
Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 30 (2003) 45–54

RECENT RESULTS ON POWER INTEGRAL BASES

OF COMPOSITE FIELDS

István Gaál and Péter Olajos (Debrecen, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. We consider the problem of existence of power integral bases in orders of

composite fields. Completing our former results we show that under certain congruence conditions

on the defining polynomial of the generating elements of the fields, the composite of the polynomial

orders does not admit power integral basis. As applications we provide several examples involving

also infinite parametric families of fields.
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1. Introduction

Let K be an algebraic number field of degree n with ring of integers ZK . It is
a classical problem in algebraic number theory to decide if there is an element α
in K such that

{1, α, α2, . . . , αn−1}
is an integral basis. Such an integral basis is called power integral basis. A further
problem is to find all elements which generate power integral bases.

The index of a primitive algebraic integer α ofK is defined as the module-index

I(α) = (Z+
K : Z

+[α]).

Obviously α generates a power integral basis if and only if I(α) = 1.

Note that

(1) I(α) =

∣

∣

∣

∏

1≤j<k≤n(α(j) − α(k))
∣

∣

∣

√

|DK |
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where α(i) (i = 1, . . . , n) are the conjugates of α and DK is the discriminant of K.

Let {1, ω2, . . . , ωn} be an integral basis of K. Then the discriminant of the
linear form l(X) = X1 + ω2X2 + · · · + ωnXn can be written as

DK/Q(l(X)) = I(x2, . . . , xn)2 ·DK ,

where I(x2, . . . , xn) is the index form corresponding to the integral basis {1, ω2, . . . ,

ωn} (see I. Gaál [4]).

For any
α = x1 + ω2x2 + · · · + ωnxn ∈ ZK

we have

I(α) = |I(x2, . . . , xn)|.

Hence if we want to determine all generators of power integral bases, we have
to solve the index form equation

(2) I(x2, . . . , xn) = ±1 (x2, . . . , xn ∈ Z).

Using Baker’s method the first effective upper bounds for the solutions of (2)
were given by K. Győry [10]. This upper bound implies that (2) has only finitely
many solutions.

There are efficient algorithms for determining all generators of power integral
bases in lower degree number fields cf. I. Gaál and N. Schulte [9] for cubic, I. Gaál,
A. Pethő and M. Pohst [7] for quartic fields. A general algorithm for quintic fields
was given by I. Gaál and K. Győry [5], which already requires several hours of CPU
time. For algorithms for solving index form equations in certain special sextic, octic,
nonic fields see I. Gaál [1], [3], I.Gaál and M. Pohst [8], I. Járási [11]. For a more
complete overview on the topic see the monograph [4].

For higher degree number fields this problem is very complicated because of
the high degree and the large number of variables of equation (1). The resolution
of this equation is only hopeful if K has proper subfields, because in this case the
index form is reducible.

Higher degree fields having subfields are very often given as composites of
certain subfields. This is the case that we investigated in [2] and [6]. The purpose
of this paper is to add some recent results to this area. In order to make it easier
for the reader to compare our (old and new) results, we first summarize our former
results, then we detail the new results that can be used in some important cases
not covered by our former statements.
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2. Coprime discriminants

In [2] we considered the problem of existence of power integral bases in case
K is the composite of two subfields L and M with coprime discriminants. Let
L be of degree r with integral basis {l1 = 1, l2, . . . , lr} and discriminant DL.
Denote the index form corresponding to the integral basis {l1 = 1, l2, . . . , lr} of
L by IL(x2, . . . , xr). Similarly, let M be of degree s with integral basis {m1 =
1,m2, . . . ,ms} and discriminant DM . Denote the index form corresponding to the
integral basis {m1 = 1,m2, . . . ,ms} of M by IM (x2, . . . , xs). Assume, that the
discriminants are coprime, that is gcd(DL, DM ) = 1.

Set K = L ·M the composite of L and M . As it is known (cf. W. Narkiewicz
[12]) the discriminant of K is DK = Ds

L · Dr
M and an integral basis of K is given

by {li ·mj : 1 ≤ i ≤ r, 1 ≤ j ≤ s}. Hence, any integer α of K can be represented
in the form

(3) α =

r
∑

i=1

s
∑

j=1

xij · li ·mj

with xij ∈ Z (1 ≤ i ≤ r, 1 ≤ j ≤ s).

I. Gaál [2] formulated a general necessary condition for α ∈ ZK to be a
generator of a power integral basis of K.

Theorem 1. (I. Gaál, [2]) Assume gcd(DL, DM ) = 1. If α of (3) generates a power
integral basis in K = L ·M then

(4) NM/Q

(

IL

(

s
∑

i=1

x2i ·mi, . . . ,

s
∑

i=1

xri ·mi

))

= ±1

and

(5) NL/Q

(

IM

(

r
∑

i=1

xi2 · li, . . . ,
r
∑

i=1

xis · li
))

= ±1.

This statement was applied e.g. for nonic fields [3].

3. Non-coprime discriminants

A sufficient condition for the non-existence of power integral bases in K was
formulated by I. Gaál, P. Olajos and M. Pohst [6] in the case when DL and DM

are usually not coprime.
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Let f, g ∈ Z[x] be distinct monic irreducible polynomials (over Q) of degrees
m and n, respectively. Let ϕ be a root of f and let ψ be a root of g. Set L = Q(ϕ),
M = Q(ψ) and assume that the composite field K = LM has degree mn. We also
assume that there is a prime number q, (q ≥ 2) such that both f and g have a
multiple linear factor (at least square) modulo q, that is, there exist af and ag in
Z such that

(6)

{

f(af ) ≡ f ′(af ) ≡ 0 (mod q),
g(ag) ≡ g′(ag) ≡ 0 (mod q).

Note that our assumption implies that q divides both the discriminant d(f) of
the polynomial f and the discriminant d(g) of g. In our case the fields we consider
are composites of subfields whose discriminants are usually not coprime. This is
the case in many interesting examples.

Consider the order Of = Z[ϕ] of the field L, the order Og = Z[ψ]
of the field M and the composite order Ofg = OfOg = Z[ϕ, ψ] in the

composite field K = ML. Note that {1, ϕ, . . . , ϕm−1}, {1, ψ, . . . , ψn−1} and
{1, ϕ, . . . , ϕm−1, ψ, ϕψ, . . . , ϕm−1ψ, . . . , ψn−1, ϕψn−1, . . . , ϕm−1ψn−1} are Z bases
of Of , Og and Ofg, respectively.

Theorem 2. (I. Gaál, P. Olajos, M. Pohst [6]) Under the above assumptions the
index of any primitive element of the order Ofg is divisible by q.

As a consequence we have:

Theorem 3. (I. Gaál, P. Olajos, M. Pohst [6]) Under the above assumptions the
order Ofg has no power integral basis.

In [6] we applied the above theorem to the parametric family of simplest sextic
fields.

4. New results on composite fields

We are going to formulate a further sufficient condition for the non-existence
of power integral bases in composite fields.

Let f, g ∈ Z[x] be monic, irreducible polynomials of degrees m,n ∈ Z,
respectively. Let α be a root of f , and let β be a root of g. Denote the discriminants
of these polynomials by d(f), d(g). The conjugates of α and β will be denoted
by αk (k = 1, . . . ,m) and βl (l = 1, . . . , n), respectively. Further, let L =

Q(α), OL = Z[α] with discriminant DOL
= d(f) and M = Q(β), OM = Z§m[β]

with discriminant DOM
= d(g). We assume that there are square-free numbers

p, q ∈ Z (p, q ≥ 2) such that



Recent results on power integral bases of composite fields 49

(A) f(x) ≡ xm (mod p),

or

(B) g(x) ≡ xn (mod q).

This condition is of course restrictive, but (as we can see in the examples) it holds
in many cases which are important for the applications.

Let K = L ·M and OK = OL · OM = Z[α, β]. Then DOK
= Dn

OL
·Dm

OM
and

any ϑ ∈ OK can be written in the form

ϑ =

m−1
∑

i=0

n−1
∑

j=0

xij · αi · βj

with conjugates

ϑkl =

m−1
∑

i=0

n−1
∑

j=0

xij · αi
k · βj

l

(1 ≤ k ≤ m, 1 ≤ l ≤ n).

Our main result is the following:

Theorem 4. Assume that there exists a power integral basis in OK. If (A) is
satisfied, then

(7) (d(g))
m(m−1)/2 ≡ ±1 (mod p).

If (B) is satisfied, then

(8) (d(f))n(n−1)/2 ≡ ±1 (mod q).

As a consequence we have:

Theorem 5. If (A) is satisfied, but (7) does not hold, then OK does not admit any
power integral basis. If (B) is satisfied, but (8) does not hold, then OK does not
admit any power integral basis.

Proof of Theorem 4. If ϑ generates a power integral basis in K, then we have

(9) I(ϑ) =
1

√

|DOK
|
·
∏

(k1,l1)<(k2,l2)
|ϑk1l1 − ϑk2l2 | = 1.

where the pairs (k1, l1) < (k2, l2) are ordered lexicographically.
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This product splits into three factors taking integer values. The first and second
are the following:

F1 =

m
∏

k=1

∏

1≤l1<l2≤n

ϑkl1 − ϑkl2

βl1 − βl2

,

F2 =

n
∏

l=1

∏

1≤k1<k2≤m

ϑk1l − ϑk2l

αk1
− αk2

.

The factors in these products are algebraic integers. By using symmetric polyno-
mials we can see that both F1 and F2 are complete norms, hence F1, F2 ∈ Z.

These factors absorb completely the discriminant
√

|DOK
|, thus the third factor

F3 consist of the remaining factors (ϑk1l1 −ϑk2l2) of the product (9), and also takes
integer value.

Assume that f(x) ≡ xm (mod p). Denote by N the smallest normal extension
of K, let p0 be a prime factor of p and let p0 be a prime ideal of N lying above p0.
Since f(x) ≡ xm (mod p0), hence f(x) =

∏m
j=1(x − αj) ≡ xm (mod p0). This

means that for any root αj we have
0 = f(αj) ≡ αm

j (mod p0) that is the roots of f are zero modulo p0.

Let us consider the factors F1 and F3 (mod p0). Using αj ≡ 0 (mod p0)
for j = 1, . . . ,m we have

F1 =
m
∏

k=1

∏

1≤l1<l2≤n

(

ϑkl1 − ϑkl2

βl1 − βl2

)

=

m
∏

k=1

∏

1≤l1<l2≤n

1

βl1 − βl2

m−1
∑

i=0

n−1
∑

j=0

xij · (αi
k · βj

l1
− αi

k · βj
l2

)

≡
m
∏

k=1

∏

1≤l1<l2≤n

1

βl1 − βl2

n−1
∑

j=0

x0j · (βj
l1
− β

j
l2

)

=





∏

1≤l1<l2≤n

n−1
∑

j=0

x0j ·
(

β
j
l1
− β

j
l2

βl1 − βl2

)





m

(mod p0).

For similar reasons for F3 we have

F3 =
∏

k1 6=k2

∏

1≤l1<l2≤n

(ϑk1l1 − ϑk2l2)

=
∏

k1 6=k2

∏

1≤l1<l2≤n

m−1
∑

i=0

n−1
∑

j=0

xij · (αi
k1

· βj
l1
− αi

k2
· βj

l2
)
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≡
∏

k1 6=k2

∏

1≤l1<l2≤n

n−1
∑

j=0

x0j · (βj
l1
− β

j
l2

)

=
∏

k1 6=k2

∏

1≤l1<l2≤n

(βl1 − βl2) ·
n−1
∑

j=0

x0j ·
(

β
j
l1
− β

j
l2

βl1 − βl2

)

= (DOM
)
m(m−1)/2 ·





∏

1≤l1<l2≤n

n−1
∑

j=0

x0j ·
(

β
j
l1
− β

j
l2

βl1 − βl2

)





m2−m

= (d(g))
m(m−1)/2 ·





∏

1≤l1<l2≤n

n−1
∑

j=0

x0j ·
(

β
j
l1
− β

j
l2

βl1 − βl2

)





m2−m

(mod p0).

In the case when ϑ ∈ OK generates a power integral basis in OK then this
means that Fi = εi (i = 1, 2, 3), where εi = 1 or −1. This implies

F1 ≡ ε1 (mod p0), F2 ≡ ε2 (mod p0), F3 ≡ ε3 (mod p0).

Comparing the above congruences for F1 and F3 (mod p0) we conclude

(d(g))
m(m−1)/2 · εm−1

1 ≡ ε3 (mod p0).

But this is a congruence with integers, hence it must also hold modulo p0 in Z

(if an integer is divisible by a prime ideal then by taking norms it follows that a
certain power of the prime number under the prime ideal divides a power of the
integer, that is the prime number divides the integer):

(d(g))
m(m−1)/2 · εm−1

1 ≡ ε3 (mod p0).

This is satisfied for all prime factors p0 of (the square-free) p hence we become

(d(g))
m(m−1)/2 · εm−1

1 ≡ ε3 (mod p),

that is

(10) (d(g))m(m−1)/2 ≡ ±1 (mod p).

Performing a similar calculation in the case g(x) ≡ xn (mod q) for F2 and
F3 (mod q) we obtain

(11) (d(f))
n(n−1)/2 ≡ ±1 (mod q).

This theorem gives a simple condition to exclude the existence of power integral
bases in OK. If the congruences (7) and (8) are both valid and the discriminants
DL, DM are coprime (this means that we can not apply Theorem 4) then we have
to use Theorem 1 for finding the generator elements. On the other hand, if the
discriminants DL, DM are coprime and if Theorem 4 is applicable, then we can
exclude the existence of power integral bases without any tedious computations.
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5. Examples

In the examples we use the polynomial orders OL and OM in the same meaning
as in Theorem 2, and similarly OK = OLOM.

Example I. Let p, q be square-free integers (≥ 2). One of the most straightforward
and frequently used applications of Theorem 4 is the case when f(x) = xm −p and
g(x) = xn − q. Assume that K = Q( m

√
p, n

√
q) is of degree mn. We have

d(f) = (−1)(m−1)(m−2)/2 ·mm · pm−1,

d(g) = (−1)(n−1)(n−2)/2 · nn · qn−1.

By Theorem 4 if one of the congruences

(

nn · qn−1
)m(m−1)/2 ≡ ±1 (mod p),

(

mm · pm−1
)n(n−1)/2 ≡ ±1 (mod q).

is not satisfied, then OK = Z[ m

√
p, n

√
q] has no power integral basis.

I.1. In the special case if m = 3, n = 2, the field K = L ·M is an algebraic number
field of degree 6. We have d(f) = DOL

= −27 · p2, d(g) = DOM
= 4 · q.

The above congruences are of the form

(12) 64 · q3 ≡ ±1 (mod p).

(13) −27 · p2 ≡ ±1 (mod q).

If for example p = 7, q = 5 then gcd(DOL
, DOM

) = 1. We have

(14) 64 · 53 = 8000 ≡ 6 ≡ −1 (mod 7),

(15) −27 · 72 = −1323 ≡ 2 ≡ −3 (mod 5).

Theorem 4 implies that there is no power integral basis in OK.

I.2. In the special case when m = 22, n = 15 and [K : Q] = 22 · 15 = 330, we have

d(f) = DOL
= 2222 · p21, d(g) = DOM

= −1515 · q14.

If for example we take p = 31, q = 17 then

gcd(DOL
, DOM

) = 1,
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hence Theorem 1 would be applicable. But by applying Theorem 4, either

(−1515 · 1714)231 ≡ 4 ≡ −27 (mod 31)

or
(2222 · 3121)105 ≡ 10 ≡ −7 (mod 17)

implies that there exist no power integral basis in OK.

Example II. To consider a different example let f(x) = x5 − p3x3 − p2x2 − px− p

and g(x) = x3 − q2x2 − qx − q (m = 5, n = 3). If OK has power integral bases,
then the following congruences must be satisfied:

d(g)10 ≡ ±1 (mod p),

d(f)3 ≡ ±1 (mod q),

where
d(g) = −q2(−4q − q4 + 18q2 + 4q5 + 27)

and

d(f) = −p4(108p13 − 56p12 + 12p11 + 75p8 − 38p7 + 11p6 − 3750p4+

4250p3 − 1600p2 + 256p− 3125).

If one of these congruences is not satisfied, OK = Z[α, β] (α and β are being roots
of f, g respectively) has no power integral basis.

II.1. Let p = 7, q = 29. Then [K : Q] = 5 · 3 = 15, and we have

d(f) = DOL
= −23320969892806663 = −(7)4(11)2(5208131)(15413),

d(g) = DOM
= −68417338124 = −(2)2(29)2(41)(496051)

and
gcd(DOL

, DOM
) = 1,

hence Theorem 1 would be applicable. But by applying Theorem 4, either

d(g)10 ≡ 2 ≡ −5 (mod 7)

or
d(f)3 ≡ 6 ≡ −23 (mod 29)

implies that there exist no power integral basis in OK.
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