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ON THE CONGRUENCE un ≡ c (mod p),WHERE un IS A
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Dedicated to the memory of Professor Péter Kiss

1. Introduction

The following assertion has been proved in [1] as a by-product of a study of
exponential congruences (Corollary to Theorem 5). Let a sequence un of rational
integers satisfy the recurrence relation un+1 = aun + bun−1, where a2 + 4b 6= 0.
If the congruence un ≡ c (mod p) is soluble for almost all primes p and either
b = 0,−1 or b = 1, a 6= d3 + 3d (d integer), then c = um for an integer m.

The aim of this paper is to extend this result as follows.

Theorem 2. Let K be a number field, un a sequence of elements of K satisfying
the relation

(1) un+1 = aun + bun−1, where a2 + 4b 6= 0.

If c ∈ K, the congruence un ≡ c (mod p) is soluble for almost all prime ideals p

of K and either b = 0,−1 or b = 1, a = 0 or b = 1, a2 + 4 6= d2 (d an integer of K),
then c = um, where m is an integer.

Corollary 1. Let a sequence un of rationals satisfy the recurrence relation (1).
If c ∈ Q, the congruence un ≡ c (mod p) is soluble for almost all primes p and
b = 0, or ±1, then c = um for an integer m.

Comparing Corollary 1 with Corollary quoted above from [1] we see that now
un need not be integers and the condition a 6= d3 + 3d has disappeared.

Corollary 2. Let K be an imaginary quadratic field and un a sequence of
elements of K satisfying the recurrence relation (1). If c ∈ K, the congruence
un ≡ c (mod p) is soluble for almost all prime ideals p of K and b = 0, or ±1,
then c = um for an integer m.

Theorem 2 is a consequence of the following theorem concerning exponential
congruences.

Theorem 1. Let K be a number field, α ∈ K∗, f ∈ K[z], deg f ≤ 4. The
congruence

f(αx) ≡ 0 (mod p)
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is soluble for almost all prime ideals p of K, if and only if one of the following cases
holds for a β in the splitting field of f

(2) z − αr | f(z), r ∈ Z

α = β2,
(

z − β2r1+1
) (

z + β2r2
) (

z + β2r3+1
)

| f(z), ri ∈ Z;(3)

α = β2,
(

z − β2r1+1
) (

z − ζe2
4 β2r2

) (

z + β2r3+1
) (

z − ζe4
4 β2r4+1

)

| f(z),(4)

ri ∈ Z, e2e4 odd ;

α = β3, (z − βr1) (z − ζe2

3 βr2) (z − ζe3

3 βr3) (z − ζe4

3 βr4) | f(z), ri ∈ Z,(5)

e2r1 6≡ 0, r2 ≡ 0, e3r3 ≡ −1, e4r4 ≡ 1 (mod 3);

α = β4,
(

z − β2r1+1
) (

z + β4r2
) (

z + β2r3+1
) (

z + β4r4+2
)

| f(z), ri ∈ Z;(6)

ζq denotes a root of unity of order q.

Remark. In principle one could obtain a similar result for degree f bounded by
any number b. However, the number of possibilities increases fast with b and the
matter gets out of hand (cf. Theorem 5 in [1]).

Definition. A system of congruences Ah0t0 + Ah1t1 ≡ 0 (mod mh) (1 ≤ h ≤ g)
is covering, if every integer vector [t0, t1] satisfies at least one of these congruences.

Lemma 1. A system of congruences

(7) Ah0t0 + Ah1t1 ≡ 0 (mod m) (1 ≤ h ≤ 4)

is covering, if and only if one of the following cases holds:

(8) for an h0 ≤ 4 : m | (Ah00, Ah01) ;

2 | m and for three distinct indices h1, h2, h3 ≤ 4(9)

Ah10 ≡ 0, Ah11 ≡ m

2
(mod m),

Ah20 ≡ m

2
, Ah21 ≡ 0 (mod m),

Ah30 ≡ 0, Ah31 ≡ m

2
(mod m);
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3 | m and for a permutation (h1, h2, h3, h4) of (1, 2, 3, 4)(10)

Ah10 ≡ 0, Ah11 ≡ ε1

m

3
(mod m),

Ah20 ≡ ε2

m

3
, Ah20 ≡ 0 (mod m),

Ah30 ≡ Ah31 ≡ ε3

m

3
(mod m),

Ah40 ≡ −Ah41 ≡ ε4

m

3
(mod m);

where [ε1, ε2, ε3, ε4] ∈ {−1, 1}4.

4 | m and for a permutation (h1, h2, h3, h4) of (1, 2, 3, 4)(11)

Ah10 ≡ 0, Ah11 ≡ m

2
(mod m),

Ah20 ≡ m

2
, Ah21 ≡ 0 (mod m),

Ah30 ≡ Ah31 ≡ ε3

m

4
(mod m),

Ah40 ≡ −Ah41 ≡ ε4

m

4
(mod m),

where [ε3, ε4] ∈ {1,−1}2;

4 | m and for a permutation (h1, h2, h3, h4) of (1, 2, 3, 4)(12)

Ah10 ≡ 0, Ah11 ≡ m

2
(mod m),

Ah20 ≡ ε2

m

4
, Ah21 ≡ 0 (mod m),

Ah30 ≡ Ah31 ≡ m

2
(mod m),

Ah40 ≡ ε4

m

4
, Ah41 ≡ m

2
(mod m),

where [ε2, ε4] ∈ {−1, 1}2;

4 | m and for a permutation (h1, h2, h3, h4) of (1, 2, 3, 4)(13)

Ah10 ≡ 0, Ah11 ≡ ε1

m

4
(mod m),

Ah20 ≡ m

2
, Ah21 ≡ 0 (mod m),

Ah30 ≡ Ah31 ≡ m

2
(mod m),

Ah40 ≡ m

2
, Ah41 ≡ ε4

m

4
(mod m),
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where [ε1, ε4] ∈ {−1, 1}2.

Proof necessity. Since each of the vectors [1, 0] and [0, 1] satisfies one of the
congruences (7) we have for some h1, h2

Ah10 ≡ 0, Ah21 ≡ 0 (mod m).

If h1 = h2 = h we have the case (8), thus assume h2 6= h1. Since each of the vectors
[1,−1] and [1, 1] satisfies one of the congruences (7) we have for some j1, j2

(14) Aj10 − Aj11 ≡ 0, Aj20 + Aj21 ≡ 0 (mod m).

If ji ∈ {h1, h2} (i = 1 or 2), we have the case (9) with h3 = ji, thus we assume
ji 6∈ {h1, h2} (i = 1, 2) and distinguish two cases:

(15) j1 6= j2

and

(16) j1 = j2.

In the case (15) excluding the case (8) we infer that Ah11 6≡ 0 (mod m), Ah20 6≡
0 (mod m), Aj10 6≡ 0 (mod m), Aj20 6≡ 0 (mod m). Since each of the vectors
[±2, 1], [1,±2] satisfies one of the congruences (7) for h ∈ {h1, h2, j1, j2} we infer
that either

(15.1) 2 | m, Ah11 ≡ Ah20 ≡ m

2
(mod m),

or

(15.2) 3 | m, Aji0 ≡ εi+2

m

3
(mod m), [ε3, ε4] ∈ {−1, 1}2.

In the case (15.1), since each of the vectors [±3, 1] satisfies one of the congruences
(7) for h ∈ {j1, j2}, we infer that either for an i ≤ 2, Aji0 ≡ m

2
(mod m), or 4 | m

and Aji0 ≡ εi+2
m
4

(mod m) (i = 1, 2) where [ε3, ε4] ∈ {−1, 1}2. In the former
case we have (9) with h3 = ji, in the latter case we have (11) with hi = ji−2

(i = 3, 4). In the case (15.2), since each of the vectors [3, 1], [1, 3] satisfies one of
the congruences (7) for h ∈ {h1, h2} we infer that

Ah11 ≡ ε1

m

3
(mod m), Ah20 ≡ ε2

m

3
(mod m)

where [ε1, ε2] ∈ {−1, 1}2, thus we have the case (10) with hi = ji−2 for i = 3, 4.
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Consider now the case (16). Excluding (8) we infer that

Ah11 6≡ 0 (mod m),

Ah20 6≡ 0 (mod m),

Aj10 ≡ Aj11 ≡ m

2
(mod m).

Let {j3} = {1, 2, 3, 4}\{h1, h2, j1}. Since each of the vectors [1,±2], [±2, 1] satisfies
one of the congruences (7) we infer that either

(16.1) 2 | m, Ah11 ≡ m

2
(mod m),

or

(16.2) 2 | m, Ah20 ≡ m

2
(mod m)

or

(16.3)
Aj3,0 ± 2Aj3,1 ≡ 0 (mod m),

± 2Aj3,0 + Aj3,1 ≡ 0 (mod m).

The conditions (16.3) lead to (8) with h = j3, the conditions (16.1) and (16.2)
together lead to (9) with h3 = j1. If (16.1) holds but (16.2) does not, then since
each of the vectors [±2, 1] satisfies one of congruences (7) for h ∈ {h2, j3}, we have

(17) ±2Aj3,0 + Aj3,1 ≡ 0 (mod m),

hence
±4Aj3,0 ≡ 2Aj3,1 ≡ 0 (mod m).

If
Aj3,1 ≡ 0 (mod m),

then either Aj3,0 ≡ 0 (mod m), which gives (8) with h = j3, or Aj3,0 ≡
m
2

(mod m), which gives (9) with h2 = j3, h3 = j1. If Aj3,1 ≡ m
2

(mod m),
then (17) implies 4 | m,

Aj3,0 ≡ ε4

m

4
(mod m),

which gives (12) with h3 = j1, h4 = j3. If (16.2) holds but (16.1) does not, then by
symmetry we have (8) or (9) or (13).

Sufficiency of the condition follows from the easily verified fact, that the
following systems of congruences are covering:

0 ≡ 0 (mod 1); t1 ≡ 0, t0 ≡ 0, t0 + t1 ≡ 0 (mod 2); t1 ≡ 0, t0 ≡ 0, t0 + t1 ≡ 0,
t0 − t1 ≡ 0 (mod 3); t1 ≡ 0, t0 ≡ 0 (mod 2), t0 + t1 ≡ 0, t0 − t1 ≡ 0 (mod 4);
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t1 ≡ 0, t0 + t1 ≡ 0 (mod 2), t0 ≡ 0, t0 + 2t1 ≡ 0 (mod 4); t0 ≡ 0, t0 + t1 ≡
0 (mod 2), t1 ≡ 0, 2t0 + t1 ≡ 0 (mod 4).

Lemma 2. If K is a number field, α ∈ K, βj ∈ Q (1 ≤ j ≤ l), the congruence

(18)

l
∏

j=1

(αx − βj) ≡ 0 (mod p)

is soluble for almost all prime ideals p of the field K(β1, . . . , βl) =: K1 and w is the
number of roots of unity contained in K1, then there exist γ ∈ K1 and a subset H
of {1, . . . , l} such that

α = ζa
wγe,(19)

βh = ζbh
w γdh (h ∈ H)(20)

and the system of congruences

(21) t0 (adh − ebh) + wdht1 ≡ 0 (mod we) (h ∈ H)

is covering.

Proof. Let

(22) α = ζa0
w

t
∏

s=1

πas

s , βj = ζbj0
w

t
∏

s=1

πbjs

s (1 ≤ j ≤ l),

where πs are elements of the multiplicative basis of the field K1 (see [1], Lemma 9).
Let Q be a unimodular matrix such that

(23) [a1, . . . , at] Q = [e, 0, . . . , 0] , e = (a1, . . . , at)

and put

(24) [bj1, . . . , bjt] Q = [dj1, . . . , djt] .

We choose integers η2, . . . , ηt divisible by w such that for all j ≤ l

(25)

t
∑

s=2

djsηs = 0 implies djs
= 0(2 ≤ s ≤ t)

and set

(26) m = max
1≤j≤l

∣

∣

∣

∣

∣

t
∑

s=2

djsηs

∣

∣

∣

∣

∣

+ 1.
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Further we set

(27) n = 2τwme l.c.m.
q≤m+e
q prime

(q − 1), η1 =
n

e
t1 + a0

n

ew
t0,

where τ is the greatest integer such that ζ2τ + ζ−1
2τ ∈ K1,

(28) ε0 = −t0,





ε1

...
εt



 = Q







η1

...
ηt






.

By Theorem 4 of [1] there exist infinitely many prime ideals P of K1(ζn) such
that

(29)

(

ζw

P

)

n

= ζε0
w ,

(

πs

P

)

n

= ζεs

n (1 ≤ s ≤ t).

Let H be the set of these indices h ≤ l that for some integers x, t0, t1 and for
some prime ideal P satisfying (29) we have

(30) αx ≡ βh (mod P).

The congruence (30) gives
(

αx

P

)

n

=

(

βh

P

)

n

,

hence

x

(

n

w
a0ε0 +

t
∑

s=1

asεs

)

≡ n

w
bh0ε0 +

t
∑

s=1

bhsεs (mod n)

and by (24) and (28)

x
(

− n

w
a0t0 + eη1

)

≡ − n

w
bh0t0 +

t
∑

s=1

dhsηs (mod n).

Substituting the value of η1 from (27) we obtain

(31) 0 ≡ nxt1 ≡ − n

w
bh0t0 +

n

w
dh1

(w

e
t1 +

a0

e
t0

)

+

t
∑

s=2

dhsηs (mod n).

It follows that
t
∑

s=2

dhsηs ≡ 0 (mod m)
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and, by (26) and (25),

(32)

t
∑

s=2

dhsηs = 0, dhs = 0 (2 ≤ s ≤ t).

Hence, by (23) and (24),

bhs =
dh1

e
ahs

and putting a0 = a, bh0 = bh, dh1 = dh

γ =
t
∏

s=1

πas/e
s

we obtain (20) and (21). Moreover, since the congruence (18) is soluble for almost
all prime ideals p of K1 the system of congruences, resulting from (31) and (32)

(33) (adh − ebh) t0 + wdht1 ≡ 0 (mod we) (h ∈ H)

must be covering.

Remark. The above proof is modelled on the proof of Theorem 5 in [1].

Lemma 3. If a system of congruences

(34) Ah0t0 + Ah1t1 ≡ 0 (mod m) (1 ≤ h ≤ g)

is covering, w | m, d = (m, A11, . . . , Ag1) and α = βm/d, then the alternative of
congruences

αx ≡ ζAh0
w βAh1/d (mod p) (1 ≤ h ≤ g)

is soluble for all prime ideals p of Q(ζw, β) for which β is a p-adic unit.

Proof. Since the system (34) is covering, for every prime ideal p there exists an
h ≤ g such that

Ah0

dNp−1

w
(

ind β, dNp−1

w

) + Ah1

indβ
(

indβ, dNp−1

w

) ≡ 0 (mod m),

hence

Ah0

Np − 1

w
+

Ah1

d
indβ ≡ 0

(

mod
m

d

(

ind β, d
Np − 1

w

))

.

However
m

d

(

indβ, d
Np − 1

w

)

≡ 0 (mod (indα, Np − 1)) ,
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hence the congruence

Ah0

Np − 1

w
+

Ah1

d
indβ ≡ x ind α (mod Np − 1)

is soluble for x and we obtain

αx ≡ ζAh0
w βAh1/d (mod p).

Proof of Theorem 1. Necessity.

By Lemma 2 the system (33) is covering, hence we apply Lemma 1 with

Ah0 = adh − ebh, Ah1 = wdh.

If the case (8) holds, then for a certain h ∈ H

adh − ebh ≡ wdh ≡ 0 (mod we),

hence e | dh and bh ≡ adh

e (mod w), which gives

βh = αdh/e

hence (2) holds with r = dh/e.

If the case (9) holds, then for some distinct indices h1, h2, h3

adh1 − ebh1 ≡ 0, wdh1 ≡ we

2
(mod we),

hence 2 | e, dh1 ≡ e
2
c1, c1 odd, 2 | a, bh1 ≡ a

2
c1 (mod w);

adh2 − ebh2 ≡ we

2
, wdh2 ≡ 0 (mod we),

hence dh2 = ec2, c2 ∈ Z, bh2 ≡ w
2

+ ac2 (mod w);

adh3 − ebh3 ≡ wdh3 ≡ we

2
(mod we),

hence dh3 = e
2
c3, c3 odd, bh3 ≡ w

2
+ ac3 (mod w).

This gives (3) with

β = ζa/2
w γe/2, 2r1 + 1 = c1, r2 = c2, 2r3 + 1 = c3.

If the case (10) holds, 3 | we and without loss of generality we may assume
that

ad1 − eb1 ≡ 0, wd1 ≡ ε1

we

3
(mod we),



156 A. Schinzel

hence 3 | e, d1 ≡ e
3
ε1 (mod e), 3 | a, b1 ≡ a

3
3d1

e (mod w);

ad2 − eb2 ≡ ε2

we

3
, wd2 ≡ 0 (mod we),

hence e | d2, 3 | w, b2 ≡ d2

e − ε2
w
3

(mod w);

ad3 − eb3 ≡ wd3 ≡ ε3

we

3
(mod we),

hence d3 ≡ ε3
e
3

(mod e), b3 ≡ a
3

3d3

e − ε3
w
3

(mod w);

ad4 − eb4 ≡ −wd4 ≡ ε4

we

3
(mod we),

hence d4 ≡ −ε4
e
3

(mod e), b4 ≡ a
3

3d4

e − ε4
w
3

(mod w).

This gives (5) with

β = ζa/3
w γe/3, ri =

3di

e
(1 ≤ i ≤ 4), ei ≡ −εi (mod 3) (2 ≤ i ≤ 4).

If the case (11) holds, 4 | we and without loss of generality we may assume
that

ad1 − eb1 ≡ 0, wd1 ≡ we

2
(mod we),(35)

ad2 − eb2 ≡ ε2

we

2
, wd2 ≡ 0 (mod we),(36)

ad3 − eb3 ≡ wd3 ≡ ε3

we

4
(mod we),(37)

ad4 − eb4 ≡ −wd4 ≡ ε4

we

4
(mod we).(38)

(35) implies 2 | e and d1 ≡ e
2

(mod e), 2 | a, b1 ≡ a
2
· 2d1

e (mod w), (36) implies

d2 ≡ 0 (mod e), b2 ≡ ad2

e − w
2

(mod w), (37) implies 4 | e, a ≡ w (mod 4).
Now, we distinguish two subcases

(39.1) w ≡ 2 (mod 4)

and

(39.2) w ≡ 0 (mod 4).

In the case (39.1) we take

β = ζ
a(w+2)

8
w γe/4
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and find

α = ζa
wγe = β4,

β1 = ζb1
w γd1 = ζ

a
2 ·

2d1
e

w

(

ζ
−

a(w+2)
8

w

)

4d1
e

β4d1

= ζ
2d1

e

(

a
2−

a(w+2)
4

)

w β4d1/e = ζ
−

awd1
2e

w β4d1/e = ζ
w
2

w β4d1/e = −β
4d1

e ,

β2 = ζb2
w γd2 = −ζ

a
d2
e

w

(

ζ
−

a(w+2)
8

w

)

4d2
e

β4d2

= −ζ
d2
e

(

a−
a(w+2)

2

)

w β4d2/e = −ζ
r−

d2
e
·aw

2
w β4d2/e = −β

4d2
e .

(37) implies 4 | e, d3 ≡ ε3
e
4

(mod e), b3 ≡ ac3−ε3w
4

(mod w), c3 = 4d3

e ≡
ε3 (mod 4),

β3 = ζb3
w γd3 = ζ

ac3−ε3w

4
w

(

ζ
−

a(w+2)
8

w

)

4d3
e

β
4d3

e

= ζ
(−a

2 c3−ε3) w
4

w β4d3/e = (−1)
a+2
4 β

4d3
e .

(38) implies 4 | e, d4 ≡ −ε4
e
4

(mod e), b4 ≡ ac4−ε4w
4

(mod w), c4 = 4d4

e ≡
−ε4 (mod 2),

β4 = ζb4
w γd4 = ζ

ac4−ε4w

4
w

(

ζ
−

a(w+2)
8

w

)

4d4
e

β
4d4

e

= ζ
(−a

2 c4−ε4) w
4

w β4d4/e = (−1)
a−2
4 β

4d4
e

and we obtain the case (6).

Consider now the case (39.2). Here (37) implies 4 | a, we take

β = ζ
a−w

4
w γe/4

and find
α = ζa

wγe = β4,

β1 = ζb1
w γd1 = ζad1/e

w γd1 = −β4d1/e,

β2 = ζb2
w γd2 = −ζad2/e

w γd2 = −β4d2/e.

Moreover, (37) gives d3 ≡ ε3
e
4

(mod e), b3 ≡ ad3

e − ε3
w
4

(mod w), hence

β3 = ζ−ε3
4 ζad3/e

w γd3 = β4d3/e;
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(38) gives d4 ≡ −ε4
e
4

(mod e), b4 ≡ ad4

e − ε4
w
4

(mod w), hence

β4 = ζ−ε4
4 ζad4/e

w γd4 = −β4d4/e

and we obtain again the case (6).

Consider now the case (12). Here we have

ad1 − eb1 ≡ 0 (mod we), wd1 ≡ ε1

we

4
(mod we),

hence 4 | e, d1 ≡ ε1
e
4

(mod e), 4 | a, b1 ≡ ad1

e (mod w);

ad2 − eb2 ≡ we

2
(mod we), wd2 ≡ 0 (mod we),

hence d2 ≡ 0 (mod e), b2 ≡ ad2

e − a
2

(mod w);

ad3 − eb3 ≡ wd3 ≡ we

2
(mod we),

hence d3 ≡ e
2

(mod e), b3 ≡ ad3

e − w
2

(mod w);

ad4 − eb4 ≡ we

2
(mod we), wd4 ≡ ε4

we

4
(mod we),

hence d4 ≡ ε4
e
4

(mod e), b4 ≡ ad4

e − w
2

(mod w).

Therefore, setting

β = ζa/4
w γe/4

we obtain

α = β4, β1 = β4d1/e, β2 = −β4d2/e, β3 = −β4d3/e, β4 = −β4d4/e,

which is again the case (6).

Consider now the case (13). Here we have

ad1 − eb1 ≡ 0 (mod we), wd1 ≡ we

4
(mod we),

hence 2 | e, d1 ≡ e
4

(mod e), 2 | a, b1 ≡ ad1

e (mod w);

ad2 − eb2 ≡ ε2

we

4
(mod we), wd2 ≡ 0 (mod we),

hence d2 ≡ 0 (mod e), 4 | w, b2 ≡ ad2 − ε2
a
2

(mod w);

ad3 − eb3 ≡ wd3 ≡ we

2
(mod we),
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hence d3 ≡ e
2

(mod e), b3 ≡ ad3 − w
2

(mod w);

ad4 − eb4 ≡ ε4

we

4
(mod we), wd4 ≡ we

2
(mod we),

hence d4 ≡ e
2

(mod e), b4 ≡ ad4

e − ε4
w
4

(mod w).

Therefore, setting

β = ζa/4
w γe/4

we obtain

α = β2, β1 = β2d1/e, β2 = ζ−ε2
4 β2d2/e, β3 = −β2d3/e, β4 = ζ−ε4

4 β2d4/e,

which is the case (4).

Sufficiency of the condition follows from Lemma 3 and the covering property
of the relevant systems of congruences, which in turn follows from Lemma 1. Indeed,
a prime ideal p of K is divisible by a prime ideal P of K(ζw, β), which in turn divides
a prime ideal q of Q(ζw, β). Solubility of the congruence

g
∏

h=1

(

αx − ζAh0
w βAh1/d

)

≡ 0 (mod q)

implies solubility of the congruence f(αx) ≡ 0 (mod P), and this, since f ∈ K[z],
solubility of f(αx) ≡ 0 (mod p).

Lemma 4. If un = λ1α
n +λ2(−α−1)n is a recurring sequence in K and α is a root

of unity, then solubility of the congruence

un ≡ c (mod p)

for infinitely many prime ideals p of K implies c = um, where m is an integer.

Proof. If α is a root unity of order q we have un ∈ {u1, . . . , u2q}, hence if c 6= um

the congruence in question is soluble for only finitely many prime ideals p dividing

2q
∏

m=1

(un − c) .

Proof of Theorem 2. If b = 0 we have un = λαn and the assertion follows from
Theorem 1 applied to the polynomial f(z) = λz − c.

If b = −1, we have un = λ1α
n + λ2α

−n and the assertion follows from
Theorem 1 applied to the polynomial f(z) = λ1z

2 − cz + λ2.

If b = 1, a = 0 we have α = ±1 and the assertion follows by virtue of Lemma 4.
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If b = 1, c = 0 or λ1 = 0 or λ2 = 0 the assertion follows from Theorem 1
applied to the polynomial f(z) = λ1z + λ2 or λ2z − c or λ1z − c, respectively.
Therefore, assume b = 1, acλ1λ2 6= 0.

Solubility of the congruence un ≡ c (mod p) is equivalent to solubility of the
congruence

f
(

α2n
)

≡ 0 (mod p),

where
f(z) =

(

λ1z
2 − cz + λ2

) (

λ1α
2z2 − cαz − λ2

)

.

We apply Theorem 1 with α2 in stead of α, considering successively the cases
(2)–(6).

In the case (2) we have z − α2r | f(z), hence either z − α2r | λ1z
2 − cz + λ2,

or z − α2r | λ1α
2z2 − cαz − λ2. In the former case un = c has the solution n = 2r,

in the latter case n = 2r + 1.

In the case (3) we have one of the following six cases:

λ1α
4r1+2 − cα2r1+1 + λ2 = 0, λ1α

4r2 + cα2r2 + λ2 = 0,

λ1α
4r3+4 + cα2r3+2 − λ2 = 0;

(40.1)

λ1α
4r1+2 − cα2r1+1 + λ2 = 0, λ1α

4r2+2 + cα2r2+1 − λ2 = 0,

λ1α
4r3+2 + cα2r3+1 + λ2 = 0;

(40.2)

λ1α
4r1+2 − cα2r1+1 + λ2 = 0, λ1α

4r2+2 + cα2r2+1 − λ2 = 0,

λ1α
4r3+4 + cα2r3+2 − λ2 = 0;

(40.3)

λ1α
4r1+4 − cα2r1+2 − λ2 = 0, λ1α

4r2 + cα2r2 + λ2 = 0,

λ1α
4r3+2 + cα2r3+1 + λ2 = 0;

(40.4)

λ1α
4r1+4 − cα2r1+2 − λ2 = 0, λ1α

4r2 + cα2r2 + λ2 = 0,

λ1α
4r3+4 + cα2r3+2 − λ2 = 0;

(40.5)

λ1α
4r1+4 − cα2r1+2 − λ2 = 0, λ1α

4r2+2 + cα2r2+1 − λ2 = 0,

λ1α
4r3+2 + cα2r3+1 + λ2 = 0.

(40.6)

Since cλ1λ2 6= 0 at least one of the determinants ∆1, . . . , ∆6 is 0, where
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∆1 =

∣

∣

∣

∣

∣

∣

α4r1+2 −α2r1+1 1
α4r2 α2r2 1

α4r3+4 α2r3+2 −1

∣

∣

∣

∣

∣

∣

, ∆2 =

∣

∣

∣

∣

∣

∣

α4r1+2 −α2r1+1 1
α4r2+2 α2r2+1 −1
α4r3+2 α2r3+1 1

∣

∣

∣

∣

∣

∣

,

∆3 =

∣

∣

∣

∣

∣

∣

α4r1+2 −α2r1+1 1
α4r2+2 α2r2+1 −1
α4r3+4 α2r3+2 −1

∣

∣

∣

∣

∣

∣

, ∆4 =

∣

∣

∣

∣

∣

∣

α4r1+4 −α2r1+2 −1
α4r2 α2r2 1

α4r3+2 α2r3+1 1

∣

∣

∣

∣

∣

∣

,

∆5 =

∣

∣

∣

∣

∣

∣

α4r1+4 −α2r1+2 −1
α4r2 α2r2 1

α4r3+4 α2r3+2 −1

∣

∣

∣

∣

∣

∣

, ∆6 =

∣

∣

∣

∣

∣

∣

α4r1+4 −α2r1+2 −1
α4r2+2 α2r2+1 −1
α4r3+2 α2r3+1 1

∣

∣

∣

∣

∣

∣

.

Suppose first that α is not an algebraic integer. Then in the expanded form of
the determinant ∆i the highest power of α must occur at least twice. However, the
exponents in the first column of ∆i are twice the exponents in the second column.
Denoting the latter by δi1, δi2, δi3 in the decreasing order, we infer that the greatest
power of α in ∆i is α2δi1+δi2 and it is not repeated unless two of the numbers δij

(j = 1, 2, 3) are equal. This gives the following possibilities:

i = 1, r2 = r3 + 1;(41.1)

i = 2, r2 = r1, or r3 = r1, or r3 = r2;(41.2)

i = 3, r2 = r1;(41.3)

i = 4, r2 = r1 + 1;(41.4)

i = 5, r2 = r1 + 1, or r3 = r1, or r2 = r3 + 1;(41.5)

i = 6, r3 = r2(41.6)

and in each case the equation ∆i = 0 gives α as 0 or a root of unity, contrary to
the assumption, that α is not an algebraic integer.

Assume now that α is an algebraic integer. Since a2 + 4 6= d2 (d an integer of
K) we have α 6∈ K. Hence α is conjugate over K to −α−1 and λ2 is conjugate to
λ1. By (40.1)–(40.6) we have for an ε ∈ {1,−1},

(42) λ1

(

α2r1+1+
1−ε

2

)2

− c
(

α2r1+1+
1−ε

2

)

+ ελ2 = 0,

hence

(43) λ1α
2r1+1+

1−ε
2 =

c ∓
√

c2 − 4ελ1λ2

2
.
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If λ1α
2r1+1+

1−ε

2 =: µ ∈ K then

λ1 = µα−2r1−1−
1−ε
2 , λ2 = µα2r1+1+

1−ε
2 (−1)

1+ε
2

and from (42)

0 = µα2r1+1+
1−ε
2 − cα2r1+1+

1−ε
2 + ε(−1)

1+ε
2 µα2r1+1+

1−ε
2 = −cα2r1+1+

1−ε
2 ,

contrary to c 6= 0.

If λ1α
2r1+1+

1−ε
2 6∈ K, then from (43) on taking conjugates we obtain

λ2(−1)
1−ε
2 α−2r1−1−

1−ε
2 =

c ±
√

c2 − 4ελ1λ2

2
,

hence on multiplication side by side with (43)

λ1λ2(−1)
1+ε
2 = ελ1λ2,

contrary to λ1λ2 6= 0.

In the case (4) there exists a permutation (ζε1
4 αδ1 , . . . , ζε4

4 αδ4 ) of (α2r1+1,!ζe2
4 α2r2 ,

−α2r3+1, ζe4
4 α2r4+1) such that

(44)
λ2

λ1

= ζε1+ε2
4 αδ1+δ2 = −ζε3+ε4

4 αδ3+δ4+2.

If δ1+δ2 = δ3+δ4+2, then 2(δ1+δ2) = δ1+δ2+δ3+δ4+2 = 2r1+2r2+2r3+2r4+5,
which is impossible mod 2. If δ1 + δ2 6= δ3 + δ4 + 2, then α is a root of unity and
the assertion follows by virtue of Lemma 4.

In the case (5) we have

α = γ3, β = γ2, where γ = α/β

and there exists a permutation

(ζε1
3 γδ1 , . . . , ζε4

3 γδ4) of (γ2r1 , ζe2
3 γ2r2 , ζe3

3 γ2r3 , ζe4
3 γ2r4)

such that
λ2

λ1

= ζε1+ε2
3 γδ1+δ2 = −ζε3+ε4

3 γδ3+δ4+6.

If δ1 + δ2 = δ3 + δ4 + 6, we obtain ζε1+ε2−ε3−ε4
3 = −1, which is impossible. If

δ1 + δ2 6= δ3 + δ4 + 6, then γ is a root of unity and so is α; the assertion follows by
virtue of Lemma 4.
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In the case (6) we have

α = ε0β
2, (ε0 = ±1)

and there exists a permutation

(ε1β
δ1 , ε2β

δ2 , ε3β
δ3 , ε4β

δ4) of (β2r1+1, −β4r2 , −β2r3+1, −β4r4+2) such that
(ε1, ε2, ε3, ε4) ∈ {1,−1}4 and

c

λ1

= ε1β
δ1 + ε2β

δ2 = ε0ε3β
δ3+2 + ε0ε4β

δ4+2,(45)

λ2

λ1

= ε1ε2β
δ1+δ2 = −ε3ε4β

δ3+δ4+4.(46)

If β is not an algebraic integer, then it follows from (45) that the greatest term
of the sequence (δ1, δ2, δ3 +2, δ4 +2) occurs in this sequence at least twice and from
(46) that δ1 + δ2 = δ3 + δ4 + 4. Hence

(47) δ1 = δ3 + 2, δ2 = δ4 + 2 or δ1 = δ4 + 2, δ2 = δ3 + 2.

This gives the following possibilities:

{δ1, δ2} = {2r1 + 1, 4r2} , {δ3, δ4} = {2r3 + 1, 4r4 + 2} ;

{δ1, δ2} = {2r1 + 1, 4r4 + 2} , {δ3, δ4} = {2r3 + 1, 4r2} ;

{δ1, δ2} = {4r2, 2r3 + 1} , {δ3, δ4} = {2r1 + 1, 4r4 + 2} ;

{δ1, δ2} = {2r3 + 1, 4r4 + 2} , {δ3, δ4} = {2r1 + 1, 4r2}

and we obtain from (45) the following equations

β2r1+1 − β4r2 = −ε0β
2r3+3 − ε0β

4r4+4,

β2r1+1 − β4r4+2 = −ε0β
2r3+3 − ε0β

4r2+2,

− β4r2 − β2r3+1 = ε0β
2r1+3 − ε0β

4r4+4,

− β2r3+1 − β4r4+2 = ε0β
2r1+3 − ε0β

4r4+2.

By (47) the exponents on both sides are equal in pairs, which gives for each value
of ε0 : β = 0, hence α = 0, contrary to b = 1.
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If β is an algebraic integer so is α. Since a2 + 4 6= d2 (d an integer of K) we
have α 6∈ K, hence α is conjugate over K to α−1 and λ1 is conjugate to λ2. On the
other hand, we have

(48) λ1

(

α2r4+1+
1−ε

2

)2

− cα2r4+1+
1−ε

2 + ελ2 = 0, ε ∈ {1,−1},

which differs from (42) only by permutation of r1 and r4 and hence leads to
contradiction.

Proof of Corollary 1. If a ∈ Q, then either a = 0 or a2 + 4 6= d2, d ∈ Z hence
the assumptions of Theorem 2 are fulfilled.

Proof of Corollary 2. If a ∈ K and

(49) a2 + 4 = d2, d an integer of K

the zeros of z2−az−1 are units of K. However, since K is quadratic imaginary, the
only units of K are roots of unity and the assertion follows by virtue of Lemma 4.

Example. The following example shows that the assumption a2 + 4 6= d2 (d an
integer of K) cannot be altogether omitted. Let K = Q(α), where α3+α2−α+1 = 0
and take

un = λ1α
n + λ2

(

−α−1
)n

, λ1 = −
(

1 + α2
)

, λ2 = α2 − α4, c = α4 + 1.

As observed in the proof of Theorem 2 solubility of the congruence

(50) un ≡ c (mod p),

is equivalent to solubility of the congruence

(51) f
(

α2n
)

≡ 0 (mod p),

where
f(z) =

(

λ1z
2 − cz + λ2

) (

λ1α
2z2 − cαz − λ2

)

.

Now

(52) f(z) = λ2
1(z − α)(z + 1)(z + α)

(

α2z + 1
)

,

hence by Theorem 1, case (3), the congruence (51) is soluble for almost all prime
ideals p of K and so is the congruence (50). On the other hand,op solubility of the
equation un = c would imply solubility of the equation f(α2n) = 0, hence, by (52),
α would be a root of unity, which contradicts α3 + α2 − α − 1 = 0.
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