣

∣

∣

∣

∣

<
1

nc

for infinitely many n.

Furthermore they showed that apart from the constant c, it is the best possible
approximation.

Theorem 4.4. Let G be a non-degenerate second order linear recurrence. If D < 0
then there is a positive number c′, such that

∣

∣

∣

∣

|α| −
∣

∣

∣

∣

Gn+1

Gn

∣

∣

∣

∣

∣

∣

∣

∣

>
1

nc′

for any sufficiently large n.

For the Fibonacci sequence Y. V. Matijasevich and R. K. Guy proved that

lim
n→∞

√

6 · log(F1 · F2 · · ·Fn)

log[F1, F2, . . . , Fn]
= π.

In the joint paper [38] P. Kiss and F. Mátyás generalized this result. They showed
that the Fibonacci sequence can be replaced by any non-degenerate second order
linear recurrence sequence G with G0 = 0, G1 = 1 and (A, B) = 1. Using a Baker
type result, they also gave an error term of the form O (1/log n).
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5. Recursive sequences and diophantine equations

The equation
x2 − Dy2 = N,

with given integers D and N and variables x and y, is called Pell’s equation. If D
is negative, it can have only a finite number of rational integer solutions. If D is a
perfect square, say D = a2, the equation reduces to

(x − ay)(x + ay) = N

and again there are only a finite number of solutions. The most interesting case
arises when D is a positive integer and not a perfect square.

In [8] P. Kiss and F. Várnai proved that the solutions (x, y) of the equation

x2 − 2y2 = N

can be given with the help of terms of finitely many second order linear recurrences
P (2, 1, P0, P1), such that

(x, y) = (±(P2n + P2n+1),±P2n+1).

P. Kiss [25] generalized this result in the following form.

Theorem 5.1. If the equation

x2 − (a2 + 1)y2 = N

has a solution for a fixed integer a > 0, then all solutions (x, y) can be given with
the help of finitely many linear recurring sequences G(2a,−1, G0, G1) such that

(x, y) = (±(G2n + aG2n+1) ± G2n+1),

where

0 ≤ G1 < 2a
√

N for N > 0

and

0 ≤ G1 < (2a2 + 1)

√

−N

a2 + 1
for N < 0.

In the same paper P. Kiss proved the following theorem.

Theorem 5.2. If the equation

x2 − (a2 − 4)y2 = 4N
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has a solution for a fixed integer a > 0, then all solutions (x, y) can be given with
the help of finitely many second order linear recurring sequences G(a,−1, G0, G1)
such that

(x, y) = (±H2n,±G2n),

where H is the associate sequence of G and

0 ≤ G1 <
√

N for N > 0

and

0 ≤ G1 < a

√

−N

a2 − 4
for N < 0.

In their joint paper [77] P. Kiss and K. Liptai found relationships between
Fibonacci numbers and solutions of special diophantine equations.

Theorem 5.3. All positive integer solutions of the equation

x2 + x(y − 1) − y2 = 0

are of the form
(x, y) = (F 2

2h+1, F2h+1F2h+2),

where Fi is the i-th Fibonacci number.
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