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Abstract. The structure of the group of quasi multiplicative arithmetical functions

such that f(1) 6=0 with respect to Dirichlet and the more general Davison convolution via an

isomorphism to a subgroup of upper triangular and Toeplitz matrices will be described.
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1. Introduction

In what follows unless contrary is stated K denotes a field between the field
of complex C and the field of rational numbers Q. Let Arit(K) denote the set of
all K-valued arithmetical functions (i.e. functions defined on the set N of positive
integers with values in K), and Mult(K) the set of nonzero (i.e. non identically
vanishing) multiplicative arithmetical functions f , that is functions such that
f(nm) = f(n)f(m) whenever (m, n) = 1. The sets Arit(K) and Mult(K) endowed
with the Dirichlet convolution

(f ⋆D g)(n) =
∑

d1d2=n

f(d1)g(d2)

are of basic importance in various number-theoretical considerations.

Given an f ∈ Arit(K) we can assign it the formal Dirichlet series

(1) f 7→ T (f) =
∞∑

n=1

f(n)

ns
.

The author was supported by the Grant Agency of the Czech Republic, Grant
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If we define the multiplication of formal Dirichlet series by

∞∑

n=1

f(n)

ns
·

∞∑

n=1

g(n)

ns
=

∞∑

n=1

(f ⋆D g)(n)

ns
,

then for the set of all formal Dirichlet series

D(K) =

{
∞∑

n=1

an

ns
: an ∈ K

}

with multiplication defined above we have:

Lemma 1. ([13, Theorem 4.6.1]) The map T defined by (1) gives an isomorphism
between the semigroups (Arit(K), ⋆D) and (D(K), .).

The underlying property for the investigation that follows is the following
result due to Bell:

Lemma 2. (a) The set of arithmetical functions f ∈ Arit(K) for which f(1) 6= 0
forms a commutative group with respect to Dirichlet convolution ⋆D.
(b) The set (Mult(K), ⋆D) forms a subgroup of the group (Arit(K), ⋆D).

Dehaye [5] analyzed the structure of the group (Mult(R), ⋆D) of real valued
non-zero multiplicative functions with respect to the Dirichlet convolution ⋆D. He
proved (among other) that (Mult(R), ⋆D) is isomorphic to the complete direct1

product
∏̃

i∈N
D1

R
of countably many copies of D1

R
, where D1

R
is the set of all

matrices 


1 a b c d · · ·
0 1 a b c · · ·
0 0 1 a b · · ·
0 0 0 1 a · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

...




which all entries on descending diagonals are equal real numbers while the main
diagonal entries are equal to 1. In what follows we show using more number
theoretical arguments that his results can be extended to more general types of
arithmetical functions and convolutions.

1 For the definition of the complete (or Cartesian) direct product the reader is
referred to [6] or [5] or sources quoted [5], if necessary.
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2. Quasi multiplicative functions

If f ∈ Arit(K) is a multiplicative arithmetical function, then f(m)f(n) =

f((m, n))f
(

m.n
(m,n)

)
for all m, n ∈ N. An arithmetical function f is called quasi

multiplicative ([11,14]) if f(1) 6= 0 and

(2) f(1)f(mn) = f(m)f(n) whenever (m, n) = 1.

The set of nonzero K-valued quasi multiplicative functions will be denoted by
Quas(K). The analogue of the second part of Theorem 2 for nonzero quasi
multiplicative can be verified by a direct computation:

Lemma 3. The set Quas(K) forms a commutative group with respect to Dirichlet
convolution ⋆D.

Note that an f with f(1) 6= 0 is quasi multiplicative if, and only if, f− = 1
f(1)f

is multiplicative.2 There follows from this observation (or directly from (2)) that

(3) f−(pα1

1 · · · pαk

k ) =

k∏

i=1

f(pαi

i )

f(1)
=

k∏

i=1

f−(pαi

i ),

or

(4) f(pα1

1 · · · pαk

k ) = f(1)1−k

k∏

i=1

f(pαi

i ) = f(1)

k∏

i=1

f−(pαi

i ),

whenever p1, . . . , pk are distinct primes and αi ∈ N. The next two results follow
from well known properties of multiplicative functions:

Lemma 4. If f ∈ Arit(K) with f(1) 6= 0, then f is quasi multiplicative if and
only if (3) or (4) holds for all k tuples p1, . . . , pk of distinct primes and all αi ∈ N.

If f is multiplicative then under the isomorphism of Lemma 1 the image T (f)
is a Dirichlet series admitting the so called Euler factorization. Therefore if f ∈
Quas(K), then applying this fact to the multiplicative function f− we get:

Lemma 5. If f ∈ Quas(K) then T (f)/f(1) is the formal product of the series

(5) 1 +
f(p)

f(1)ps
+

f(p2)

f(1)p2s
+

f(p3)

f(1)p3s
+ · · · ,

where the product runs over all primes p.

2 If f is multiplicative, so is f(Mn)/f(M), where M is any positive integer.
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The series (5) is in a one-to-one relation to a formal power series called Bell series
fp(x) of an f ∈ Arit(K) with f(1) 6= 0 modulo the prime p

fp(x) = f(1) + f(p)x + f(p2)x2 + · · · =

∞∑

n=0

f(pn)xn.

In terms of Bell series we can characterize the quasi multiplicative functions as
follows:

Lemma 6. Let f, g ∈ Quas(K). Then f = g if, and only if,

fp(x) = gp(x) for all primes p,

or equivalently

f(pα) = g(pα) for all primes p and integers α ≥ 0.

The next result shows a close relation between Bell series and Dirichlet
multiplication:

Lemma 7. ([1, Theorem 2.25]) For any two arithmetical functions f and g let
h = f ⋆D g. Then for every prime p we have

hp(x) = fp(x)gp(x).

Perhaps a most natural proof of this result can be modelled using matrix
multiplication of infinite upper triangular matrices of the type

(6) fp(x) 7→ mK,D(fp) =




f(1) f(p) f(p2) f(p3) · · ·
0 f(1) f(p) f(p2) · · ·
0 0 f(1) f(p) · · ·
0 0 0 f(1) · · ·
...

...
...

...
. . .




Let P denote the set of all (rational) primes.

Theorem 8. Let DK be the set of matrices of the type3

T (a, b, c, d, e, . . .) =




a b c d e · · ·
0 a b c d · · ·
0 0 a b c · · ·
0 0 0 a b · · ·
0 0 0 0 a · · ·
...

...
...

...
...

. . .




with a 6= 0, b, c, d, e, . . . ∈ K.

3 That is upper triangular (semi-definite) matrices that are constant along all
diagonals parallel to the principal diagonal. Matrices possessing the later property
are also called Toeplitz matrices.
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Then
(a) DK is a group with respect to the matrix multiplication,
(b) The group (Quas(K), ⋆D) is isomorphic to a subgroup of the complete direct

product
∏̃

p∈PDK, defined by the condition that the diagonal value a is a common

number in all components of an element of the direct product.

Proof. (a) The proof can be based either on standard tools from matrix algebra or
using our arithmetical background. Using the matrix algebra language let A(m, n),
m, n ∈ {1, 2, 3, . . .} be the (m, n)th entry of a matrix A. Then A ∈ DK if and only
if

(1) if n > m then A(m, n) = 0, i.e. A is upper triangular,

(2) A(m + k, n + k) = A(m, n) for all indices m, n ∈ N, k ∈ Z such that
min{m, n, n + k, m + k} ≥ 1, i.e. A is Toeplitz.

Let Ai ∈ DK, i = 1, 2 and A = A1A2. Then A(m, n) =
∑∞

t=1 A1(m, t)A2(t, n).
That A is upper triangular is easy to see. What concerns the second property it
suffices to prove it for k = 1 only. Let n ≤ m. Then4

A(m + 1, n + 1) =

∞∑

t=1

A1(m + 1, t)A2(t, n + 1) =

m+1∑

t=n+1

A1(m + 1, t)A2(t, n + 1)

=

m∑

t=n

A1(m, t)A2(t, n) = A(m, n),

where in the second equality we used the fact that the matrices under consideration
are upper triangular. The case n > m is even easier to verify, for in this case at
least one of the factors in the first sum vanishes. This shows that DK is closed
under the multiplication of matrices.

The presence of the identity element in DK is clear. To prove the existence of
inverse elements we switch to our arithmetical background.5

If f ∈ Mult(K), then also f−1 ∈ Mult(K). Lemma 7 implies that the Bell
series modulo p of f−1 is given by

f−1
p (x) =

1

fp(x)
.

4 Another form of the following rearrangement of the summands gives [3, p.
96–97] the product matrix formula for an (m+1, n+1) entry of the product of
two general Toeplitz matrices saying that A(m + 1, n + 1) = A1(m + 1, 1)A2(1, n +
1) + A(m, n).

5 For another proof we refer to [3, Corollary of Theorem 2] where it is proved
that the only Toeplitz matrices with Toeplitz inverses are the triangular ones.
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Consequently, f−1
p (x) can be found by formal power series inversion and the

corresponding element in DK can be found for ℓ = f−1 noting that if

H =




0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




and E is the infinite identity matrix, then

ℓp(H) = ℓ(1)E + ℓ(p)H + ℓ(p2)H2 + · · · =




ℓ(1) ℓ(p) ℓ(p2) ℓ(p3) · · ·
0 ℓ(1) ℓ(p) ℓ(p2) · · ·
0 0 ℓ(1) ℓ(p) · · ·
0 0 0 ℓ(1) · · ·
...

...
...

...
. . .




.

This proves (a) and simultaneously that if h = f ⋆D g, then

mK,D(hp) = hp(H) = fp(H)gp(H) = mK,D(fp)mK,D(gp),

that is that the mapping (6) is a homomorphism. That this mapping is also a
bijection follows from the fact that the (quasi) multiplicative functions are uniquely
determined by its values at all prime powers arguments (including 1). Since the
product of two Bell series modulo p of two quasi multiplicative functions is a Bell
series modulo p of a quasi multiplicative function modulo p, (b) follows using the
isomorphism which is the composition of the isomorphism described in part (a)
and that of of Lemma 1taking into account the Euler factorization from Lemma 5.

If f is a nonzero multiplicative function then f(1) = 1 and Dehaye’s result
mentioned in the introduction for K = R follows immediately. Dehaye proved this
result via subsets

Fp = {f ∈ Mult(R) : f(n) = 0 for every n > 1 not divisible by p}

for each p ∈ P . However, the multiplicativity of f implies that

Fp = {f ∈ Mult(R) : f(n) = 0 for every n > 1 which is not a power of p}.

Consequently, the Euler factorization of an f ∈ Fp reduces to one factor only,
namely

T (f) = 1 +
f(p)

ps
+

f(p2)

p2s
+

f(p3)

p3s
+ · · · ,

This observation immediately implies, first of all, the result extending [5, Theorem
2.2, Theorem 5.2] to an arbitrary K:
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Lemma 9. For any prime p, Fp is a group which is isomorphic to D1
K

.

Secondly, we have more generally:

Theorem 10. If P ⊂ P is any set of primes then the set

{f ∈ Quas(K) : f(n) = 0 for every n > 1 not divisible by a p ∈ P}.

is a group which is isomorphic to a subgroup of the complete direct product∏̃
p∈PDK, defined by the condition that the diagonal value a is a common number

in all components of an element of the direct product. Its subset

FP = {f ∈ Mult(K) : f(n) = 0 for every n > 1 not divisible by a p ∈ P}

forms a subgroup which is isomorphic to
∏̃

p∈P D1
K

.

Other results proved by Dehaye state that the group Mult(R) is torsion-free [5,
Theorem 2.1] and divisible [5, Theorem 7.1]. To extend these results the following
simple result will be useful:

Lemma 11. Let g ∈ Arit(C) such that g(1) 6= 0. Then the equation f (n) = g,

where f (n) =

n times︷ ︸︸ ︷
f ⋆D . . . ⋆D f , is soluble in Arit(C) and has n solutions here.

Proof. The equation of the theorem can be solved inductively either by starting
with the equation (T (f))n = T (g), or equivalently setting

(7)

f(1) = n
√

g(1), and

f(k) =
1

n(f(1))n−1

(
g(k) −

∑

d1...dn=k

d1,...,dn 6=k

f(d1) . . . f(dn)

)
, for k > 1.

Clearly if f is one solution of our equation, then all solutions of this equation are
given by ωif , where ωi runs over all nth roots of unity.

A group (G, .) is called divisible if the equation xn = a has a solution in G
for every a ∈ G.

Theorem 12. (a) The group {f ∈ Arit(C) : f(1) 6= 0} is divisible and has torsion.
Its torsion part is isomorphic to the group of all complex roots of unity, that is to
group Q/Z.
(b) If C ⊃ K ⊃ Q, then Mult(K) is divisible and torsion-free.

(c) The groups Arit+(R) = {f ∈ Arit(R) : f(1) > 0} and Quas+(R) = {f ∈
Quas(R) : f(1) > 0} are divisible and torsion-free.

Proof. The proof follows easily from the previous Lemma. The verification that
the solution given by (7) is (quasi) multiplicative can be proved directly.
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The groups like Arit(K), Quas(K) or Mult(K) are not the only groups of arith-
metical functions. In [14] infinite chains of subgroups of Arit(C) are constructed.

The solvability of the equation f (n) = g which was investigated in many papers,
cf. [8] and the papers quoted here, has an interesting grouptheoretic consequence
([6, §20]):

Corollary 13. The groups Arit(C), Arit+(R), Quas+(R) and Mult(K) with C ⊃
K ⊃ Q have no maximal proper subgroup.

Another consequence is the solvability of more general systems of compatible
equations ∏

j∈J

x
nij

j = gi, gi ∈ G, i ∈ I

where among the integers nij only finitely many are nonzero for every j (cf. [6,
§22]).

3. Davison convolution

The Dirichlet convolution has many possible generalizations. The following one
was introduced in [4]. Let K be a K-valued function defined on the set of the all
ordered couples (n, d) of positive integers n, d satisfying d|n. Let f, h ∈ Arit(K) be
two arithmetical functions. By (Davison) K-convolution f ⋆K g we shall mean
the operation

(f ⋆K g)(n) =
∑

d|n

K(n, d)f(d)g
(n

d

)
=

∑

d1d2=n

K(d1d2, d1)f(d1)g(d2).

The function K is called kernel (of the convolution).
As already mentioned the set of non-zero multiplicative functions f endowed

with Dirichlet’ s convolution ⋆D forms a commutative group (cf. [1, Chapt. 2] or
[12, Theorem 4.12]). To ensure a similar property with respect to the Davison
convolution ⋆K some properties should be imposed on the kernel function K (cf.
[4]):

(i) The Davison convolution ⋆K is associative if and only if we have

K(abc, bc)K(bc, c) = K(abc, c)K(ab, b) for every a, b, c ∈ N,

or equivalently,

K(n, d)K(d, e) = K(n, e)K

(
n

e
,
d

e

)
for every n, d, e ∈ N with d|n and e|d.
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(ii) The Davison convolution ⋆K is commutative if and only if for every couple of
elements a, b ∈ N there holds

K(ab, a) = K(ab, b) for every a, b ∈ N,

or equivalently,

K(n, d) = K
(
n,

n

d

)
for every n, d ∈ N with d|n.

The Davison convolution as operation does not possess the neutral element in
general.

(iii) The identity function δ1 defined by δ1(n) = δ1n, where δij is the Kronecker
delta, is the unit element with respect to ⋆K if and only if

K(n, n) = K(n, 1) = 1 for every n ∈ N.

The next important question is the keeping up of the multiplicativity of
arithmetical functions under the influence of the Davison convolution.

(iv) The Davison convolution f ⋆K g of two multiplicative functions f , g is a
multiplicative function if and only if

K(abcd, ac) = K(ab, a)K(cd, c) for every a, b, c, d ∈ N with (ab, cd) = 1.

The question about the existence of the inverse function f−1 to a given f ∈
Arit(K) with respect to the Davison convolution can be solved surprisingly quickly:

(v) the inverse function f−1 of f with respect to ⋆K exists if and only if f(1) 6= 0.

When this condition is fulfilled then f−1 can be defined recursively by

(j) If n = 1 then f−1(1) = 1
K(1,1)f(1) = 1

f(1) .

(jj) Let n > 1 and suppose that f−1(m) is already defined for the all m < n.
Then put

f−1(n) =
−1

K(n, n)f(1)

∑

bc=n
c 6=n

f(b)f−1(c)K(n, b)

=
−1

f(1)

∑

bc=n

c 6=n

f(b)f−1(c)K(n, b).

The first part of Lemma 2 can be now reproved using (v) in the following form:
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Lemma 14. The set of f ∈ Arit(K) for which f(1) 6= 0 forms a commutative
group with respect to a K-convolution satisfying conditions (i)–(iii).

Given a prime p ∈ P and a K–valued function K defined on the set of all
ordered couples (n, d) of positive integers n, d satisfying d|n, define DK,K,p as the
set of matrices of the type

(8)




aK(1, 1) bK(p, p) cK(p2, p2) dK(p3, p3) eK(p4, p4) · · ·
0 aK(p, 1) bK(p2, p) cK(p3, p2) dK(p4, p3) · · ·
0 0 aK(p2, 1) bK(p3, p) cK(p4, p2) · · ·
0 0 0 aK(p3, 1) bK(p4, p) · · ·
0 0 0 0 aK(p4, 1) · · ·
...

...
...

...
...

. . .




,

where a 6= 0 and a, b, c, d, e, . . . ∈ K. If we put a = 1 in elements of DK,K,p we get

a subset, say D1
K,K,p. As a generalization of Theorem 8 we get:

Theorem 15. Let ⋆K be a Davison convolutions satisfying properties (i)–(iv).
Then
(a) DK,K,p is a group with respect to the matrix multiplication,

(b) The group (Quas(K), ⋆K) is isomorphic to the subgroup of
∏̃

p∈PDK,K,p defined

by the condition that the diagonal value a is a common number in all components
(8) of an element of the direct product.

(c) The group (Mult(K), ⋆K) is isomorphic to the group
∏̃

p∈PD1
K,K,p.

Proof. Since a quasi multiplicative function f is uniquely determined by values
f(1) 6= 0, f(p), f(p2), . . . for every p ∈ P , instead of working with indices of entries
of matrices we can suppose without loss of generality that the elements of DK,K,p

are of the form

mK,K,(fp) =



f(1)K(1, 1) f(p)K(p, p) f(p2)K(p2, p2) f(p3)K(p3, p3) f(p4)K(p4, p4) · · ·
0 f(1)K(p, 1) f(p)K(p2, p) f(p2)K(p3, p2) f(p3)K(p4, p3) · · ·
0 0 f(1)K(p2, 1) f(p)K(p3, p) f(p2)K(p4, p2) · · ·
0 0 0 f(1)K(p3, 1) f(p)K(p4, p) · · ·
0 0 0 0 f(1)K(p4, 1) · · ·
...

...
... 0

...
. . .




where f ∈ Quas(K). Then the (i, j), j ≥ i, entry of the product mK,K,(gp)mK,K,(fp)
is
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j∑

k=i

g(pk−i)f(pj−k)K(pk−1, pk−i)K(pj−1, pj−k) =

j−i∑

k=0

g(pk)f(pj−i−k)K(pi+k−1, pk)K(pj−1, pj−i−k),

while its expected value is

(g ⋆K f)(pj−i)K(pj−1, pj−i) =

(
j−i∑

k=0

g(pk)f(pj−i−k)K(pj−i, pk)

)
K(pj−1, pj−i).

To prove that our multiplication is well defined we have to prove that

(9) K(pj−1, pj−i)K(pj−i, pk) = K(pj−1, pj−i−k)K(pi+k−1, pk).

There follows from (i) that

K(pa+b+c, pb+c)K(pb+c, pc) = K(pa+b+c, pc)K(pa+b, pb), a, b, c ∈ {0, 1, 2, . . .}.

Taking a = i − 1, b = k, and c = j − i − k we get

K(pj−1, pj−i)K(pj−i, pj−i−k) = K(pj−1, pj−i−k)K(pi−1+k, pk),

but (ii) implies K(pj−i, pj−i−k) = K(pj−i, pk) and (9) follows.

The existence of the identity element and the inverse one in DK,k,p follows now
from the fact that such elements exist in the set of quasi multiplicative functions.

There follows from the above lines that the mapping

f ∈ Quas(K) 7→
∏

p∈P

mK,K(fp)

is the desired isomorphism from (Quas(K), ⋆K) onto the subgroup of
∏̃

p∈PDK,K,p

defined by the condition that the diagonal value a is a common number in all
components of an element of the direct product, thereby proving statement (b).
The statement (c) follows in turn.

The definition of the quasi multiplicativness depends only on the ordinary
multiplication between positive integers and the elements of K, therefore the next
corollary might be surprising at the first sight:

Corollary 16. [(81, p.191)] Let ⋆L and ⋆K be two Davison convolutions satisfying
properties (i)–(iv). Then the couples groups (Quas(K), ⋆L) and (Quas(K), ⋆K), and
(Mult(K), ⋆K) and (Mult(K), ⋆L) are isomorphic.
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Proof. Using the above ideas an alternative proof (to that given in 81) can be
given as follows.

If f, g ∈ Quas(K) then the mapping

mK,K(fp) 7→ mK,L(fp)

is one–to–one and maps DK,K,p onto DK,L,p while

mK,K(fp ⋆K gp) 7→ mK,L(fp ⋆L gp).

This induces an isomorphism between the subgroups of
∏̃

p∈PDK,K,p and
∏̃

p∈P

DK,L,p defined by the condition that the diagonal value a is a common number in
all components of an element of the direct product.

The reformulation of the remaining results of previous section for Davison
convolutions due to the above isomorphism is left to the reader.

4. Concluding generalization

In the previous reasoning we used from the properties of positive integer
only the unique factorization property. Thus all previous results can be lifted to
arithmetical functions defined on the so called arithmetical semigroups.

Let G denote a free commutative semigroup relative to a multiplication opera-
tion denoted by juxtaposition, with identity element 1G and with at most countably
many generators. Such a semigroup will be called arithmetical semigroup if in
addition a real-valued norm | · | is defined on G such that

(1) |1G| = 1, |a| > 1 for all a ∈ G,

(2) |ab| = |a|.|b| for all a, n ∈ G,

(3) the total number

NG(x) =
∑

|a|≤x

a∈G

1

of elements a ∈ G of norm not exceeding x is finite for each real x.

The role of primes take over the generators of G.

More details on abstract approach to the theory of arithmetical functions via
the notion of arithmetical semigroup can be found in [9] or [10], where the interested
reader may also find many instances of arithmetical semigroups.
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