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Abstract. We consider classes of Pell equations of the form x2
−dy2=c where d=a2

±4

or d=a2
±1 and c=±4 or c=±1. We show that all the solutions are expressible in terms of Lucas

sequences and we give the Lucas sequences which solve the equations explicitly.
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1. Introduction

The purpose of this paper is to collect together results concerning the solutions
of the Pell equations x2−(a2±4)y2 = ±4, x2−(a2±4)y2 = ±1, x2−(a2±1)y2 = ±4
and x2 − (a2 ± 1)y2 = ±1. We show that the solutions to these Pell equations can
all be expressed in terms of Lucas sequences Un(a,±1) and Vn(a,±1) of E. Lucas
[20], [21].

The solutions of the Pell equations x2 − (a2 + 4)y2 = ±a, x2 − (a2 − 4)y2 =
5 − 2a, x2 − (a2 − 4)y2 = 2 − a and x2 − (a2 − 1)y2 = 2 − 2a can also be
represented as Lucas sequences. This is more difficult to prove however and will be
shown in a subsequent paper.

The above Pell equations are important to logicians since the sequences of
solutions have many elegant divisibility properties which make them useful for
diophantine representation of recursively enumerable sets. The above mentioned
Pell equations can be found in the papers Y. Matiyasevich [22], [25], M. Davis
[1], J. Robinson [26], [27], [28], M. Davis, H. Putnam, J. Robinson [3] and Davis,
Matiyasevich and Robinson [2]. Also in the author’s papers [4], [5], [6], [7], and in
Jones and Matiyasevich [8], [10]. The above Pell equations also have application
to the problem of singlefold diophantine representation of recursively enumerable
sets. See Matiyasevich [25] for an explanation, also the paper of Sun Zhiwei [29]
and Jones and Matiyasevich [8], [9].

Let A and B be integers with A ≥ 1 and B = ±1. Put D = A2 − 4B. The Pell
equation,

(1) V 2 − DU2 = ±4,
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is closely connected with the Lucas identity,

(2) V 2
n − DU2

n = 4Bn

which is satisfied by the Lucas sequences Un and Vn. In the theory developed by
E. Lucas [20], [21] and D. H. Lehmer [18], [19], the sequences Un = Un(A, B)
and Vn = Vn(A, B) satisfying equation (2) are definable as second order linear
recurrences:

(3) V0 = 2, V1 = A, Vn+2 = AVn+1 − BVn,

(4) U0 = 0, U1 = 1, Un+2 = AUn+1 − BUn.

The Lucas sequences Vn and Un satisfy a large number of other identities as
well. We shall need:

(5) (i) 2Vn+1 = AVn + DUn, (ii) 2Un+1 = AUn + Vn,

(6) (i) 2BVn−1 = AVn − DUn, (ii) 2BUn−1 = AUn − Vn.

The above four identities are easy to derive, by induction on n, from the recurrence
equations (3) and (4). Using identity (5) (i) it is then easy to show that Un and
Vn satisfy the Lucas identity (2). For plainly V 2

n − DU2
n = 4Bn holds for n = 0.

Suppose it holds for n. By (5) (i),

4V 2
n+1 − 4DU2

n+1 = (AVn + DUn)2 − D(AUn + Vn)2

= A2V 2
n + D2U2

n − DA2U2
n − DV 2

n = (A2 − D)V 2
n − (A2 − D)DU2

n

= 4BV 2
n − 4BDU2

n = 4B(V 2
n − DU2

n) = 4B4Bn = 16Bn+1.

Hence the Lucas identity (2) holds for n + 1 and so by induction (2) holds for all
n ≥ 0.

One of the main theorems we shall need is that all solutions of V 2−DU2 = ±4
are given by the Lucas sequences V = Vn(A, B) and U = Un(A, B). And we shall
need to know exactly for which pairs (A, B) this holds. We therefore give a careful
proof and an exact statement. We will prove the theorem in the following form:

Theorem 1.1. Suppose D = A2 − 4B, B = 1 and 3B + 5 ≤ 2A. Then for all

nonnegative integers U and V ,

V 2 − DU2 = ±4 ⇐⇒ (∃n ≥ 0)[V = Vn(A, B) and U = Un(A, B)]
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Before giving the proof we mention that the purpose of the hypothesis 3B+5 ≤
2A is to exclude some pairs such as B = 1 and A = 3 for which the theorem does not
hold, yet include others such as B = −1 and A = 1 for which it does hold. If B = 1
and A = 3, then D = 5. x2 − 5y2 = −4 has infinitely many nonnegative integer
solutions (x, y). But they are not all of the form x = Vn(3, 1) and y = Un(3, 1). For
example the solution (x, y) = (1, 1) is not of the form x = Vn(3, 1) and y = Un(3, 1).
Rather x = Vn(1,−1) and y = Un(1,−1) where n = 1. (x, y) lies within the
Fibonacci sequence.

Care is therefore necessary in the statement of Theorem 1.1. Not only can
Theorem 1.1 fail to hold when B = 1 and A = 3, the result can fail to hold when
we try to generalize it beyond |B| = 1. Consider for example the case of B = 2.
If A = 4, then D = A2 − 4B = 8. Now V = 20 and U = 7 is a solution of
V 2 − 8U2 = 4B1. But ∀n 20 6= Vn(4, 2) and ∀n 7 6= Un(4, 2). Thus Theorem 1.1
does not hold for B = 2 and A = 4.

2. Descent

Our main tool in the proof we shall give here of Theorem 1.1 will be Fermat’s
method of descent. We will apply the method to equation (1). We will need the
following lemmas:

Lemma 2.1. (Parity Lemma) Suppose A is a positive integer and |B| = 1.

If A is even: Vn(A, B) is even, and Un(A, B) is even iff 2|n.

If A is odd: Vn(A, B) ≡ Un(A, B) (mod 2), and Vn(A, B) and Un(A, B) are even

iff 3|n.

Proof. By induction on n using equations (3) and (4).

Lemma 2.2. For all n ≥ 0, V2n(1,−1) = Vn(3, +1) and U2n(1,−1) = Un(3, +1),
(n = 0, 1, 2, . . .).

Proof. The proof of this for Vn is the same as that for Un so we shall give
only the proof for Un. For this we use induction on n. If n = 0 or n = 1, then
U2n(1,−1) = Un(3, 1) and U2(n+1)(1,−1) = Un+1(3, 1). Suppose these hold for n

and n+1. By (4), U2(n+2)(1,−1) = U2n+4(1,−1) = U2n+3(1,−1)+U2n+2(1,−1) =

U2n+2(1,−1) + U2n+1(1,−1) + U2n+2(1,−1) =

U2n+2(1,−1) + U2n+2(1,−1)− U2n(1,−1) + U2n+2(1,−1) =

3U2n+2(1,−1)− U2n(1,−1) = 3U2(n+1)(1,−1) − U2n(1,−1) =

3Un+1(3, 1) − Un(3, 1) = Un+2(3, 1).

Lemma 2.3. Let A and V be non-negative integers. Then

If V 2 − A2 = +8, then A = 1 and V = 3.
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If V 2 − A2 = −8, then A = 3 and V = 1.

Proof. 1 ≤ |V 2 −A2| ≤ 8 ⇒ 1 ≤ |V − A|(V + A) ≤ 8 ⇒ 1 ≤ V + A ≤ 8. Hence,
if V 2 −A2 = +8, then A = 1 and V = 3. If V 2 −A2 = −8, then A = 3 and V = 1.

Lemma 2.4.

(Descent Lemma) Suppose D = A2 − 4B, B = ±1, B + 2 ≤ A and U and V
are integers such that 0 ≤ V , 2 ≤ U and V 2−DU2 = ±4. If V ′ and U ′ are defined
by

(7) (i) V ′ =
AV − DU

2B
, (ii) U ′ =

AU − V

2B
,

then V ′ and U ′ are integers and satisfy V ′2 −DU ′2 = ±4B. Also V ′ and U ′ satisfy

(8) (i) 2V = AV ′ + DU, (ii) 2U = AU ′ + V ′.

Furthermore 1 ≤ V ′ and 1 ≤ U ′ < U .

Proof. First we show that 2U ≤ V . Since D = A2 − 4B, B = ±1 and B + 2 ≤ A,
5 ≤ D. Since 2 ≤ U we have 4 ≤ U2 and so 4U2 ≤ 5U2 ± 4 ≤ DU2 ± 4 = V 2.
Therefore 2U ≤ V .

Next we show that V ′ and U ′ are integers. D = A2 − 4B ⇒ D ≡ A2 ≡ A
(mod 2). Also V 2 − DU2 = ±4 ⇒ V 2 ≡ A2U2 (mod 2) ⇒ V ≡ AU (mod 2).
Hence AU −V ≡ 0 (mod 2) and so U ′ is an integer. Also since V ≡ AU (mod 2)
and D ≡ A (mod 2), AV −DU ≡ A2U −AU ≡ AU −AU = 0 (mod 2) so V ′ is
an integer.

Next we show that (V ′)2 −D(U ′)2 = ±4B. From the definitions of V ′ and U ′

we have

V ′2 − DU ′2 =
(AV − DU)2

4B2
− D

(AU − V )2

4B2
=

A2V 2 − DV 2 − DA2U2 + D2U2

4B2
=

(A2 − D)(V 2 − DU2)

4B2
=

(4B)(±4)

4B2
=

±4

B
= ±4B.

Next we show that 2V = AV ′ + DU ′ and 2U = AU ′ + V ′. From the definitions of
V ′ and U ′,

AV ′+DU ′ = A
AV − DU

2B
+D

AU − V

2B
=

A2V − DV

2B
=

V (A2 − D)

2B
=

V 4B

2B
= 2V.

Also

AU ′ + V ′ = A
AU − V

2B
+

AV − DU

2B
=

A2U − DU

2B
=

U(A2 − D)

2B
=

U4B

2B
= 2U.
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Next we show that 1 ≤ U ′ < U . V 2 − DU2 = ±4 ⇒ (A2 − 4B)U2 − V 2 = ∓4 ⇒
A2U2−V 2 = 4BU2∓4 ⇒ (AU−V )(AU +V ) = 4B(U2∓B). Since 2BU ′ = AU−V
⇒ 2BU ′(AU + V ) = 4B(U2 ∓ B) ⇒ U ′(AU + V ) = 2(U2 ∓ B) = 2U2 ∓ 2B, we
have

(9)
2U2 − 2

AU + V
≤ U ′ =

2U2 ∓ 2B

AU + V
≤ 2U2 + 2

AU + V
≤ 2U2 + 2

U + V
,

using B + 2 ≤ A ⇒ 1 ≤ A. Since 2 ≤ U ⇒ 2 < 2U2 ⇒ 0 < 2U2 − 2, equation (9)
⇒ 0 < U ′. Hence 1 ≤ U ′. Now we can show U ′ < U . Using 2U ≤ V , shown earlier,
2U ≤ V ⇒ 3U ≤ U + V . Also 2 ≤ U ⇒ 2 < U2. Hence by (9),

(10) U ′ ≤ 2(U2 + 2)

U + V
≤ 2U2 + 2

3U
≤ 2U2 + U2

3U
= U.

Therefore U ′ < U . Finally we can show that 1 ≤ V ′. Since V ′ = (AV − DU)/2B,
we have

(11) UV ′ =
AUV − DU2

2B
=

AUV − V 2 ± 4

2B
=

AUV − V 2

2B
± 2B = V U ′ ± 2B.

Since 1 ≤ U ′ and 4 ≤ 2U ≤ V , we have 2 ≤ 4±2B ≤ 2U ±2B ≤ 2UU ′±2B ≤
V U ′± 2B = UV ′ by (11). Hence 2 ≤ UV ′ and so 1 ≤ V ′. This completes the proof
of the Descent Lemma.

Proof of Theorem 1.1. Suppose 3B + 5 ≤ 2A. In the direction ⇐ Theorem
1.1 has already been proven by our establishing identity (2). For the direction ⇒
we use the Descent Lemma and induction on U . Suppose 0 ≤ U , 0 ≤ V and
V 2 − DU2 = ±4. If U = 0, then V 2 = ±4 ⇒ V 2 = 4 ⇒ V = 2 and so we can
let n = 0. Suppose U = 1. Then V 2 − DU2 = ±4 ⇒ V 2 − (A2 − 4B) = ±4 ⇒
V 2 − A2 = ±4 − 4B. We consider two cases:

Case 1. B = −1. Here we have V 2 −A2 = 0 or V 2 −A2 = 8. If V 2 −A2 = 0, then
V = A and so we can let n = 1 since V1(A, B) = A = V and U1(A, B) = 1 = U .
If V 2 − A2 = 8, then by Lemma 2.3, A = 1 and V = 3 so we can let n = 2 since
V2(A, B) = A2 − 2B = 3 = V and U2(A, B) = A = 1 = U .

Case 2. B = +1. Here V 2 − A2 = 0 or V 2 − A2 = −8. If V 2 − A2 = −8, then by
Lemma 2. 3, A = 3 and V = 1. Since B = 1, A = 3 contradicts 3B+5 ≤ 2A. Hence
V 2 − A2 = 0. In this case V = A and so we can let n = 1 since V1(A, B) = A = V
and U1 = 1 = U .

Now we can suppose 2 ≤ U and that the implication ⇒ of Theorem 1. 1 holds
for all pairs V ′, U ′ such that 0 ≤ U ′ < U and 0 ≤ V ′. Since B = ±1, the
hypothesis 3B + 5 ≤ 2A implies B + 2 ≤ A and so we can apply the Descent
lemma. Define V ′ and U ′ from V and U as indicated in the Descent Lemma:
V ′ = (AV − DU)/2B and U ′ = (AU − V )/2B. The Descent Lemma then asserts
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that V ′ and U ′ are integers, 1 ≤ V ′, 1 ≤ U ′ < U and V ′2 − DU ′2 = ±4. Hence
by the induction hypothesis ∃n ≥ 0 such that V ′ = Vn(A, B) and U ′ = Un(A, B).
Consequently using equations (8) in the Descent Lemma and identity (5) (i) we
have, 2V = AV ′+DU ′ = AVn+DUn = 2Vn+1 and so V = Vn+1. By (8) and identity
(5) (ii) we also have 2U = AU ′ + V ′ = AUn + Vn = 2Un+1 and so U = Un+1. Thus
the implication ⇒ holds for U . By induction the implication ⇒ holds for all U .
Thus Theorem 1. 1 is proved.

Corollary 2.5. If 4 ≤ A, B = 1, D = A2 − 4, then V 2 − DU2 = −4 has no

solutions U , V .

Proof. Of course this follows immediately from Theorem 1. 1 and Lucas Identity
(2). But there is a more interesting proof using the Descent Lemma: Suppose 4 ≤ A,
B = +1 and D = A2 − 4. Then B + 2 ≤ A so we can use the Descent Lemma.
Suppose V 2 − DU2 = −4 for some V , U . Let (V, U) be the pair with smallest U
such that 0 ≤ V and 0 ≤ U . Then U 6= 0. By Lemma 2. 3, U = 1 would imply
A = 3. Hence 2 ≤ U and so by the Descent Lemma ∃V ′, U ′ such that 1 ≤ V ′,
1 ≤ U ′ < U and V 2 −DU2 = −4. But this contradicts the original choice of U and
V . Thus V and U such that V 2 − DU2 = −4 do not exist.

Remark. If A = 3, then V 2 − (A2 − 4)U2 = −4 does have solutions, e.g. V = 1
and U = 1.

Corollary 2.6. If 4 ≤ A, then x2 − (a2 − 4)y2 = −4 has no solutions.

Corollary 2.7. If 4 ≤ A, then all solutions of x2 − (a2 − 4)y2 = +4 are given by

x = Vi(a, +1) and y = Ui(a, +1), (i = 0, 1, 2, . . .).

Corollary 2.8. If 1 ≤ A, then all solutions of x2 − (a2 + 4)y2 = −4 are given by

x = V2i+1(a,−1) and y = U2i+1(a,−1), (i = 0, 1, 2, . . .).

Corollary 2.9. (Matiyasevich equation [22]) If 1 ≤ A, then all solutions of x2 −
(a2 + 4)y2 = +4 are given by x = V2i(a,−1) and y = U2i(a,−1), (i = 0, 1, 2, . . .).

Remark. In [22] Y. V. Matiyasevich used the above equation x2 − (a2 + 4)y2 = 4
with a = 1, to solve Hilbert’s Tenth Problem. (I.e. he used the sequence of Fibonacci
numbers with even subscripts, U2i(1,−1) = Ui(3, 1).)

3. Solutions of Pell equations with d = a2 ± 4 and c = ±1.

In this section we give the solutions of Pell equations of the form x2 − (a2 ±
4)y2 = ±1.

Lemma 3.1. If 4 ≤ a, then x2 − (a2 − 4)y2 = −1 has no solutions.

Proof. Suppose 4 ≤ a and x2 − (a2 − 4)y2 = −1. Multiplying by 4 we obtain
(2x)2 − (a2 − 4)(2y)2 = −4, which, since 4 ≤ a, has no solutions by Corollary 2.6.
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Remark. If a = 3, then x2 − (a2 − 4)y2 = −1 has infinitely many solutions,
x = V6i+3(1,−1)/2 and y = U6i+3(1,−1)/2, (i = 0, 1, 2, . . .). This is shown by the
next theorem since a2 − 4 = 5 = 12 + 4.

Theorem 3.2. If 1 ≤ a and a is odd, then all solutions of x2 − (a2 + 4)y2 = −1

are given by x = V6i+3(a,−1)
2 and y = U6i+3(a,−1)

2 , (i = 0, 1, 2, . . .).

Proof. Using Corollary 2.8, since 1 ≤ a, we have x2 − (a2 + 4)y2 = −1 ⇐⇒
(2x)2 − (a2 + 4)(2y)2 = −4 ⇐⇒ 2x = Vn(a,−1) and 2y = Un(a,−1) for some odd
n. As a is odd, by the Parity Lemma 2|Vn(a,−1) and 2|Un(a,−1) ⇐⇒ 3|n. 3|n and
n is odd ⇐⇒ ∃i n = 6i + 3, (i = 0, 1, 2, . . .).

Lemma 3.3. For any even integer a, x2 − (a2 + 4)y2 = −1 has no solutions.

Proof. Suppose a is even. Then 4|a2 ⇒ 4|a2 − 4. But x2 6= −1 (mod 4).

Theorem 3.4. If 4 ≤ a and a is even, then all solutions of x2 − (a2 − 4)y2 = +1

are given by x = V2i(a,+1)
2 and y = U2i(a,+1)

2 , (i = 0, 1, 2, . . .).

Proof. Using Corollary 2.7, since 4 ≤ a, we have x2 − (a2 − 4)y2 = +1 ⇐⇒
(2x)2− (a2−4)(2y)2 = +4 ⇐⇒ ∃ n ≥ 0, 2x = Vn(a, +1) and 2y = Un(a, +1). Since
2|a, the Parity Lemma implies 2|Vn(a, +1) and 2|Un(a, +1) ⇐⇒ 2|n, i.e. n = 2i,
(i = 0, 1, 2, . . .).

Theorem 3.5. If 3 ≤ a and a is odd, then all solutions of x2 − (a2 − 4)y2 = +1

are given by x = V3i(a,+1)
2 and y = U3i(a,+1)

2 , (i = 0, 1, 2, . . .).

Proof. Suppose 3 ≤ a and a is odd. x2−(a2−4)y2 = +1 ⇐⇒ (2x)2−(a2−4)(2y)2 =
+4. If 3 < a, then by Corollary 2.7, 2x = Vn(a, +1) and 2y = Un(a, +1), where,
by the Parity Lemma, n = 3i, (i = 0, 1, 2, . . .). If 3 = a, then, since a2 − 4 = 5 =
12 + 4, Corollary 2.9, ⇒ 2x = V2j(1,−1) and 2y = U2j(1,−1), where j = 3i, (i =
0, 1, 2, . . .) by the Parity Lemma, so that x = V6i(1,−1)/2 and y = U6i(1,−1)/2,
(i = 0, 1, 2, . . .). However by Lemma 2.2, V6i(1,−1) = V3i(3, +1) and U6i(1,−1) =
U3i(3, +1), (i = 0, 1, 2, . . .) as required

Theorem 3.6. If 2 ≤ a and a is even, then all solutions of x2 − (a2 + 4)y2 = +1

are given by x = V2i(a,−1)
2 and y = U2i(a,−1)

2 , (i = 0, 1, 2, . . .).

Proof. By Corollary 2.9, since 1 ≤ a, we have x2 − (a2 + 4)y2 = +1 ⇐⇒ (2x)2 −
(a2 +4)(2y)2 = +4 ⇐⇒ 2x = Vn(a,−1) and 2y = Un(a,−1) for some even n. Since
2|a and n is even, the Parity Lemma implies 2|Vn(a,−1) and 2|Un(a,−1).

Theorem 3.7. If 1 ≤ a and a is odd, then all solutions of x2 − (a2 + 4)y2 = +1

are given by x = V6i(a,−1)
2 and y = U6i(a,−1)

2 , (i = 0, 1, 2, . . .).

Proof. By Corollary 2.9, since 1 ≤ a, we have x2 − (a2 + 4)y2 = +1 ⇐⇒ (2x)2 −
(a2 +4)(2y)2 = +4 ⇐⇒ 2x = Vn(a,−1) and 2y = Un(a,−1) for some even n. Since
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a is odd, the Parity Lemma implies 2|Vn(a,−1) and 2|Un(a,−1) ⇐⇒ 3|n. 2|n and
3|n ⇐⇒ 6|n. Hence n = 6i (i = 0, 1, 2, . . .).

4. Solutions of Pell equations with d = a2 ± 1 and c = ±1.

In this section we consider solutions of Pell equations of the form x2 − (a2 ±
1)y2 = ±1.

Lemma 4.1. If 2 ≤ a, then x2 − (a2 − 1)y2 = −1 has no solutions.

Proof. Suppose 2 ≤ a and x2 − (a2 − 1)y2 = −1. Multiplying by 4 we obtain
(2x)2 − ((2a)2 − 4)y2 = −4. Since 4 ≤ 2a, this equation has no solutions by
Corollary 2. 6.

[Another proof is also possible. Let d = a2 − 1. The continued fraction expansion

of
√

d is
√

d = [a− 1; 1, 2a − 2] with period length 2 (even). Hence x2 − dy2 = −1
is unsolvable.]

Theorem 4.2. (Julia Robinson’s equation [26], [27]) If 2 ≤ a, then all solutions of

x2−(a2−1)y2 = +1 are given by x = Vi(2a,+1)
2 and y = Ui(2a, +1), (i = 0, 1, 2, . . .).

Proof. Suppose 2 ≤ a. Using Corollary 2.7, since 4 ≤ 2a we have x2 − (a2 −
1)y2 = +1 ⇐⇒ (2x)2 − ((2a)2 − 4)y2 = +4 ⇐⇒ ∃ n ≥ 0, 2x = Vn(2a, +1) and
y = Un(2a, +1). Since 2a is even, the Parity Lemma implies Vn(2a, +1) is even.
Hence 2|Vn(2a, +1).

Theorem 4.3. If 1 ≤ a, then all solutions of x2 − (a2 + 1)y2 = +1 are given by

x = V2i(2a,−1)
2 and y = U2i(2a,−1), (i = 0, 1, 2, . . .).

Proof. Using Corollary 2.9, since 1 ≤ 2a, we have x2 − (a2 + 1)y2 = +1 ⇐⇒
(2x)2− ((2a)2 +4)y2 = +4 ⇐⇒ 2x = Vn(2a,−1) and y = Un(2a,−1) for some even
n, n = 2i, (i = 0, 1, 2, . . .). Since 2a is even, the Parity Lemma implies 2|Vn(2a,−1).

Theorem 4.4. If 1 ≤ a, then all solutions of x2 − (a2 + 1)y2 = −1 are given by

x = V2i+1(2a,−1)
2 and y = U2i+1(2a,−1), (i = 0, 1, 2, . . .).

Proof. Using Corollary 2.8, since 1 ≤ 2a, we have x2 − (a2 + 1)y2 = −1 ⇐⇒
(2x)2 − ((2a)2 +4)y2 = −4 ⇐⇒ 2x = Vn(2a,−1) and y = Un(2a,−1) for some odd
n, n = 2i + 1, (i = 0, 1, 2, . . .). The Parity Lemma implies 2|Vn(2a,−1), since 2a is
even.
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5. Solutions of Pell equations with d = a2 ± 1 and c = ±4.

In this section we consider solutions of Pell equations of the form x2 − (a2 ±
1)y2 = ±4.

Lemma 5.1. If 2 ≤ a, a 6= 3 and x2 − (a2 − 1)y2 = ±4, then y is even.

Proof. Let d = a2 − 1. Suppose 2 ≤ a, a 6= 3 and x2 − dy2 = ±4. If a is
even, then 4|a2 and so d ≡ −1 (mod 4). Hence x2 − dy2 = ±4 ⇒ x2 + y2 ≡ 0
(mod 4) ⇒ y ≡ x ≡ 0 (mod 2). Therefore we can suppose a is odd and 5 ≤ a.
Then 4|d and so x is even. Suppose y is odd, and without loss of generality that y
is the least such odd y > 0. Since 3 < a, (a − 1)2 < a2 − 5 < a2 + 3 < (a + 1)2.
Hence d ± 4 is not a square and so y 6= 1. Therefore 2 < y. Let x′ = ax − dy and
y′ = ay − x. Then

x′2 − dy′2 = (ax − dy)2 − d(ay − x)2 = (a2 − d)x2 − d(a2 − d)y2 = x2 − dy2 = ±4.

Hence (x′, y′) is also a solution. Since x is even and a and y are both odd, y′ is
odd. Now 5 ≤ a and 2 < y ⇒ 2y2(1 − a) < ±4 < y2 ⇐⇒

2y2 − 2ay2 < ±4 < y2 ⇐⇒ y2 − 2ay2 < −y2 ± 4 < 0 ⇐⇒

a2y2 − 2ay2 + y2 < a2y2 − y2 ± 4 < a2y2 ⇐⇒

(a2 − 2a + 1)y2 < (a2 − 1)y2 ± 4 < a2y2 ⇐⇒

(a − 1)2y2 < x2 < a2y2 ⇐⇒ (a − 1)y < x < ay ⇐⇒

0 < ay − x < y ⇐⇒ 0 < y′ < y. But since x′2 − dy′2 = ±4 and y′ is odd, this
contradicts the choice of y. Hence no such odd y exists.

Lemma 5.2. If 1 ≤ a, a 6= 2 and x2 − (a2 + 1)y2 = ±4, then y is even.

Proof. Let d = a2 + 1. Suppose 1 ≤ a, a 6= 2 and x2 − dy2 = ±4. If a is odd, then
a2 ≡ 1 (mod 4) and so d ≡ 2 (mod 4). Hence x2 − dy2 = ±4 ⇒ x2 + 2y2 ≡ 0
(mod 4) ⇒ y ≡ x ≡ 0 (mod 2). Consequently we can suppose a is even and since
a 6= 2, that 4 ≤ a. Suppose y is odd and y is the least such odd y > 0. Since d is
odd and y is odd, x must be odd. Since 2 < a, (a−1)2 < a2−3 < a2 +5 < (a+1)2

so that d ± 4 is not a square and hence y 6= 1. Thus 2 < y. Put x′ = dy − ax and
y′ = x − ay. As in the proof of Lemma 5.1, x′2 − dy′2 = ±4. Since y′ = x − ay, x
is odd and a is even, y′ is odd. Now 2 < a and 2 < y ⇒ −y2 < ±4 < 2ay2 ⇐⇒
0 < y2 ± 4 < 2ay2 + y2 ⇐⇒

a2y2 < a2y2 + y2 ± 4 < a2y2 + 2ay2 + y2 ⇐⇒

a2y2 < (a2 + 1)y2 ± 4 < (a + 1)2y2 ⇐⇒

a2y2 < x2 < (a + 1)2y2 ⇐⇒ ay < x < (a + 1)y ⇐⇒
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0 < x − ay < y ⇐⇒ 0 < y′ < y. But since x′2 − dy′2 = ±4 and y′ is odd, this
contradicts the choice of y. Hence no such odd y exists.

Theorem 5.3. If 2 ≤ a and a 6= 3, then all solutions of x2 − (a2 − 1)y2 = +4 are

given by x = Vi(2a, +1) and y = 2Ui(2a, +1), (i = 0, 1, 2, . . .).

Proof. Suppose 2 ≤ a, a 6= 3 and x2 − (a2 − 1)y2 = +4. By Lemma 5.l, 2|y. Let
y = 2u. x2 − (a2 − 1)y2 = +4 ⇐⇒ x2 − (a2 − 1)4u2 = +4 ⇐⇒ x2 − ((2a)2 − 4)u2 =
+4 ⇐⇒ x = Vi(2a, +1) and u = Ui(2a, +1) for some i, by Corollary 2.7, since
4 ≤ 2a.

Theorem 5.4. If 1 ≤ a and a 6= 2, then all solutions of x2 − (a2 + 1)y2 = +4 are

given by x = V2i(2a,−1) and y = 2U2i(2a,−1), (i = 0, 1, 2, . . .).

Proof. Suppose 1 ≤ a, a 6= 2 and x2 − (a2 + 1)y2 = +4. By Lemma 5.2, 2|y. Let
y = 2u. x2 − (a2 + 1)y2 = +4 ⇐⇒ x2 − (a2 + 1)4u2 = +4 ⇐⇒ x2 − ((2a)2 + 4)u2 =
+4 ⇐⇒ x = V2i(2a,−1) and u = U2i(2a,−1) for some i, (i = 0, 1, . . .), by Corollary
2.9, since 1 ≤ 2a.

Theorem 5.5. If 1 ≤ a and a 6= 2, then all solutions of x2 − (a2 + 1)y2 = −4 are

given by x = V2i+1(2a,−1) and y = 2U2i+1(2a,−1), (i = 0, 1, 2, . . .).

Proof. Suppose 1 ≤ a, a 6= 2 and x2 − (a2 + 1)y2 = −4. By Lemma 5.2, 2|y. Let
y = 2u. x2− (a2 +1)y2 = −4 ⇐⇒ x2− (a2 +1)4u2 = −4 ⇐⇒ x2− ((2a)2 +4)u2 =
−4 ⇐⇒ x = V2i+1(2a,−1) and u = U2i+1(2a,−1) for some i, (i = 0, 1, . . .), by
Corollary 2.8, since 1 ≤ 2a.

Theorem 5.6. If 2 ≤ a and a 6= 3, then x2 − (a2 − 1)y2 = −4 has no solutions.

Proof. Suppose 2 ≤ a, a 6= 3 and x2 − (a2 − 1)y2 = −4. By Lemma 5.1, 2|y. Let
y = 2u. Then x2−(a2−1)y2 = −4 ⇒ x2−(a2−1)4u2 = −4 ⇒ x2−((2a)2−4)u2 =
−4. But this equation has no solutions by Corollary 2.6, since 4 ≤ 2a.
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