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Abstract. In this paper we investigate the integral of the weighted maximal function of

the Walsh–Paley–Dirichlet, and the Walsh–Kaczmarz–Dirichlet kernels. We find necessary and

sufficient conditions for the finiteness of the integrals. The conditions are quite different for the

two rearrangements of the Walsh system.
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1. Introduction

The Walsh system in the Kaczmarz enumeration was studied by a lot of
authors (see [4], [5], [8], [7], [1], [6], [9]). In [2] it has been pointed out that the
behavior of the Dirichlet kernel of the Walsh–Kaczmarz system is worse than of
the kernel of the Walsh–Paley system considered more often. Namely, it is proved
[2]that for the Dirichlet kernel Dn(x) of the Walsh–Kaczmarz system the inequality

lim supn→∞
|Dn(x)|
log n ≥ C > 0 holds a.e. This “spreadness” of this system makes

easier to construct examples of divergent Fourier series [1].

A number of pathological properties is due to this “spreadness” property of
the kernel. For example, for Fourier series with respect to the Walsh–Kaczmarz
system it is impossible to establish any local test for convergence at a point or on
an interval, since the principle of localization does not hold for this system.

On the other hand, the global behavior of the Fourier series with respect to this
system is similar in many aspects to the case of the Walsh–Paley system. Schipp [5]
and Wo–Sang Young [9] proved that the Walsh–Kaczmarz system is a convergence
system. Skvorcov [8] verified the everywhere (and uniform) convergence of the Fejér
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means of continuous functions, and Gát proved [3] that the Fejér–Lebesgue theorem
also holds for the Walsh–Kaczmarz system.

Beyond the convergence theorems of the Fourier series one can often find
some boundedness properties of the Dirichlet kernel functions. For instance, for
the Walsh–Paley system we have supn∈N |Dn(x)| < ∞ for each x 6= 0. This —as
we have seen above— is not the case for the Kaczmarz rearrangement. What can
be said for the norm of maximal functions? It is easy to have that the L1 norm
of supn∈N |Dn| with respect to both systems is infinite. What happens if we apply
some weight function α? That is, on what conditions find we the inequality

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

sup
n∈N

∣

∣

∣

∣

Dn

α(n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

< ∞

valid? The aim of this paper is to find the necessary and sufficient conditions for
the both rearrangement of the Walsh system.

Let P denote the set of positive integers, N := P ∪ {0} the set of nonnegative
integers and Z2 the discrete cyclic group of order 2, respectively. That is, Z2 = {0, 1}
the group operation is the mod 2 addition and every subset is open. Haar measure
is given in a way that the measure of a singleton is 1/2. Set

G := ×k=0
∞ Z2

the complete direct product. Thus, every x ∈ G can be represented by a sequence
x = (xi, i ∈ N), where xi ∈ {0, 1} (i ∈ N). The group operation on G is the
coordinate-wise addition, (which is the so-called logical addition) the measure (de-
noted by µ) and the topology are the product measure and topology. The compact
Abelian group G is called the Walsh group. Set ei := (0, 0, . . . , 1, 0, 0, . . .) ∈ G the
i-th coordinate of which is 1, the rest are zeros.

A base for the neighborhoods of G can be given as follows

I0(x) := G, In(x) := {y = (yi, i ∈ N) ∈ G : yi = xi for i < n}

for x ∈ G, n ∈ P. Let 0 = (0, i ∈ N) ∈ G denote the nullelement of G, In :=
In(0) (n ∈ N). Let I := {In(x) : x ∈ G, n ∈ N}. The elements of I are called
the dyadic intervals on G. Furthermore, let Lp(G) (1 ≤ p ≤ ∞) denote the usual
Lebesgue spaces (| . |p the corresponding norms) on G, An the σ algebra generated
by the sets In(x) (x ∈ Gm) and En the conditional expectation operator with
respect to An (n ∈ N) (f ∈ L1).

Let n ∈ N. Then n =
∑∞

i=0 ni2
i, where ni ∈ {0, 1} (n ∈ N), i.e. n is expressed

in the number system based 2. Denote by |n| := max(j ∈ N : nj 6= 0), that is,

2|n| ≤ n < 2|n|+1. The Rademacher functions are defined as:

rn(x) := (−1)xn (x ∈ G, n ∈ N).
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The Walsh–Paley system is defined as the sequence of the Walsh–Paley functions:

ωn(x) :=
∞
∏

k=0

(rk(x))nk = (−1)
∑

|n|

k=0
nkxk , (x ∈ G, n ∈ N).

That is, ω := (ωn, n ∈ N). The n-th Walsh–Kaczmarz function is

κn(x) := r|n|(x)

|n|−1
∏

k=0

(

r|n|−1−k(x)
)nk = r|n|(x)(−1)

∑|n|−1

k=0
nkx|n|−1−k ,

for n ∈ P, κ0(x) := 1, x ∈ G. The Walsh–Kaczmarz system κ := (κn, n ∈ N) can be
obtained from the Walsh–Paley system by renumbering the functions within the
dyadic “block” with indices from the segment [2n, 2n+1− 1]. That is, {κn: 2k ≤ n <
2k+1} = {ωn : 2k ≤ n < 2k+1} for all k ∈ N, κ0 = ω0.

By means of the transformation τA: G → G

τA(x) := (xA−1, xA−2, . . . , x1, x0, xA, xA+1, . . .) ∈ G,

which is clearly measure-preserving and such that τA(τA(x)) = x we have

κn(x) = r|n|(x)ωn(τ|n|(x)) (n ∈ N).

Let us consider the Dirichlet kernel functions:

Dφ
n :=

n−1
∑

k=0

φk,

where φ is either κ or ω and n ∈ P.

Let function α: [0, +∞) → [1, +∞) be monotone increasing, and define the
weighted maximal function of the Dirichlet kernels:

Dφ
α(x) := sup

n∈N

|Dφ
n(x)|

α(⌊log n⌋)
(x ∈ G),

where φ is either the Walsh–Paley, or the Walsh–Kaczmarz system. If it does not
cause confusion the notation φ is omitted. First we discuss the Walsh–Paley case.

Proposition 1. Dω
α ∈ L1 if and only if

∑∞
A=0

1
α(A) < ∞. Moreover,

1

2

∞
∑

A=0

1

α(A)
≤| Dω

α |1≤ 2
∞
∑

A=0

1

α(A)
.
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Proof. In [6] one can read that for arbitrary x ∈ IA\IA+1, and A ∈ N the inequality

|Dn(x)| ≤ min{n, 2A}.

This immediately follows

Dα(x) ≤ 2
A
∑

k=0

2k

α(k)
.

That is,

|| Dα ||1=
∞
∑

A=0

∫

IA\IA+1

Dα(x)dµ(x)

≤ 2

∞
∑

A=0

1

2A+1

A
∑

k=0

2k

α(k)

=
∞
∑

k=0

∞
∑

A=k

1

2A

2k

α(k)

≤ 2

∞
∑

k=0

1

α(k).

That is, we have proved that (1/α(n)) ∈ l1 implies Dα ∈ L1. On the other hand,
in the same way as above we have

| Dα |1=
∞
∑

A=0

∫

IA\IA+1

Dα(x)dµ(x)

≥
∞
∑

A=0

∫

IA\IA+1

D2A(x)

α(A)
dµ(x)

=
∞
∑

A=0

1

2A+1

2A

α(A)
.

In the case of the Walsh–Kaczmarz system the situation changes. Namely, we
prove the following two propositions:

Proposition 2. If
∑∞

A=1
A

α(A) < ∞, then Dκ
α ∈ L1. Moreover, || Dκ

α ||1≤

4
∑∞

A=1
A

α(A) + C, where C is some constant, such that may depend on α (but

anyway it is a finite real).

Proposition 3. There exists a positive constant C (which may depend on α) such
that

| Dκ
α |1≥

1

25

∞
∑

A=1

A

α(A)
− C.
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These propositions give

Corollary 4. Dκ
α ∈ L1 if and only if

∑∞
A=1

A
α(A) < ∞.

That is, in the case of the Kaczmarz rearrangement we have to divide by a
“greater” weight function α if we want the maximal function Dκ

α to be integrable.
Besides, by the method of the proof of Proposition 3 one can prove that if Dκ

α /∈ L1

(that is,
∑∞

A=1
A

α(A) = ∞), then it is not integrable on any dyadic interval. This

is quite different in the Walsh–Paley case. Since for this system even the maximal
function supn |Dω

n | is bounded by 2A on G \ IA. In order to prove Proposition 2 we
use to following lemma. Let

Lα(x) := sup{
D2j(τA(x))

α(A)
: j ≤ A, j, A ∈ N}, x ∈ G.

Lemma 5. We prove || Lα ||1≤ 2
∑∞

A=1
A

α(A) + C.

Proof.

| Lα |1≤
∞
∑

A=0

A
∑

j=0

| D2j ◦ τA |1
α(A)

=
∞
∑

A=1

A + 1

α(A)
+ C.

Proof of Proposition 2. It is known ([6]) that for 1 ≤ n ∈ N

Dκ
n = D2|n| + r|n|D

ω
n−2|n| ◦ τ|n|.

Since in [6] one can find the inequality

|Dω
n(x)| ≤ 2j = D2j (x)

for any x ∈ Ij \ Ij+1, then

sup
|n|=A

|Dκ
n(x)| ≤ D2A(x) + sup

|n|<A

|Dω
n(τA(x))| ≤ D2A(x) + sup{D2j (τA(x)) : j < A}.

This gives

Dκ
α(x) = sup

A
sup
|n|=A

|Dκ
n(x)|

α(A)
≤ sup

A

|D2A(x)|

α(A)
+ Lα(x) ≤ Dω

α(x) + Lα(x).

By Proposition 1 we have

| Dω
α |1≤ 2

∞
∑

A=1

A

α(A)
+ C,
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and by Lemma 5, that is, by

| Lα |1≤ 2

∞
∑

A=1

A

α(A)
+ C

the proof of the inequality

| Dκ
α |1≤ 4

∞
∑

A=1

A

α(A)
+ C,

that is, the proof of Proposition 2 is complete.

Proof of Proposition 3. Introduce the following notations:

Lα,N := sup
A≤N

j≤A

∣

∣

∣

∣

D2j ◦ τA

α(A)

∣

∣

∣

∣

, aN :=| Lα,N |1 (N ∈ N).

First, we prove that

(1) aN ≤ CN2.

This in equality can be proved in the following way.

aN ≤
N
∑

A=0

A
∑

j=0

∣

∣

∣

∣

∣

∣

∣

∣

D2j ◦ τA

α(0)

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
N
∑

A=0

A
∑

j=0

C ≤ CN2.

Next, for N ∈ N, and k ∈ N, 1 ≤ k denote by JN,k the following subset of G.

JN,k :=

{

{x ∈ G : xN−k = 1, xN−k+1 = · · · = xN−1 = 0} if N ≥ k ≥ 2,
{x ∈ G : xN−1 = 1} if N ≥ k = 1.

Since for fixed N the setsJN,k, IN are disjoint, and ∪N
k=1JN,k ∪ IN = G, then

we have

(2) aN =
N
∑

k=1

∫

JN,k

Lα,N dµ +

∫

IN

Lα,N dµ.

We give another upper bound for aN , a different one from the inequality (1).
Investigate the function Lα,N on the set JN,k.

If A = N , then for y = τA(x) we have y0 = · · · = yk−2 = 0, yk−1 = 1.

Thus, supj≤A D2j (τA(x))/α(A) = 2k−1/α(N).

For A = N − 1 we have supj≤A D2j (τA(x))/α(A) = 2k−2/α(N − 1).
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And so on . . .

Finally, if A = N − k + 1 we have supj≤A D2j (τA(x))/α(A) = 1/α(N − k + 1).

That is, for x ∈ JN,k

sup
N−k<A≤N

j≤A

∣

∣

∣

∣

D2j ◦ τA(x)

α(A)

∣

∣

∣

∣

= max

{

2k−1

α(N)
,

2k−2

α(N − 1)
, . . . ,

1

α(N − k + 1)

}

.

This, and
∫

JN,k

sup
A≤N−k

j≤A

∣

∣

∣

∣

D2j ◦ τA(x)

α(A)

∣

∣

∣

∣

dµ =
1

2k
aN−k

implies

∫

JN,k

Lα,N (x) dµ(x) = max

{

1

2α(N)
,

1

22α(N − 1)
, . . . ,

1

2kα(N − k + 1)
,

1

2k
aN−k

}

.

Consequently, by (2) we have

(3)

aN ≤
N
∑

k=1

sup
l∈[1,...,k]

1

2lα(N − l + 1)
+

N
∑

k=1

1

2k
aN−k +

∫

IN

Lα,N dµ

≤
N
∑

k=1

sup
l∈[1,...,k]

1

2lα(N − l + 1)
+

N
∑

k=1

1

2k
aN−k +

1

2N
Lα,N (0)

≤ N sup
A∈[1,...,N ]

1

2N−A+1α(A)
+

N
∑

k=1

1

2k
aN−k + sup

A≤N

1

2N−Aα(A)

≤

(

N

2
+ 1

)

sup
0<A≤N

1

2N−Aα(A)
+

N
∑

k=1

1

2k
aN−k +

1

2Nα(0)
.

Next, we prove the inequality below (constant C depends on the function α).

(4)

N
∑

n=1

n

2
sup

{

1

α(n)
,

1

2α(n − 1)
, . . . ,

1

2n−1α(1)

}

≤ C +
2

3

N
∑

n=1

n

α(n)
.

If

sup

{

1

α(n)
,

1

2α(n − 1)
, . . . ,

1

2n−1α(1)

}

=
1

2kα(n − k)
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for some 1 ≤ k < n, then we have

sup

{

1

α(n)
,

1

2α(n − 1)
, . . . ,

1

2n−1α(1)

}

=
1

2kα(n − k)

sup

{

1

α(n − 1)
,

1

2α(n − 2)
, . . . ,

1

2n−2α(1)

}

=
1

2k−1α(n − k)

...

sup

{

1

α(n − k)
,

1

2α(n − k − 1)
, . . . ,

1

2n−k−1α(1)

}

=
1

α(n − k)
.

Consequently, for the left side of (4) we have the following upper bound.

1

2

K
∑

i=1

(

ni

α(ni)
+

ni + 1

2α(ni)
+

ni + 2

22α(ni)
+ · · · +

ni+1 − 1

2ni+1−ni−1α(ni)

)

,

where for the strictly monotone increasing sequence (ni) we have n1 = 1, and
K ∈ N is defined as nK+1 − 1 = N . If

{i ∈ N: ni + 1 < ni+1} = ∅,

then the left side of (4) is bounded by

1

2

K
∑

n=1

n

α(n)
=

1

2

N
∑

n=1

n

α(n)
.

On the other hand, if
{i ∈ N: ni + 1 < ni+1} 6= ∅,

then let ρ denote its minimal element. That is, n1 = 1, n2 = 2, . . . , nρ = ρ, nρ+1 ≥
ρ + 2. Consequently for the left side of (4) we have

(5)

N
∑

n=1

n

2
sup

{

1

α(n)
,

1

2α(n − 1)
, . . . ,

1

2n−1α(1)

}

=
1

2

(

1

α(1)
+

2

α(2)
+ · · · +

ρ − 1

α(ρ − 1)

)

+
1

2

(

nρ

α(nρ)
+

nρ + 1

2α(nρ)
+ · · · +

nρ+1 − 1

2nρ+1−nρ−1α(nρ)

)

+
1

2

K
∑

i=ρ+1

(

ni

α(ni)
+

ni + 1

2α(ni)
+

ni + 2

22α(ni)
+ · · · +

ni+1 − 1

2ni+1−ni−1α(ni)

)

≤ C +
1

2

K
∑

i=ρ+1





ni

α(ni)
+

1

α(ni)



ni +

∞
∑

j=1

j

2j









≤ C +
1

2

K
∑

i=ρ+1

(

ni

α(ni)
+

ni + 2

α(ni)

)
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(C depends on α). Since the function α: [0, +∞) → [1, +∞) is monotone
increasing, then we have

N
∑

n=1

n

2
sup

{

1

α(n)
,

1

2α(n − 1)
, . . . ,

1

2n−1α(1)

}

≤ C +
1

2

K
∑

i=ρ+1

(

ni

α(ni − 1)
+

ni + 2

α(ni)

)

≤ C +
1

2

N
∑

n=nρ+1−1

n + 2

α(n)

≤ C +
1

2
·
4

3

N
∑

n=1

n

α(n)
.

That is, the inequality (4) is verified. On the other hand, (2) also implies

aN ≥
N
∑

k=1

max

{

1

2α(N)
,

1

2k
aN−k

}

+ sup
A≤N

1

2N−Aα(A)

≥
N
∑

k=⌊N/4⌋+1

1

2α(N)
+

⌊N/4⌋
∑

k=1

1

2k
aN−k + sup

A≤N

1

2N−Aα(A)

≥
3N/8

α(N)
+

aN−1

2
+

aN−2

22
+ · · · +

a⌈3N/4⌉

2⌊N/4⌋
+ sup

A≤N

1

2N−Aα(A)
.

By this inequality we have

2aN − aN−1 ≥
3N/4

α(N)
+

aN−2

2
+

aN−3

22
+ · · · +

a⌈3N/4⌉

2⌊N/4⌋−1
+ 2 sup

A≤N

1

2N−Aα(A)
.

Consequently, (3) gives

2aN − 2aN−1 ≥
3N/4

α(N)
+

aN−2

2
+

aN−3

22
+ · · · +

a⌈3N/4⌉

2⌊N/4⌋−1
+ 2 sup

A≤N

1

2N−Aα(A)

−
N − 1

2
sup

A≤N−1

1

2N−1−Aα(A)
−

N−1
∑

k=1

1

2k
aN−1−k − sup

A≤N−1

1

2N−Aα(A)

≥
3N/4

α(N)
−

N − 1

2
sup

A≤N−1

1

2N−1−Aα(A)
−

N−1
∑

k=⌊N/4⌋

1

2k
aN−1−k.
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At last by (1) and (4) we have the following lower bound for aN .

2aN =

N
∑

n=1

(2an − 2an−1)

≥
N
∑

n=1

3n/4

α(n)
−

N−1
∑

n=0

n

2
sup
A≤n

1

2n−Aα(A)
− C

N
∑

n=1

n2

2n/4

≥

(

3

4
−

2

3

) N
∑

n=1

n

α(n)
− C.

Apply Proposition (1), or more exactly, the method its proof, and the inequality
given for aN above.

|| Dκ
α ||1= sup

N∈N

sup

{∣

∣

∣

∣

∣

∣

∣

∣

Dκ
n

α(log(⌊n⌋))

∣

∣

∣

∣

∣

∣

∣

∣

1

: n ≤ N

}

≥ sup
N∈N

sup

{∣

∣

∣

∣

∣

∣

∣

∣

Dκ
2A+2j

α(A)

∣

∣

∣

∣

∣

∣

∣

∣

1

: j < A ≤ N, (j, A, N ∈ N)

}

≥ sup
N∈N

sup

{∣

∣

∣

∣

∣

∣

∣

∣

Dω
2j ◦ τA

α(A)
−

D2A

α(A)

∣

∣

∣

∣

∣

∣

∣

∣

1

: j < A ≤ N, (j, A, N ∈ N)

}

≥ sup
N∈N

(

aN − 2
N
∑

A=0

1

α(A)

)

≥ sup
N∈N

(

1

24

N
∑

n=1

n

α(n)
− 2

N
∑

A=1

1

α(A)
− C

)

≥
1

25

∞
∑

n=1

n

α(n)
− C.

This completes the proof of Proposition (3).
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