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1. Introduction

The following assertion has been proved in [1] as a by-product of a study of
exponential congruences (Corollary to Theorem 5). Let a sequence w,, of rational
integers satisfy the recurrence relation u,+1 = au, + bu,—_1, where a? + 4b £ 0.
If the congruence u,, = ¢ (mod p) is soluble for almost all primes p and either
b=0,—1orb=1,a#d®+ 3d (d integer), then ¢ = u,, for an integer m.

The aim of this paper is to extend this result as follows.

Theorem 2. Let K be a number field, u,, a sequence of elements of K satisfying
the relation

(1) Upt1 = QUp + bup_1, where a® + 4b # 0.

If ¢ € K, the congruence u,, = ¢ (modp) is soluble for almost all prime ideals p
of K and either b=0,—1orb=1,a=0o0rb=1, a®>+4 # d? (d an integer of K ),
then ¢ = u,,, where m is an integer.

Corollary 1. Let a sequence u,, of rationals satisfy the recurrence relation (1).
If ¢ € Q, the congruence u, = ¢ (modp) is soluble for almost all primes p and
b=0, or £1, then ¢ = u,, for an integer m.

Comparing Corollary 1 with Corollary quoted above from [1] we see that now
u,, need not be integers and the condition a # d® + 3d has disappeared.

Corollary 2. Let K be an imaginary quadratic field and w, a sequence of
elements of K satisfying the recurrence relation (1). If ¢ € K, the congruence
u, = ¢ (modp) is soluble for almost all prime ideals p of K and b = 0, or +1,
then ¢ = u,, for an integer m.

Theorem 2 is a consequence of the following theorem concerning exponential
congruences.

Theorem 1. Let K be a number field, « € K*, f € K|z], degf < 4. The
congruence

f(@®) =0 (modp)
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is soluble for almost all prime ideals p of K, if and only if one of the following cases
holds for a (8 in the splitting field of f

(2) z—a" | f(z), reZ

(3) a=p (2= (24 6°) (246 | f(2), ri € Z;

(4) a=@, (z— B4 (5= C02) (2 + B4 (5= A2 | £(2),

r; € Z, €264 Odd;

(5) a=p (z=5") (= ¢*0") (e = (5°67) (2 = G5*B™) | f(2), i € 2,

ear1 Z0, 19 =0, egr3 = —1, eqr4y =1 (mod 3);

6) a=pY (2= (24 8"2) (24 82T (2 +84F2) | f(2), ri € Z;

(q denotes a root of unity of order q.

Remark. In principle one could obtain a similar result for degree f bounded by
any number b. However, the number of possibilities increases fast with b and the
matter gets out of hand (cf. Theorem 5 in [1]).

Definition. A system of congruences Apoto + Ap1t1 =0 (modmy) (1 < h <g)
is covering, if every integer vector [to, t1] satisfies at least one of these congruences.

Lemma 1. A system of congruences
(7) Apoto + Apit1 =0 (HlOd m) (1 <h< 4)

is covering, if and only if one of the following cases holds:

(8) for an hg < 4:m | (Anyo, Ano1) ;
9) 2 | m and for three distinct indices hy, ha, hs < 4
Ao =0, Ani=73 (modm),

, Ap,1 =0 (modm),

(mod m);
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(10) 3| m and for a permutation (hy,ha,hs, hs) of (1,2,3,4)

m
Ap0=0, Ap:1= 51§ (modm),

m
Apo = €23, Ap,o =0 (modm),

m
Apgo = Apg1 = 533 (modm),

m
Apo = —Ap = 843 (mod m);

where [e1,¢€9,€3,64] € {—1,1}%.

(11) 4 | m and for a permutation (hy, ha,hs, hy) of (1,2,3,4)
m
Apo=0, Apa= B (modm),
m
Apo = bX Ap,1 =0 (modm),

m
Apgo = Apg1 = ey (mod m),
m
Apo=—Ap = €4Z (mod m),

where [e3,¢4] € {1,—1}%;

(12) 4 | m and for a permutation (hy,ha,hs, hy) of (1,2,3,4)

Apo=0, Apa= (modm),

m

2
m

Ah20582Z’ Ap,1 =0 (modm),

Ah30 = Ahsl = @ (mod m),

2
m m
Apo = earys Apa = B (modm),
where [e2,e4] € {—1,1}2;
(13) 4 | m and for a permutation (hy,he,hs,hy) of (1,2,3,4)

m
Ao =0, Apa = g (modm),

m
Apo = 5 Ap,1 =0 (modm),
m
Apgo = Apg1 = ) (mod m),
m m
Apo = > Apa = €4Z (mod m),
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where [e1,¢e4] € {—1,1}2.

Proof necessity. Since each of the vectors [1,0] and [0, 1] satisfies one of the
congruences (7) we have for some hq, ha

Apo=0, Ap,1 =0 (modm).

If hqy = he = h we have the case (8), thus assume hy # h;. Since each of the vectors
[1,—1] and [1, 1] satisfies one of the congruences (7) we have for some ji, jo

(14) Ajl() — Aj11 = 0, Aj2() + Aj21 =0 (HlOd m)

If j; € {h1,h2} (i = 1 or 2), we have the case (9) with hs = j;, thus we assume
Ji € {h1,ho} (i =1,2) and distinguish two cases:

(15) J1 # Jo
and
(16) Ji1 = ja-

In the case (15) excluding the case (8) we infer that Ap,;1 Z0 (modm), Ap,o Z#
0 (modm), Ajo0 #0 (modm), Aj,o0 # 0 (modm). Since each of the vectors
[£2,1], [1, £2] satisfies one of the congruences (7) for h € {h1, ho, j1,j2} we infer
that either

m
(15.1) 2|m, Apj=Ano= ) (modm),
or
(15.2) 3|m, Ajo= amg (modm), [e3,e4] € {~1,1}2.

In the case (15.1), since each of the vectors [£3, 1] satisfies one of the congruences
(7) for h € {j1, 72}, we infer that either for ani <2, Ajo =% (modm), or4|m
and Aj,0 = ;422 (modm) (i = 1,2) where [e3,e4] € {—1,1}* In the former
case we have (9) with hg = j;, in the latter case we have (11) with h; = j;_o
(i = 3,4). In the case (15.2), since each of the vectors [3, 1], [1, 3] satisfies one of
the congruences (7) for h € {h1, ha} we infer that

Apg = 51% (modm), Ap,o = 52% (mod m)

where [e1,e2] € {—1,1}2, thus we have the case (10) with h; = j;_» for i = 3,4.
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Consider now the case (16). Excluding (8) we infer that

Ap1 20 (modm),
Apyo 20 (modm),

m
Aj10 = Ajll = —

5 (mod m).

Let {js} = {1,2,3,4}\{hq, ha, j1}. Since each of the vectors [1, +2], [+2, 1] satisfies
one of the congruences (7) we infer that either

(16.1) 2|m, Apa= % (modm),
or
(16.2) 2|m, Apy= g (mod m)
or

Aj,, £24;,, =0 (modm),

(16.3)
+ 2Aj3,0 + Ajs,l =0 (mOd m)

The conditions (16.3) lead to (8) with h = j3, the conditions (16.1) and (16.2)
together lead to (9) with hy = j;. If (16.1) holds but (16.2) does not, then since
each of the vectors [+£2, 1] satisfies one of congruences (7) for h € {hq,j3}, we have

(17) +24;,,+ Aj;,, =0 (modm),

hence
+4A;,, =245, =0 (modm).

If
Aj,, =0 (modm),

then either A;,, = 0 (modm), which gives (8) with h = j3, or Aj, =
% (modm), which gives (9) with hy = js, hz = ji. If Aj;, = & (modm),
then (17) implies 4 | m,
Ajs o = 84% (mod m),

which gives (12) with hg = j1, hy = js. If (16.2) holds but (16.1) does not, then by
symmetry we have (8) or (9) or (13).

Sufficiency of the condition follows from the easily verified fact, that the
following systems of congruences are covering:
0=0 (modl);t1 =0,t0=0,tg+t1 =0 (mod2);t; =0,t =0, to+¢t1 =0,
to—t1 =0 (mod3);t; =0,t0=0 (mod2),ty+t;1 =0,t—t =0 (mod4);
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t1=0,t0+¢t =0 (mod2),tg =0,t0+2t; =0 (mod4); tg =0, tg+1t1 =
0 (mod2),t =0, 2tg+t; =0 (mod4).

Lemma 2. If K is a number field, a« € K, 8; € Q (1 < j <), the congruence

1
(18) H (@ = Bj) =0 (modp)

is soluble for almost all prime ideals p of the field K((1,...,[3;) =: K1 and w is the
number of roots of unity contained in K1, then there exist v € K, and a subset H
of {1,...,1} such that

(19) =y
(20) B = Cuy™ (he H)

and the system of congruences
(21) to (adp, — ebp) + wdpty =0 (modwe) (h € H)

is covering.

Proof. Let

t t
(22) a=¢o[[re, = [Ir <i<),
s=1

s=1

where 7, are elements of the multiplicative basis of the field K3 (see [1], Lemma 9).
Let @ be a unimodular matrix such that

(23) [a1,...,a;]Q =1e,0,...,0], e=(a1,...,as)
and put
(24) [bj1s- - bje] @ = [dj1, .., dje] .

We choose integers 19, . .., n; divisible by w such that for all j <1

(25) ngsns =0 implies d;, =0(2 < s <)
5=2
and set
t
(26) m = max, Z; djsns| + 1.
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Further we set

(27) n=2"wme lLcm. (¢ —1), m = D+ a0—to,
g<m-te e ew
q prime

where 7 is the greatest integer such that (o~ + Cg_fl € K,

€1 m
(28) Ep = —t(), = Q
Et Mt

By Theorem 4 of [1] there exist infinitely many prime ideals 8 of K;((,) such
that

(29) (%L:m(%kzsagsw

Let H be the set of these indices h < [ that for some integers x, to,t; and for
some prime ideal P satisfying (29) we have

(30) " =By (mod ).
(%).- (%),

t t
T (gaoao + ; asas> = gbhoﬁo + Z bpses (modn)

s=1

The congruence (30) gives

hence

and by (24) and (28)

t
n n
T (—anto + 67]1) = _EbhOtO + Z dpsns  (modn).

s=1

Substituting the value of 71 from (27) we obtain
n n w a :

(31) 0 = nat; = ——bpoto + —dm (—tl + —Oto) + Z dpsns  (modn).
w w e e g

It follows that

t
Z dpsns =0 (modm)
s=2
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and, by (26) and (25),

t
(32) S dnene =0, dpe=0(2<5<t).
5=2
Hence, by (23) and (24),
b dpi
hs = ——Ohs
e

and putting ag = a, bpo = bp, dp1 = dp,

t
y= =
s=1

we obtain (20) and (21). Moreover, since the congruence (18) is soluble for almost
all prime ideals p of K; the system of congruences, resulting from (31) and (32)
(33) (adp, — ebp) to + wdpty =0 (modwe) (h € H)

must be covering.

Remark. The above proof is modelled on the proof of Theorem 5 in [1].

Lemma 3. If a system of congruences

(34) Apoto + Apit1 =0 (modm) (1< h<yg)
is covering, w | m, d = (m, Ai1,...,Aq) and a = Bm/d then the alternative of
congruences

ot = gur g/t (modp) (1< h<yg)
is soluble for all prime ideals p of Q((yw,3) for which (3 is a p-adic unit.

Proof. Since the system (34) is covering, for every prime ideal p there exists an
h < g such that

de—l i
Ano = + Ap ind =0 (modm),
(mdﬂ,deu_l) (mdﬂ,dezU—l)
hence
Np—1 A Np—1
w d d w
However

Np—1

(mdﬁ7 d > =0 (mod (ind o, Np — 1)),
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hence the congruence

Np—1 Apm

Ano +Tind6£xindo¢ (mod Np — 1)

is soluble for x and we obtain

o = ({:‘hf’ﬂA“/d (mod p).

Proof of Theorem 1. Necessity.
By Lemma 2 the system (33) is covering, hence we apply Lemma 1 with

Ah() = adh — ebh, Ahl = wdh.

If the case (8) holds, then for a certain h € H
adp, — ebp, = wdp, =0 (mod we),

dn

hence e | dj, and by, = a®  (modw), which gives

B, = ainle

hence (2) holds with r = dy /e.
If the case (9) holds, then for some distinct indices hq, ha, hs3

adp, —ebp, =0, wdy, = % (mod we),

3

hence 2 | e, dp,, = §

c1, c1odd, 2| a, by, = §c1 (modw);

adp, — ebp, = %, wdp, =0 (mod we),

hence dj, = eca, ca € Z, by, = 5 +acz  (modw);

adp, — ebp, = wdp, = % (mod we),

hence dp, = 503, czodd, b, = % +acs (modw).
This gives (3) with

52C$/276/27 2ri+1=c1, r9=co, 2rs+1=cs.

If the case (10) holds, 3 | we and without loss of generality we may assume

that we
adi —eby =0, wdy = 51? (mod we),
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hence 3 | e, di = £e1  (mode), 3| a, by = 234 (mod w);

ady — eby = 62%, wde =0 (mod we),

d—j —e2%  (modw);

hence e | d2, 3 | w, by =
ads — ebs = wds = 63% (mod we),

hence d3 = €35 (mode), by = %% —e3%  (modw);

ady — eby = —wdy = 64% (mod we),

hence dy = —e45 (mode), by = §°2* — 4%  (modw).
This gives (5) with

B =3y = (1<i<4), e;=-¢ (mod3) (2<i<A4).

If the case (11) holds, 4 | we and without loss of generality we may assume

that

(35) ady —eby =0, wdy = % (mod we),
(36) ady — eby = 52%, wdy =0 (mod we),
(37) ads — ebs = wds = 63% (mod we),
(38) ads — eby = —wdy = 84% (mod we).

(35) implies 2 | e and dy = £ (mode), 2| a, by = & -2 (modw), (36) implies

dy =0 (mode), bp = a® — % (modw), (37) implies 4 | e, a = w (mod 4).

2
Now, we distinguish two subcases

(39.1) w=2 (mod4)
and
(39.2) w=0 (mod4).

In the case (39.1) we take
a(w8+2)

B = Cuw '76/4
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and find
a= (=64
4d;
a 24y _alwd2) \ e
Br=Con™=¢2 e <Cw ’ ) g
2d1 (4  a(wt2) aw
_ chl (5— 42 )64d1/e _ C;le64d1/e — Cw%ﬁéldl/e _ _64? 7
bo d a2 _a(wt2) % 4d
Bo=Ci1"? =—Cw® (Cuw ° B
d a(w+2)
_ _wa( 2 )B4d2/e CT P '%64412/6 B%
(37) (impdli4e)s 4| e dy = e3¢ (mode), by = 28=5%  (modw), ¢5 = 4 =
es  (mod4),
’ adg
acg—egzw _a(w+2) e 4dg
o=y = (T () T
(~Ses-ea)¥ raas e NS
=t pidale — (_1) 7
(38) irglpliZSQ)él | e, ds = —e4% (mode), by = 24=54%  (modw), ¢y = 2% =
—E&4 mo s

ﬂ
b d acg—eqw _a(w+2) e 1d,
Bs =Gl =Cw * (Cw s Be

(_%64_54)%64@/@ _ (_1)‘12264114

w e

and we obtain the case (6).
Consider now the case (39.2). Here (37) implies 4 | a, we take

a—w

B="Cu? '76/4

and find
a= (=6
B = oyt = at/eqh = —pid/e,
B = <1l1127d2 — _<$d2/67d2 _ _54(12/@.
w

Moreover, (37) gives d3 =35 (mode), b3 = ads _ €3y

- e

B3 = (5o ats/ oyt = pids/e;

(mod w), hence
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(38) gives dy = —e4¢  (mode), by = ads _ o, w (modw), hence
4 e 4

By = ¢ otgat/ eyt = —pidile

and we obtain again the case (6).
Consider now the case (12). Here we have

ady —eby =0 (modwe), wd; = 81% (mod we),

hence 4 | e, di =£1¢  (mode), 4| a, by = 22 (modw);
we
ads — ebs = - (modwe), wdy =0 (modwe),

hence d; =0 (mode), by = 2 — & (modw);

ads — ebs = wds = % (mod we),

hence d3 = § (mode), b3 = 2 — 5 (modw);

ady — eby = % (modwe), wdy = 54% (mod we),

hence dy =e4§ (mode), by = *2* — % (modw).
Therefore, setting

we obtain

a=pBY Br=p0TC By = —BRRC, By = —pMC, By = g
which is again the case (6).
Consider now the case (13). Here we have
we

ad;y —eb; =0 (modwe), wd; = T (mod we),

hence 2 | e, dy = § (mode), 2| a, by = “771 (mod w);
we
ady — eby = EQT (modwe), wdy =0 (modwe),
hence do =0 (mode), 4 | w, by = ady — 25 (mod w);

ads — ebs = wds = % (mod we),
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hence d3 = § (mode), b3 =ads — 5 (modw);

ady — eby = 64% (modwe), wdy = % (mod we),

hence dy = §  (mode), by = “—Z4 —e4%  (modw).

Therefore, setting
B = (ol

we obtain

a= % B =N, By = (R0 By = P00, By = (B

which is the case (4).

Sufficiency of the condition follows from Lemma 3 and the covering property
of the relevant systems of congruences, which in turn follows from Lemma 1. Indeed,
a prime ideal p of K is divisible by a prime ideal 3 of K ((y, 8), which in turn divides
a prime ideal q of Q({w, 3). Solubility of the congruence

g
H (oﬂ” — ({3”05‘4’“/‘1) =0 (modq)
h=1

implies solubility of the congruence f(a®) =0 (mod %), and this, since f € K|[z],
solubility of f(a®) =0 (modp).

Lemma 4. If u,, = \ja™ + )\2(—04_1)” is a recurring sequence in K and « is a root
of unity, then solubility of the congruence

up, =c (modp)

for infinitely many prime ideals p of K implies ¢ = u,,, where m is an integer.

Proof. If « is a root unity of order ¢ we have u,, € {u1,...,uz;}, hence if ¢ # u,
the congruence in question is soluble for only finitely many prime ideals p dividing

2q

H(un—c).

m=1

Proof of Theorem 2. If b = 0 we have u,, = \a™ and the assertion follows from
Theorem 1 applied to the polynomial f(z) = Az —c.

If b = —1, we have u, = Aa”™ + Aoa™" and the assertion follows from
Theorem 1 applied to the polynomial f(z) = A\12% — cz + Xo.

If b =1, a = 0 we have @ = £1 and the assertion follows by virtue of Lemma 4.
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Ifb=1,c=0o0r Ay =0 or Ay = 0 the assertion follows from Theorem 1
applied to the polynomial f(z) = A1z + A2 or Aoz — ¢ or A1z — ¢, respectively.
Therefore, assume b = 1, acAi Aa # 0.

Solubility of the congruence u,, = ¢ (modp) is equivalent to solubility of the
congruence

f (aQ") =0 (modp),

where
f(2) = (M2® —cz+ X2) (Ma?2® —caz — \s) .

We apply Theorem 1 with o? in stead of a, considering successively the cases
(2)-(6).

In the case (2) we have z — a?" | f(2), hence either z — a?" | A\122 — ¢z + Ao,
or z —a?" | A1 a?2? — caz — \g. In the former case u,, = ¢ has the solution n = 2r,
in the latter case n = 2r + 1.

In the case (3) we have one of the following six cases:

A2 e 4Ny =0, A\a?™ 4 ca®™? 4+ Ny =0,

(40.1)

Aadrstd e t2 )\, = 0;

A10/17«14_2 _ CO[2r1+1 + )\2 _ 0’ )\10[47’24-2 + Ca2T2+1 _ )\2 — O7
(40.2)

A1a4r3+2 + Ca27‘3+1 + )\2 = O;

/\1a4r1+2 _ Ca27‘1+1 + )\2 _ 0, )\10[47‘2-5‘2 + ca2T2+1 _ )\2 e O7
40.3
( ) /\1a4r3+4 + COZQT3+2 _ )\2 — 0’

Aottt —ea?t2 N =0, Mot 4+ ca?? + Ny =0,
(40.4)

/\1Q4r3+2 + ca2ratl + X2 = 0;

Mottt — et N =0, Mo +ca® 4+ Ny =0,
40.5
( ) /\1a4r3+4 + CQQT’3+2 _ )\2 — 0’

A10/17«14-4 _ Ca2r1+2 _ )\2 _ 0’ )\10[47’24-2 + Ca2T2+1 _ )\2 — O7
(40.6)

Aot et 4\, = 0.

Since cA\1 Ay # 0 at least one of the determinants Ay, ..., Ag is 0, where
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a41”1 +2 _aQT’l +1 1 a41”1 +2 _aQT’l—‘rl 1
Al — a4r2 a2r2 1 , AQ — O/11"2—}-2 OZQT2+1 1 ,
a41”3+4 a27“3 +2 _1 a41”3+2 aQT’_’;-‘rl 1
O[41"1 +2 _QQT1 +1 1 O[41"1 +4 _QQT1 +2 _1
AB — a41”2+2 a2r2+l —1 , A4 — a41”2 aQT’Q 1 ,
a4r3+4 a2r3 +2 -1 a4r3+2 a2r3+1 1
O[41"1 +4 _QQT1 +2 -1 O[41"1 +4 _QQT1 +2 1
AS — a4r2 a2r2 1 , AG — a4r2+2 a2r2+1 -1
a4r3+4 a2r3 +2 -1 a4r3+2 a2r3+1 1

Suppose first that « is not an algebraic integer. Then in the expanded form of
the determinant A; the highest power of & must occur at least twice. However, the
exponents in the first column of A; are twice the exponents in the second column.
Denoting the latter by d;1, d;2, d;3 in the decreasing order, we infer that the greatest
power of a in A; is o?%11%2 and it is not repeated unless two of the numbers 0ij
(j =1,2,3) are equal. This gives the following possibilities:

izl, T2=T3+1;

1=2, ro=rmry, Or r3=r7ry, OI T3=T7T9;
i:3, ro =T1;

i=4, ro=r+1;

1=5, ro=ri+1, or rg=ry, or ro=rsz+1;

i=6, T3 =T2

and in each case the equation A; = 0 gives « as 0 or a root of unity, contrary to
the assumption, that « is not an algebraic integer.
Assume now that « is an algebraic integer. Since a? + 4 # d? (d an integer of

K) we have o ¢ K. Hence « is conjugate over K to —a~! and \g is conjugate to
A1. By (40.1)—(40.6) we have for an € € {1, -1},

N2 .
(42) A (@2 e (0P ) edy =0,

hence

)\10[2T1+1+1;E _ CcF \/62 — 46/\1)\2.
2
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If Mo =:pu € K then

1—¢ 1—¢
Al =pa T Ay = pa T (1)

and from (42)

< 1-c 14e 1—e 1—e
0= p« T — T T L g(—1) T pa® T T = —ca T,

contrary to ¢ # 0.

If A 2r 1445

¢ K, then from (43) on taking conjugates we obtain

_e e /r2 _
/\2(—1)1704 _ 12 :C:|: c 248)\1)\2’

hence on multiplication side by side with (43)

1

/\1)\2(—1) ;E = E/\l/\Q,

contrary to A Ag # 0.

In the case (4) there exists a permutation ({;'a%,...,¢{*a%) of (a?1+11(2a%2,
—a?rstl (10241 such that

(44) % — <Z1+Eza51+52 — _<i3+64a53+54+2'
1

If 61402 = 03+04+2, then 2(01+02) = d1+d2+93+04+2 = 2r1+2r9+2r3+2r4+5,

which is impossible mod 2. If 1 4 d2 # d3 + d4 + 2, then « is a root of unity and
the assertion follows by virtue of Lemma 4.

In the case (5) we have

a=1% B=+% wherey=a/p

and there exists a permutation

€1 .0 €4 .0 2 ez 2 ez 2 eq, 2
(C ! 1 ce 347 4) ( " <2 T2v 37 T37 347 T4)
such that
ﬁ _ <61+€2 81402 _ _<€3+54 83+064+6
Al — 53 Y - 3 Y .

If 51 + 6o = 03 + 04 + 6, we obtain C§1+52_53_€4 = —1, which is impossible. If
01 4 62 # 03 + 94 + 6, then v is a root of unity and so is «; the assertion follows by
virtue of Lemma 4.
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In the case (6) we have
o = 5052, (EO = :|:1)

and there exists a permutation

(815617 52552a 83563,484554) of (52r1+17 _ﬁ4r2’ _62T3+1a _64T4+2) such that
(e1, €2, €3, €4) € {1, —1}* and

(45) SV e16% + €23% = £0e3 %2 + ggea B4 T2,
1
A
(46) /\—2 = 1628779 = —g3eB% T4,
1

If 3 is not an algebraic integer, then it follows from (45) that the greatest term
of the sequence (91, d2, I3 + 2, d4 + 2) occurs in this sequence at least twice and from
(46) that §; + 02 = d3 + 64 + 4. Hence

(47) 01 =03+2, d2=04+2 or 6y =04+2, dy=703+2.
This gives the following possibilities:

{51,52} = {27‘1 +1,4T‘2}, {53,54} = {27‘3+1,4T‘4+2};

{51,52}:{2T1+1,4T4+2}, {(53,54}: {27‘3+1,47‘2};

{51,52} = {47’2,2T3+1}, {53,54} = {27‘1 +1,4T‘4+2};

{01,02} ={2rs + 1,4rys + 2}, {d5,04} = {2r1 + 1,412}
and we obtain from (45) the following equations

527‘1—1-1 _ 547‘2 _ —E052T3+3 _ 5064T4+47

627’1—‘1—1 _ 641”4-‘1-2 — _E052T3+3 _ 60647’2—‘1—2’

_ 647’2 _ /@27‘3-‘1-1 — 50627’1-‘1—3 _ 80/64T4+4,

_ 527‘34—1 _ ﬁ4r4+2 _ 60627‘14-3 _ 8054T4+2.

By (47) the exponents on both sides are equal in pairs, which gives for each value
of g : B =0, hence a = 0, contrary to b = 1.



164 A. Schinzel

If 3 is an algebraic integer so is a. Since a? + 4 # d? (d an integer of K) we
have o € K, hence « is conjugate over K to o' and \; is conjugate to Ag. On the
other hand, we have

N2 .
(48) A (0<2r4+1+12 ) eI Loy, =0, e {1,-1),

which differs from (42) only by permutation of r; and r4 and hence leads to
contradiction.

Proof of Corollary 1. If a € Q, then either a = 0 or a? 4+ 4 # d?, d € Z hence
the assumptions of Theorem 2 are fulfilled.

Proof of Corollary 2. If ¢« € K and

(49) a’>+4=d* dan integer of K

the zeros of 22 —az —1 are units of K. However, since K is quadratic imaginary, the
only units of K are roots of unity and the assertion follows by virtue of Lemma 4.

Example. The following example shows that the assumption a? + 4 # d? (d an
integer of K) cannot be altogether omitted. Let K = Q(«a), where a®+a?—a+1 =0
and take

Uy = A" + Ao (—a_l)n, A= —(1+a2), =a?—a*, c=a*+1.
As observed in the proof of Theorem 2 solubility of the congruence
(50) un, =c¢ (modp),
is equivalent to solubility of the congruence
(51) f(e*) =0 (modp),

where
f(2) = (M2® —cz+ X2) (Ma?2® —caz — \s) .

Now
(52) f2)=XMEz-a)(z+1)(z+a)(a’z+1),

hence by Theorem 1, case (3), the congruence (51) is soluble for almost all prime
ideals p of K and so is the congruence (50). On the other hand,op solubility of the
equation u,, = ¢ would imply solubility of the equation f(a?") = 0, hence, by (52),
a would be a root of unity, which contradicts a® +a? —a — 1 = 0.
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