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Introduction

When describing Fitting classes of finite soluble groups structure and their
classification the basic result is Blessenohl–Gaschütz’s theorem [1]: the intersection
of any set of non-identity normal Fitting classes is non-identity normal Fitting class
again.

Remind that a class F of finite groups is called a Fitting class if the following
two conditions hold:

(i) if G ∈ F and N ⊳ G, then N ∈ F;

(ii) if M , N ⊳ G = MN with M and N in F, then G ∈ F.

We note from the definition of a Fitting class it follows that every finite group
G has a unique maximal normal F-subgroup called the F-radical of G denoting GF.

A Fitting class F is called normal in a class of finite groups X or X-normal [4]
if F ⊆ X and GF is maximal among subgroups of G belonging to F for all groups

G ∈ X. In the case when X = S (S is the class of all finite soluble groups) F is
called S-normal or simply normal Fitting class.

In this paper we develop and extend the above-mentioned result by Blessenohl–
Gaschütz in two directions. In the first place, we prove an analog of Blessenohl–
Gaschütz’s theorem for X-normal Fitting classes where X is a Fischer class (in
particular X ⊆ S). In the second place, we replace a solvability condition for the
groups of the class X with a partially solvability condition. In the course of this
paper we consider only finite groups. We use the terminology and notations of [2].

1. Some notations and lemmas

Let F be a Fitting class. A subgroup V of a group G is called an F-injector of
G if V

⋂

N is maximal in N from the subgroups in F for any subnormal subgroup
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N of G. A famous Fischer–Gaschütz–Hartley’s theorem [3] that every group G ∈ S

has a unique class of conjugate F-injectors is a synthesis of well-known Sylow’s and
Hall’s theorems.

We note that if F and H are Fitting classes then their product FH is the class
of groups (G | G/GF ∈ H) which is a Fitting class. In particular FS is the class of
all groups G such that factor group by the F-radical of G is soluble.

The following lemma extends Fischer–Gaschütz–Hartley’s theorem.

Lemma 1.1. (V. Sementovskii [5]) If G ∈ FS then

(a) G has a unique class of conjugate F-injectors;

(b) if V is an F-injector of G and V ⊆ H ⊆ G, then V is also an F-injector of H .

We shall use the definition of X-normal Fitting class which is equivalent to
above-mentioned (in introduction) Laue’s definition [4].

Definition 1.2. Let F and X be Fitting classes such that F ⊆ X ⊆ FS. We call
the Fitting class F an X-normal or normal in X if for any group G ∈ X its F-injector
is a normal subgroup of G. We denote this by F ⊳ X.

The following example gives a construction procedure of wide family of

X-normal Fitting classes.

Example 1.3. Let F be any non-empty Fitting class and X = FN where N is the
class of all nilpotent groups. Then for any group G ∈ X its F-injector V = GF.

In fact since G/GF is nilpotent, then V/GF is a subnormal subgroup of G/GF.
Therefore V is subnormal in G and V = GF.

We shall use the result by J. Tits.

Lemma 1.4. ([2, Lemma A 1.2]) Let U , V and W be subgroups of a group G.
Then the following statements are equivalent:

(a) U
⋂

V W = (U
⋂

V )(U
⋂

W );

(b) U
⋂

UW = U(V
⋂

W ).

2. The main result

Remind that a Fitting class F is called a Fischer class if G ∈ F, K ⊳ G,
K ⊆ H ⊆ G and H/K is a p-group (p is a prime number) implies H ∈ F.

Theorem 2.1. Let X be a Fisher class and {Fi | i ∈ I} be the set of X-normal
Fitting classes. If F =

⋂

i∈I Fi and F ⊆ X ⊆ FS, then F is an X-normal Fitting
class.

Proof. We proceed by induction on the order of groups in X. Suppose that the
theorem fails to hold. Let G ∈ X be a counter example of minimal order. Since
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G/GF is soluble by hypothesis then by Lemma 1.1 there exist F-injectors in G.
Let V be an F-injector of G, such that V is not normal in G. Since F ⊆ Fi for all
i ∈ I, then GF ⊆ GF

i

and by the isomorphism G/GF/GF
i

/GF
∼= G/GF

i

, we have

G/GFi

is soluble.

Consequently by Lemma 1.1 there exists an Fi-injector Vi in G. By hypothesis
Vi ⊳ G for all i ∈ I. Therefore

⋂

i∈I Vi ⊳ G. Evidently
⋂

i∈I Vi ∈ F. Hence
⋂

i∈I Vi ⊆
GF.

On the other hand for every i ∈ I we have the inclusion

GF ⊆ GF
i

= Vi.

Consequently GF =
⋂

i∈I Vi and
⋂

i∈I Vi ⊂ V .

Let M be an arbitrary maximal normal subgroup of G. Since V is an F-injector
of G then the subgroup V

⋂

M is an F-injector of the group M . Then since M ∈ X

it follows that V
⋂

M ⊳ M by induction.

We obtain V
⋂

M = MF = GF

⋂

M . Hence for any maximal normal subgroup M

of G we have

(1) V
⋂

M =

(

⋂

i∈I

Vi

)

⋂

M.

We note that V is not contained in any subnormal subgroup N of G. If this
assertion fails to hold i.e. V ⊆ N ⊳ ⊳ G then there exists an F-injector in N .
By Lemma 1.1 the subgroup V is an F-injector of N . Then by induction V ⊳ N .
Therefore V ⊳⊳ G and V = GF. A contradiction because V is not normal subgroup
of G.

We show that G = RV for any normal subgroup R of G such that G/R is
nilpotent. Let RV 6= G. Then a subgroup RV/R is subnormal in G/R. Hence RV
is subnormal in G. Consequently V is contained in the subgroup H = RV and
H ⊳ ⊳ G, a contradiction.

Now we prove that G is comonolithic. Let G be not comonolithic and M1 and
M2 be maximal normal subgroups of G. Without loss of generality we consider
M1 ⊇ GF and M2 6⊇ GF. Then G = M2GF. Besides M1 ⊇ GF and G ∈ FS.

It follows that G/M1 is nilpotent. From above G = V M1. Consequently by the
isomorphisms G/M1

∼= V/(V
⋂

M1) and G/M2
∼= V/(V

⋂

M2) the subgroups
V
⋂

M1 and V
⋂

M2 are maximal normal of V .

Suppose V
⋂

M1 6= V
⋂

M2. Then V = (V
⋂

M1)(V
⋂

M2). Hence by (1)

V =

((

⋂

i∈I

Vi

)

⋂

M1

)((

⋂

i∈I

Vi

)

⋂

M2

)
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and V ⊆ GF. Consequently V = GF. A contradiction because the subgroup V is

not normal in G. Therefore V
⋂

M1 = V
⋂

M2. Then

G/M1
∼= V/V

⋂

M1 = V/V
⋂

M2
∼= G/M2

and G/M2 ∈ N. Thus the group G/(M1

⋂

M2) is nilpotent. Hence G =
V (M1

⋂

M2). From the other hand G = V M1

⋂

V M2. Consequently

V
(

M1

⋂

M2

)

= V M1

⋂

V M2.

By Lemma 1.2 we have the equality

V =
(

V
⋂

M1

))

V
⋂

M2

)

= V
⋂

M1.

It follows that V ⊆ M1. A contradiction because V is not contained in any subnor-
mal subgroup of G. Thus M1 = M2 = M and G is comonolithic. Consequently for
every i ∈ I we have Vi ⊆ M . Hence by (1)

(2) V
⋂

M =
⋂

i∈I

Vi.

Then by the isomorphism

G/M ∼= V/

(

⋂

i∈I

Vi

)

the group V/(
⋂

Vi) is cyclic of prime order p.

Now we show ViV 6= G for some i ∈ I. Suppose for any i ∈ I the equality
holds ViV = G. If for all j ∈ I we have Vj = G then G ∈ F and G is an

F-injector for itself. Hence G = V ⊳ G. A contradiction because V is not normal in
G. Consequently Vj 6= G for some j ∈ I. Since by hypothesis Vj ⊳ G then

G/Vj
∼= V/V

⋂

Vj .

By the equality (2)

V
⋂

Vj ⊆ V
⋂

M =
⋂

i∈I

Vi ⊆ Vj

⋂

V.

Then Vj

⋂

V =
⋂

i∈I Vi. Since V/(
⋂

i∈I Vi) ∼= G/Vj it follows that G/Vj is a cyclic
group of prime order p. Hence Vj is a maximal normal subgroup of G. Therefore
Vj = M .

It is easily seen that Vj ∈ F =
⋂

i∈I Fi. In fact if for i 6= j (i ∈ I) we have
Vi 6= G then we analogously conclude Vi = M = Vj and Vj ∈ Fi.
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If Vi = G then Vj ⊳ Vi ∈ Fi and Vj ∈ Fi. Consequently Vj ∈ Fi for all i 6= j.
Therefore Vj ∈ F. Hence Vj ⊆ GF ⊆ V . By hypothesis VjV = G and we obtain
V = G and G ∈ F. A contradiction because V is not normal in G.

Thus there exists i ∈ I such that ViV 6= G. We prove that ViV ∈ X.
In fact since a group V = V/(

⋂

i∈I Vi) is simple then its normal subgroup

(V
⋂

Vi)/(
⋂

i∈I Vi) either coincides with V or (V
⋂

Vi)/(
⋂

i∈I Vi) is the identity
group. In the first case we have V = V

⋂

Vi ⊆ Vi. A contradiction because V is not
contained in any subnormal subgroup of G. Thus we conclude V

⋂

Vi =
⋂

i∈I Vi.
Then by the isomorphism ViV/Vi

∼= V/V
⋂

Vi the group ViV/Vi is a p-group.

Consequently since G ∈ X and X is a Fischer class if follows that ViV ∈ X. We
have |ViV | < |G| and by Lemma 1.1 V is an F-injector of ViV . Hence by induction
V ⊳ViV . Since V ∈ Fi then V ⊆ (ViV )F

i

. By Lemma 1.1 Vi is an Fi-injector of ViV .

Hence (ViV )F
i

= Vi. Thus V ⊆ Vi. A contradiction because V is not contained in

any subnormal subgroup of G. The contradiction indicates that F is an X-normal
Fitting class. The theorem is proved.

We note by [1, Theorem 5.1] that every non-identity S-normal Fitting class
contains the class of all nilpotent groups N. Therefore in the case X = S we have
the Blessenohl–Gaschütz’s result.

Corollary 2.2. [1, Theorem 6. 2] In the set of all non-identity normal Fitting
classes there exists a unique minimal element by inclusion.
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