ON INTERSECTION OF NORMAL FITTING CLASSES OF FINITE GROUPS

V. V. Shpakov, N. N. Vorob'ev and N. T. Vorob'ev (Vitebsk, Belarus)

Dedicated to the memory of Professor Péter Kiss

Abstract. Intersections of \mathfrak{X} -normal Fitting classes are studied for Fischer class \mathfrak{X} of partially soluble groups.

AMS Classification Number: 20D10

Introduction

When describing Fitting classes of finite soluble groups structure and their classification the basic result is Blessenohl–Gaschütz's theorem [1]: the intersection of any set of non-identity normal Fitting classes is non-identity normal Fitting class again.

Remind that a class $\mathfrak F$ of finite groups is called a Fitting class if the following two conditions hold:

- (i) if $G \in \mathfrak{F}$ and $N \triangleleft G$, then $N \in \mathfrak{F}$;
- (ii) if $M, N \triangleleft G = MN$ with M and N in \mathfrak{F} , then $G \in \mathfrak{F}$.

We note from the definition of a Fitting class it follows that every finite group G has a unique maximal normal \mathfrak{F} -subgroup called the \mathfrak{F} -radical of G denoting $G_{\mathfrak{F}}$.

A Fitting class \mathfrak{F} is called normal in a class of finite groups \mathfrak{X} or \mathfrak{X} -normal [4] if $\mathfrak{F} \subseteq \mathfrak{X}$ and $G_{\mathfrak{F}}$ is maximal among subgroups of G belonging to \mathfrak{F} for all groups $G \in \mathfrak{X}$. In the case when $\mathfrak{X} = \mathfrak{S}$ (\mathfrak{S} is the class of all finite soluble groups) \mathfrak{F} is called \mathfrak{S} -normal or simply normal Fitting class.

In this paper we develop and extend the above-mentioned result by Blessenohl–Gaschütz in two directions. In the first place, we prove an analog of Blessenohl–Gaschütz's theorem for \mathfrak{X} -normal Fitting classes where \mathfrak{X} is a Fischer class (in particular $\mathfrak{X} \subseteq \mathfrak{S}$). In the second place, we replace a solvability condition for the groups of the class \mathfrak{X} with a partially solvability condition. In the course of this paper we consider only finite groups. We use the terminology and notations of [2].

1. Some notations and lemmas

Let \mathfrak{F} be a Fitting class. A subgroup V of a group G is called an \mathfrak{F} -injector of G if $V \cap N$ is maximal in N from the subgroups in \mathfrak{F} for any subnormal subgroup

N of G. A famous Fischer–Gaschütz–Hartley's theorem [3] that every group $G \in \mathfrak{S}$ has a unique class of conjugate \mathfrak{F} -injectors is a synthesis of well-known Sylow's and Hall's theorems.

We note that if \mathfrak{F} and \mathfrak{H} are Fitting classes then their product $\mathfrak{F}\mathfrak{H}$ is the class of groups $(G \mid G/G_{\mathfrak{F}} \in \mathfrak{H})$ which is a Fitting class. In particular $\mathfrak{F}\mathfrak{G}$ is the class of all groups G such that factor group by the \mathfrak{F} -radical of G is soluble.

The following lemma extends Fischer-Gaschütz-Hartley's theorem.

Lemma 1.1. (V. Sementovskii [5]) If $G \in \mathfrak{FS}$ then

- (a) G has a unique class of conjugate \mathfrak{F} -injectors;
- (b) if V is an \mathfrak{F} -injector of G and $V \subseteq H \subseteq G$, then V is also an \mathfrak{F} -injector of H.

We shall use the definition of \mathfrak{X} -normal Fitting class which is equivalent to above-mentioned (in introduction) Laue's definition [4].

Definition 1.2. Let \mathfrak{F} and \mathfrak{X} be Fitting classes such that $\mathfrak{F} \subseteq \mathfrak{X} \subseteq \mathfrak{FS}$. We call the Fitting class \mathfrak{F} an \mathfrak{X} -normal or normal in \mathfrak{X} if for any group $G \in \mathfrak{X}$ its \mathfrak{F} -injector is a normal subgroup of G. We denote this by $\mathfrak{F} \triangleleft \mathfrak{X}$.

The following example gives a construction procedure of wide family of \mathfrak{X} -normal Fitting classes.

Example 1.3. Let \mathfrak{F} be any non-empty Fitting class and $\mathfrak{X} = \mathfrak{F}\mathfrak{N}$ where \mathfrak{N} is the class of all nilpotent groups. Then for any group $G \in \mathfrak{X}$ its \mathfrak{F} -injector $V = G_{\mathfrak{F}}$. In fact since $G/G_{\mathfrak{F}}$ is nilpotent, then $V/G_{\mathfrak{F}}$ is a subnormal subgroup of $G/G_{\mathfrak{F}}$. Therefore V is subnormal in G and $V = G_{\mathfrak{F}}$.

We shall use the result by J. Tits.

Lemma 1.4. ([2, Lemma A 1.2]) Let U, V and W be subgroups of a group G. Then the following statements are equivalent:

- (a) $U \cap VW = (U \cap V)(U \cap W);$
- (b) $U \cap UW = U(V \cap W)$.

2. The main result

Remind that a Fitting class \mathfrak{F} is called a Fischer class if $G \in \mathfrak{F}$, $K \triangleleft G$, $K \subseteq H \subseteq G$ and H/K is a p-group (p is a prime number) implies $H \in \mathfrak{F}$.

Theorem 2.1. Let \mathfrak{X} be a Fisher class and $\{\mathfrak{F}_i \mid i \in I\}$ be the set of \mathfrak{X} -normal Fitting classes. If $\mathfrak{F} = \bigcap_{i \in I} \mathfrak{F}_i$ and $\mathfrak{F} \subseteq \mathfrak{X} \subseteq \mathfrak{FS}$, then \mathfrak{F} is an \mathfrak{X} -normal Fitting class.

Proof. We proceed by induction on the order of groups in \mathfrak{X} . Suppose that the theorem fails to hold. Let $G \in \mathfrak{X}$ be a counter example of minimal order. Since

 $G/G_{\mathfrak{F}}$ is soluble by hypothesis then by Lemma 1.1 there exist \mathfrak{F} -injectors in G. Let V be an \mathfrak{F} -injector of G, such that V is not normal in G. Since $\mathfrak{F} \subseteq \mathfrak{F}_i$ for all $i \in I$, then $G_{\mathfrak{F}} \subseteq G_{\mathfrak{F}_i}$ and by the isomorphism $G/G_{\mathfrak{F}}/G_{\mathfrak{F}_i}/G_{\mathfrak{F}} \cong G/G_{\mathfrak{F}_i}$, we have $G/G_{\mathfrak{F}_i}$ is soluble.

Consequently by Lemma 1.1 there exists an \mathfrak{F}_i -injector V_i in G. By hypothesis $V_i \triangleleft G$ for all $i \in I$. Therefore $\bigcap_{i \in I} V_i \triangleleft G$. Evidently $\bigcap_{i \in I} V_i \in \mathfrak{F}$. Hence $\bigcap_{i \in I} V_i \subseteq G_{\mathfrak{F}}$.

On the other hand for every $i \in I$ we have the inclusion

$$G_{\mathfrak{F}} \subseteq G_{\mathfrak{F}_i} = V_i.$$

Consequently $G_{\mathfrak{F}} = \bigcap_{i \in I} V_i$ and $\bigcap_{i \in I} V_i \subset V$.

Let M be an arbitrary maximal normal subgroup of G. Since V is an \mathfrak{F} -injector of G then the subgroup $V \cap M$ is an \mathfrak{F} -injector of the group M. Then since $M \in \mathfrak{X}$ it follows that $V \cap M \triangleleft M$ by induction.

We obtain $V \cap M = M_{\mathfrak{F}} = G_{\mathfrak{F}} \cap M$. Hence for any maximal normal subgroup M of G we have

(1)
$$V \bigcap M = \left(\bigcap_{i \in I} V_i\right) \bigcap M.$$

We note that V is not contained in any subnormal subgroup N of G. If this assertion fails to hold i.e. $V\subseteq N \lhd G$ then there exists an \mathfrak{F} -injector in N. By Lemma 1.1 the subgroup V is an \mathfrak{F} -injector of N. Then by induction $V \lhd N$. Therefore $V \lhd G$ and $V = G_{\mathfrak{F}}$. A contradiction because V is not normal subgroup of G.

We show that G = RV for any normal subgroup R of G such that G/R is nilpotent. Let $RV \neq G$. Then a subgroup RV/R is subnormal in G/R. Hence RV is subnormal in G. Consequently V is contained in the subgroup H = RV and $H \triangleleft G$, a contradiction.

Now we prove that G is comonolithic. Let G be not comonolithic and M_1 and M_2 be maximal normal subgroups of G. Without loss of generality we consider $M_1 \supseteq G_{\mathfrak{F}}$ and $M_2 \not\supseteq G_{\mathfrak{F}}$. Then $G = M_2G_{\mathfrak{F}}$. Besides $M_1 \supseteq G_{\mathfrak{F}}$ and $G \in \mathfrak{FS}$. It follows that G/M_1 is nilpotent. From above $G = VM_1$. Consequently by the isomorphisms $G/M_1 \cong V/(V \cap M_1)$ and $G/M_2 \cong V/(V \cap M_2)$ the subgroups $V \cap M_1$ and $V \cap M_2$ are maximal normal of V.

Suppose $V \cap M_1 \neq V \cap M_2$. Then $V = (V \cap M_1)(V \cap M_2)$. Hence by (1)

$$V = \left(\left(\bigcap_{i \in I} V_i \right) \bigcap M_1 \right) \left(\left(\bigcap_{i \in I} V_i \right) \bigcap M_2 \right)$$

and $V \subseteq G_{\mathfrak{F}}$. Consequently $V = G_{\mathfrak{F}}$. A contradiction because the subgroup V is not normal in G. Therefore $V \cap M_1 = V \cap M_2$. Then

$$G/M_1 \cong V/V \bigcap M_1 = V/V \bigcap M_2 \cong G/M_2$$

and $G/M_2 \in \mathfrak{N}$. Thus the group $G/(M_1 \cap M_2)$ is nilpotent. Hence $G = V(M_1 \cap M_2)$. From the other hand $G = VM_1 \cap VM_2$. Consequently

$$V\left(M_1 \bigcap M_2\right) = VM_1 \bigcap VM_2.$$

By Lemma 1.2 we have the equality

$$V = (V \cap M_1) V \cap M_2 = V \cap M_1.$$

It follows that $V \subseteq M_1$. A contradiction because V is not contained in any subnormal subgroup of G. Thus $M_1 = M_2 = M$ and G is comonolithic. Consequently for every $i \in I$ we have $V_i \subseteq M$. Hence by (1)

$$(2) V \cap M = \bigcap_{i \in I} V_i.$$

Then by the isomorphism

$$G/M \cong V/\left(\bigcap_{i \in I} V_i\right)$$

the group $V/(\bigcap V_i)$ is cyclic of prime order p.

Now we show $V_iV \neq G$ for some $i \in I$. Suppose for any $i \in I$ the equality holds $V_iV = G$. If for all $j \in I$ we have $V_j = G$ then $G \in \mathfrak{F}$ and G is an \mathfrak{F} -injector for itself. Hence $G = V \triangleleft G$. A contradiction because V is not normal in G. Consequently $V_j \neq G$ for some $j \in I$. Since by hypothesis $V_j \triangleleft G$ then

$$G/V_j \cong V/V \bigcap V_j$$
.

By the equality (2)

$$V \cap V_j \subseteq V \cap M = \bigcap_{i \in I} V_i \subseteq V_j \cap V.$$

Then $V_j \cap V = \bigcap_{i \in I} V_i$. Since $V/(\bigcap_{i \in I} V_i) \cong G/V_j$ it follows that G/V_j is a cyclic group of prime order p. Hence V_j is a maximal normal subgroup of G. Therefore $V_j = M$.

It is easily seen that $V_j \in \mathfrak{F} = \bigcap_{i \in I} \mathfrak{F}_i$. In fact if for $i \neq j$ $(i \in I)$ we have $V_i \neq G$ then we analogously conclude $V_i = M = V_j$ and $V_j \in \mathfrak{F}_i$.

If $V_i = G$ then $V_j \triangleleft V_i \in \mathfrak{F}_i$ and $V_j \in \mathfrak{F}_i$. Consequently $V_j \in \mathfrak{F}_i$ for all $i \neq j$. Therefore $V_j \in \mathfrak{F}$. Hence $V_j \subseteq G_{\mathfrak{F}} \subseteq V$. By hypothesis $V_j V = G$ and we obtain V = G and $G \in \mathfrak{F}$. A contradiction because V is not normal in G.

Thus there exists $i \in I$ such that $V_i V \neq G$. We prove that $V_i V \in \mathfrak{X}$. In fact since a group $\overline{V} = V/(\bigcap_{i \in I} V_i)$ is simple then its normal subgroup $(V \cap V_i)/(\bigcap_{i \in I} V_i)$ either coincides with \overline{V} or $(V \cap V_i)/(\bigcap_{i \in I} V_i)$ is the identity group. In the first case we have $V = V \cap V_i \subseteq V_i$. A contradiction because V is not contained in any subnormal subgroup of G. Thus we conclude $V \cap V_i = \bigcap_{i \in I} V_i$. Then by the isomorphism $V_i V/V_i \cong V/V \cap V_i$ the group $V_i V/V_i$ is a p-group.

Consequently since $G \in \mathfrak{X}$ and \mathfrak{X} is a Fischer class if follows that $V_i V \in \mathfrak{X}$. We have $|V_i V| < |G|$ and by Lemma 1.1 V is an \mathfrak{F} -injector of $V_i V$. Hence by induction $V \triangleleft V_i V$. Since $V \in \mathfrak{F}_i$ then $V \subseteq (V_i V)_{\mathfrak{F}_i}$. By Lemma 1.1 V_i is an \mathfrak{F}_i -injector of $V_i V$. Hence $(V_i V)_{\mathfrak{F}_i} = V_i$. Thus $V \subseteq V_i$. A contradiction because V is not contained in any subnormal subgroup of G. The contradiction indicates that \mathfrak{F} is an \mathfrak{X} -normal Fitting class. The theorem is proved.

We note by [1, Theorem 5.1] that every non-identity \mathfrak{S} -normal Fitting class contains the class of all nilpotent groups \mathfrak{N} . Therefore in the case $\mathfrak{X} = \mathfrak{S}$ we have the Blessenohl–Gaschütz's result.

Corollary 2.2. [1, Theorem 6. 2] In the set of all non-identity normal Fitting classes there exists a unique minimal element by inclusion.

References

- [1] BLESSENOHL, D. and GASCHÜTZ, W., Über normale Schunk und Fittingklassen, *Math. Z.*, **148** (1970), 1–8.
- [2] DOERK, K. and HAWKES, T. O., Finite Soluble Groups, Berlin–New York, Walter de Gruyter, 1992.
- [3] FISCHER, B., GASCHÜTZ, W. and HARTLEY, B., Injectoren endlicher auflösbaren Gruppen, *Math. Z.*, **102** (1967), 337–339.
- [4] LAUE, H., Über nichtauflösbare normalen Fittingklassen, J. Algebra, 45 (1977), 274–283.
- [5] Sementovskii, V. G., Injectors of finite groups, Minsk, Nauka i Tekhnika, 1984, 166–170 (in Russian).

V. V. Shpakov, N. N. Vorob'ev and N. T. Vorob'ev

Department of Mathematics,

P. Masherov Vitebsk State University,

210038, Vitebsk, Belarus

e-mail: nicholas@vsu.by