ON INTERSECTION OF NORMAL FITTING CLASSES OF FINITE GROUPS ## V. V. Shpakov, N. N. Vorob'ev and N. T. Vorob'ev (Vitebsk, Belarus) Dedicated to the memory of Professor Péter Kiss **Abstract.** Intersections of \mathfrak{X} -normal Fitting classes are studied for Fischer class \mathfrak{X} of partially soluble groups. AMS Classification Number: 20D10 #### Introduction When describing Fitting classes of finite soluble groups structure and their classification the basic result is Blessenohl–Gaschütz's theorem [1]: the intersection of any set of non-identity normal Fitting classes is non-identity normal Fitting class again. Remind that a class $\mathfrak F$ of finite groups is called a Fitting class if the following two conditions hold: - (i) if $G \in \mathfrak{F}$ and $N \triangleleft G$, then $N \in \mathfrak{F}$; - (ii) if $M, N \triangleleft G = MN$ with M and N in \mathfrak{F} , then $G \in \mathfrak{F}$. We note from the definition of a Fitting class it follows that every finite group G has a unique maximal normal \mathfrak{F} -subgroup called the \mathfrak{F} -radical of G denoting $G_{\mathfrak{F}}$. A Fitting class \mathfrak{F} is called normal in a class of finite groups \mathfrak{X} or \mathfrak{X} -normal [4] if $\mathfrak{F} \subseteq \mathfrak{X}$ and $G_{\mathfrak{F}}$ is maximal among subgroups of G belonging to \mathfrak{F} for all groups $G \in \mathfrak{X}$. In the case when $\mathfrak{X} = \mathfrak{S}$ (\mathfrak{S} is the class of all finite soluble groups) \mathfrak{F} is called \mathfrak{S} -normal or simply normal Fitting class. In this paper we develop and extend the above-mentioned result by Blessenohl–Gaschütz in two directions. In the first place, we prove an analog of Blessenohl–Gaschütz's theorem for \mathfrak{X} -normal Fitting classes where \mathfrak{X} is a Fischer class (in particular $\mathfrak{X} \subseteq \mathfrak{S}$). In the second place, we replace a solvability condition for the groups of the class \mathfrak{X} with a partially solvability condition. In the course of this paper we consider only finite groups. We use the terminology and notations of [2]. #### 1. Some notations and lemmas Let \mathfrak{F} be a Fitting class. A subgroup V of a group G is called an \mathfrak{F} -injector of G if $V \cap N$ is maximal in N from the subgroups in \mathfrak{F} for any subnormal subgroup N of G. A famous Fischer–Gaschütz–Hartley's theorem [3] that every group $G \in \mathfrak{S}$ has a unique class of conjugate \mathfrak{F} -injectors is a synthesis of well-known Sylow's and Hall's theorems. We note that if \mathfrak{F} and \mathfrak{H} are Fitting classes then their product $\mathfrak{F}\mathfrak{H}$ is the class of groups $(G \mid G/G_{\mathfrak{F}} \in \mathfrak{H})$ which is a Fitting class. In particular $\mathfrak{F}\mathfrak{G}$ is the class of all groups G such that factor group by the \mathfrak{F} -radical of G is soluble. The following lemma extends Fischer-Gaschütz-Hartley's theorem. ## **Lemma 1.1.** (V. Sementovskii [5]) If $G \in \mathfrak{FS}$ then - (a) G has a unique class of conjugate \mathfrak{F} -injectors; - (b) if V is an \mathfrak{F} -injector of G and $V \subseteq H \subseteq G$, then V is also an \mathfrak{F} -injector of H. We shall use the definition of \mathfrak{X} -normal Fitting class which is equivalent to above-mentioned (in introduction) Laue's definition [4]. **Definition 1.2.** Let \mathfrak{F} and \mathfrak{X} be Fitting classes such that $\mathfrak{F} \subseteq \mathfrak{X} \subseteq \mathfrak{FS}$. We call the Fitting class \mathfrak{F} an \mathfrak{X} -normal or normal in \mathfrak{X} if for any group $G \in \mathfrak{X}$ its \mathfrak{F} -injector is a normal subgroup of G. We denote this by $\mathfrak{F} \triangleleft \mathfrak{X}$. The following example gives a construction procedure of wide family of \mathfrak{X} -normal Fitting classes. **Example 1.3.** Let \mathfrak{F} be any non-empty Fitting class and $\mathfrak{X} = \mathfrak{F}\mathfrak{N}$ where \mathfrak{N} is the class of all nilpotent groups. Then for any group $G \in \mathfrak{X}$ its \mathfrak{F} -injector $V = G_{\mathfrak{F}}$. In fact since $G/G_{\mathfrak{F}}$ is nilpotent, then $V/G_{\mathfrak{F}}$ is a subnormal subgroup of $G/G_{\mathfrak{F}}$. Therefore V is subnormal in G and $V = G_{\mathfrak{F}}$. We shall use the result by J. Tits. **Lemma 1.4.** ([2, Lemma A 1.2]) Let U, V and W be subgroups of a group G. Then the following statements are equivalent: - (a) $U \cap VW = (U \cap V)(U \cap W);$ - (b) $U \cap UW = U(V \cap W)$. #### 2. The main result Remind that a Fitting class \mathfrak{F} is called a Fischer class if $G \in \mathfrak{F}$, $K \triangleleft G$, $K \subseteq H \subseteq G$ and H/K is a p-group (p is a prime number) implies $H \in \mathfrak{F}$. **Theorem 2.1.** Let \mathfrak{X} be a Fisher class and $\{\mathfrak{F}_i \mid i \in I\}$ be the set of \mathfrak{X} -normal Fitting classes. If $\mathfrak{F} = \bigcap_{i \in I} \mathfrak{F}_i$ and $\mathfrak{F} \subseteq \mathfrak{X} \subseteq \mathfrak{FS}$, then \mathfrak{F} is an \mathfrak{X} -normal Fitting class. **Proof.** We proceed by induction on the order of groups in \mathfrak{X} . Suppose that the theorem fails to hold. Let $G \in \mathfrak{X}$ be a counter example of minimal order. Since $G/G_{\mathfrak{F}}$ is soluble by hypothesis then by Lemma 1.1 there exist \mathfrak{F} -injectors in G. Let V be an \mathfrak{F} -injector of G, such that V is not normal in G. Since $\mathfrak{F} \subseteq \mathfrak{F}_i$ for all $i \in I$, then $G_{\mathfrak{F}} \subseteq G_{\mathfrak{F}_i}$ and by the isomorphism $G/G_{\mathfrak{F}}/G_{\mathfrak{F}_i}/G_{\mathfrak{F}} \cong G/G_{\mathfrak{F}_i}$, we have $G/G_{\mathfrak{F}_i}$ is soluble. Consequently by Lemma 1.1 there exists an \mathfrak{F}_i -injector V_i in G. By hypothesis $V_i \triangleleft G$ for all $i \in I$. Therefore $\bigcap_{i \in I} V_i \triangleleft G$. Evidently $\bigcap_{i \in I} V_i \in \mathfrak{F}$. Hence $\bigcap_{i \in I} V_i \subseteq G_{\mathfrak{F}}$. On the other hand for every $i \in I$ we have the inclusion $$G_{\mathfrak{F}} \subseteq G_{\mathfrak{F}_i} = V_i.$$ Consequently $G_{\mathfrak{F}} = \bigcap_{i \in I} V_i$ and $\bigcap_{i \in I} V_i \subset V$. Let M be an arbitrary maximal normal subgroup of G. Since V is an \mathfrak{F} -injector of G then the subgroup $V \cap M$ is an \mathfrak{F} -injector of the group M. Then since $M \in \mathfrak{X}$ it follows that $V \cap M \triangleleft M$ by induction. We obtain $V \cap M = M_{\mathfrak{F}} = G_{\mathfrak{F}} \cap M$. Hence for any maximal normal subgroup M of G we have (1) $$V \bigcap M = \left(\bigcap_{i \in I} V_i\right) \bigcap M.$$ We note that V is not contained in any subnormal subgroup N of G. If this assertion fails to hold i.e. $V\subseteq N \lhd G$ then there exists an \mathfrak{F} -injector in N. By Lemma 1.1 the subgroup V is an \mathfrak{F} -injector of N. Then by induction $V \lhd N$. Therefore $V \lhd G$ and $V = G_{\mathfrak{F}}$. A contradiction because V is not normal subgroup of G. We show that G = RV for any normal subgroup R of G such that G/R is nilpotent. Let $RV \neq G$. Then a subgroup RV/R is subnormal in G/R. Hence RV is subnormal in G. Consequently V is contained in the subgroup H = RV and $H \triangleleft G$, a contradiction. Now we prove that G is comonolithic. Let G be not comonolithic and M_1 and M_2 be maximal normal subgroups of G. Without loss of generality we consider $M_1 \supseteq G_{\mathfrak{F}}$ and $M_2 \not\supseteq G_{\mathfrak{F}}$. Then $G = M_2G_{\mathfrak{F}}$. Besides $M_1 \supseteq G_{\mathfrak{F}}$ and $G \in \mathfrak{FS}$. It follows that G/M_1 is nilpotent. From above $G = VM_1$. Consequently by the isomorphisms $G/M_1 \cong V/(V \cap M_1)$ and $G/M_2 \cong V/(V \cap M_2)$ the subgroups $V \cap M_1$ and $V \cap M_2$ are maximal normal of V. Suppose $V \cap M_1 \neq V \cap M_2$. Then $V = (V \cap M_1)(V \cap M_2)$. Hence by (1) $$V = \left(\left(\bigcap_{i \in I} V_i \right) \bigcap M_1 \right) \left(\left(\bigcap_{i \in I} V_i \right) \bigcap M_2 \right)$$ and $V \subseteq G_{\mathfrak{F}}$. Consequently $V = G_{\mathfrak{F}}$. A contradiction because the subgroup V is not normal in G. Therefore $V \cap M_1 = V \cap M_2$. Then $$G/M_1 \cong V/V \bigcap M_1 = V/V \bigcap M_2 \cong G/M_2$$ and $G/M_2 \in \mathfrak{N}$. Thus the group $G/(M_1 \cap M_2)$ is nilpotent. Hence $G = V(M_1 \cap M_2)$. From the other hand $G = VM_1 \cap VM_2$. Consequently $$V\left(M_1 \bigcap M_2\right) = VM_1 \bigcap VM_2.$$ By Lemma 1.2 we have the equality $$V = (V \cap M_1) V \cap M_2 = V \cap M_1.$$ It follows that $V \subseteq M_1$. A contradiction because V is not contained in any subnormal subgroup of G. Thus $M_1 = M_2 = M$ and G is comonolithic. Consequently for every $i \in I$ we have $V_i \subseteq M$. Hence by (1) $$(2) V \cap M = \bigcap_{i \in I} V_i.$$ Then by the isomorphism $$G/M \cong V/\left(\bigcap_{i \in I} V_i\right)$$ the group $V/(\bigcap V_i)$ is cyclic of prime order p. Now we show $V_iV \neq G$ for some $i \in I$. Suppose for any $i \in I$ the equality holds $V_iV = G$. If for all $j \in I$ we have $V_j = G$ then $G \in \mathfrak{F}$ and G is an \mathfrak{F} -injector for itself. Hence $G = V \triangleleft G$. A contradiction because V is not normal in G. Consequently $V_j \neq G$ for some $j \in I$. Since by hypothesis $V_j \triangleleft G$ then $$G/V_j \cong V/V \bigcap V_j$$. By the equality (2) $$V \cap V_j \subseteq V \cap M = \bigcap_{i \in I} V_i \subseteq V_j \cap V.$$ Then $V_j \cap V = \bigcap_{i \in I} V_i$. Since $V/(\bigcap_{i \in I} V_i) \cong G/V_j$ it follows that G/V_j is a cyclic group of prime order p. Hence V_j is a maximal normal subgroup of G. Therefore $V_j = M$. It is easily seen that $V_j \in \mathfrak{F} = \bigcap_{i \in I} \mathfrak{F}_i$. In fact if for $i \neq j$ $(i \in I)$ we have $V_i \neq G$ then we analogously conclude $V_i = M = V_j$ and $V_j \in \mathfrak{F}_i$. If $V_i = G$ then $V_j \triangleleft V_i \in \mathfrak{F}_i$ and $V_j \in \mathfrak{F}_i$. Consequently $V_j \in \mathfrak{F}_i$ for all $i \neq j$. Therefore $V_j \in \mathfrak{F}$. Hence $V_j \subseteq G_{\mathfrak{F}} \subseteq V$. By hypothesis $V_j V = G$ and we obtain V = G and $G \in \mathfrak{F}$. A contradiction because V is not normal in G. Thus there exists $i \in I$ such that $V_i V \neq G$. We prove that $V_i V \in \mathfrak{X}$. In fact since a group $\overline{V} = V/(\bigcap_{i \in I} V_i)$ is simple then its normal subgroup $(V \cap V_i)/(\bigcap_{i \in I} V_i)$ either coincides with \overline{V} or $(V \cap V_i)/(\bigcap_{i \in I} V_i)$ is the identity group. In the first case we have $V = V \cap V_i \subseteq V_i$. A contradiction because V is not contained in any subnormal subgroup of G. Thus we conclude $V \cap V_i = \bigcap_{i \in I} V_i$. Then by the isomorphism $V_i V/V_i \cong V/V \cap V_i$ the group $V_i V/V_i$ is a p-group. Consequently since $G \in \mathfrak{X}$ and \mathfrak{X} is a Fischer class if follows that $V_i V \in \mathfrak{X}$. We have $|V_i V| < |G|$ and by Lemma 1.1 V is an \mathfrak{F} -injector of $V_i V$. Hence by induction $V \triangleleft V_i V$. Since $V \in \mathfrak{F}_i$ then $V \subseteq (V_i V)_{\mathfrak{F}_i}$. By Lemma 1.1 V_i is an \mathfrak{F}_i -injector of $V_i V$. Hence $(V_i V)_{\mathfrak{F}_i} = V_i$. Thus $V \subseteq V_i$. A contradiction because V is not contained in any subnormal subgroup of G. The contradiction indicates that \mathfrak{F} is an \mathfrak{X} -normal Fitting class. The theorem is proved. We note by [1, Theorem 5.1] that every non-identity \mathfrak{S} -normal Fitting class contains the class of all nilpotent groups \mathfrak{N} . Therefore in the case $\mathfrak{X} = \mathfrak{S}$ we have the Blessenohl–Gaschütz's result. Corollary 2.2. [1, Theorem 6. 2] In the set of all non-identity normal Fitting classes there exists a unique minimal element by inclusion. ### References - [1] BLESSENOHL, D. and GASCHÜTZ, W., Über normale Schunk und Fittingklassen, *Math. Z.*, **148** (1970), 1–8. - [2] DOERK, K. and HAWKES, T. O., Finite Soluble Groups, Berlin–New York, Walter de Gruyter, 1992. - [3] FISCHER, B., GASCHÜTZ, W. and HARTLEY, B., Injectoren endlicher auflösbaren Gruppen, *Math. Z.*, **102** (1967), 337–339. - [4] LAUE, H., Über nichtauflösbare normalen Fittingklassen, J. Algebra, 45 (1977), 274–283. - [5] Sementovskii, V. G., Injectors of finite groups, Minsk, Nauka i Tekhnika, 1984, 166–170 (in Russian). ## V. V. Shpakov, N. N. Vorob'ev and N. T. Vorob'ev Department of Mathematics, P. Masherov Vitebsk State University, 210038, Vitebsk, Belarus e-mail: nicholas@vsu.by