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Abstract. In this paper, we consider those integer-valued additive functions f; and f for
which the congruence fi(an+b)=f2(cn)+d (mod n) is satisfied for all positive integers 1 and for
some fixed integers a>1, b>1, ¢>1 and d. Our result improve some earlier results of K. Kovacs, 1.

Joo, 1. Jo6 & B. M. Phong and P. V. Chung concerning the above congruence.

1. Introduction

The problem concerning the characterization of some arithmetical functions
by congruence properties initiated by Subbarao [10] was studied later by several
authors. M. V. Subbarao proved that if an integer-valued multiplicative function
g(n) satisfies the congruence

g(n+m)=g(m)  (mod n)
for all positive integers n and m, then there is a non-negative integer o such that

g(n) =n"

holds for all positive integers n. Recently some authors generalized and improved
this result in a variety of ways. A. Ivanyi [3] obtained that the same result
holds when m is a fixed positive integer and g is an integer-valued completely
multiplicative function. For further results and generalizations of this problem we
refer to the works of B. M. Phong [7]-[8], B. M. Phong & J. Fehér [9], I. Joo [4] and
I. Jo6 & B. M. Phong [5]. For example, it follows from [8] that if an integer-valued
multiplicative function g(n) satisfies the congruence

g(An+B)=C (mod n)

for all positive integers n and for some fixed integers A > 1, B > 1 and C # 0 with
(A,B) = 1, then there are a non-negative integer o and a real-valued Dirichlet
character x4  (mod A) such that

[e3

g9(n) = xa(n)n
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holds for all positive integers n which are prime to A.

In the following let A and A* denote the set of all integer-valued additive and
completely additive functions, respectively. Let IN denote the set of all positive
integers. A similar problem concerning the characterization of a zero-function as
an integer-valued additive function satisfying a congruence property have been
studied by K. Kovacs [6], P. V. Chung [1]-[2], I. Jo6 [4] and 1. Jo6 & B. M. Phong
[5]. It was proved by K. Kovacs [6] that if f € A* satisfies the congruence

f(An+B)=C (mod n)
for some integers A > 1, B > 1, C and for all n € IN, then
f(n)=0

holds for all n € IN which are prime to A. This result was extended in [1], [2], [4]
and [5] for integer-valued additive functions f. It follows from the results of [2] and
[4] that for integers A > 1, B > 1, C and functions f; € A, fa € A* the congruence

fi(An+ B) = fao(n) + C (mod n) (Vn € IN)

implies that fo(n) = 0 for all n € IN and f1(n) = 0 for all n € IN which are prime
to A.

Our purpose in this paper is to improve the above results by showing the
following

Theorem 1. Assume that a > 1,b > 1, ¢ > 1 and d are fixed integers and the
functions f1, fo are additive. Then the congruence

(1) filan+b) = fo(cn) +d (mod n)
is satisfied for all n € IN if and only if the equation
(2) filan+0b) = fa(en) +d

holds for all n € IN.

Theorem 2. Assume that a > 1, b > 1, ¢ > 1 and d are fixed integers. Let
@ =gty b= gy and

L 1 if 2|a1b1
H=V2 if 2 faib.

If the additive functions f1 and fo satisfy the equation (2) for allm € IN, then

filn)=0 forall nelN, (n,uab;) =1
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and
fa(n) =0 forall ne€lIN, (n,uchy) =1.

2. Lemmas

Lemma 1. Assume that f* € A* satisfies the congruence
ff(An+B)= f*(n)+ D (mod n)

for some fixed integers A > 1, B > 1 and D. Then f*(n) = 0 holds for alln € IN.

Proof. Lemma 1 follows from Theorem 2 of [4].

Lemma 2. Assume that f € A satisfies the congruence
f(An+ B)=D (mod n)

for some fixed integers A > 1, B > 1 and D. Then f(n) = 0 holds for all n € IN
which are prime to A.

Proof. This is the result of [1].

Lemma 3. Assume that f1, f € A satisfy the congruence

(3) fi(An+1) = f(Cn)+ D (mod n)

holds for all n € IN with some integers A > 1, C' > 1 and D. Then
f(n) = f[(n,6C%)] for all nec IN

and f1(m) = 0 holds for all m € IN, which are prime to 6 AC. Here (z,y) denotes
the greatest common divisor of the integers x and y.

Proof. In the following we shall denote by n* the product of all distinct prime
divisors of positive integer n.
For each positive integer M let P = P(M) be a positive integer for which

(4) (M?* —1)*|ACP.
It is obvious from (4) that
(ACM(M +1)Pn+1,AC(M +1)Pn+1) =1,

(C*(M +1)*Pn, ACMPn+1) =1
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and
(ACM(M +1)Pn+1) (AC(M + 1)Pn+ 1) = AC(M + 1)>Pn[ACM Pn + 1] + 1

hold for all n € IN. Using these relations and appealing to the additive nature of
the functions f; and f, we can deduce from (3) that

(5) f(ACMPn+1)

=—f(C*(M +1)*Pn) + f (C°M(M +1)Pn) + f (C*(M +1)Pn) + D (mod n)

is satisfied for all n, M € IN, where P = P(M) satisfies the condition (4).
Let M =2, P(2) =3 and M = 3, P(3) = 2. In these cases (4) is true and so
it follows from (5) that

(6) f(6ACN +1) = —f(27C?n) + f(18C%n) + f(9C?n) + D (mod n)
and
(7)  f(6ACn +1) = —f(320%n) + f(24C?n) + f(8C?*n) + D (mod n)
are satisfied for all n € IN. Let N and n be positive integers with the condition
(8) (N(N+1),6ACn+1)=1.
By using the relation

(6ACn +1)(62A*C*Nn? +1) = 6ACn [6ACNn(6ACn +1) +1] + 1
and that

(6ACn +1,6°A°C?Nn? +1) = (6ACn+1,N +1) =1,

(6ACNn,6ACn+1)=(6ACn+1,N)=1,
it follows from (6) and (7) that

(9) —f(162AC°Nn?) + f (108AC°Nn?) + f (54AC°Nn?) = — f (27C*Nn)
+f (18C°Nn) + f (9C*Nn) — f (27C*n) + f (18C*n) + £ (9C?n) + D (mod n)
and

(10)  —f(192AC3Nn?) + f (144AC3Nn?) + f (48AC3Nn?) = — f (32C*Nn)

+f (24C*Nn) + f (8C*Nn) — f (32C?n) + f (24C%n) + f (8C?n) + D (mod n)
hold for all n, N € IN satistying (8).
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Let @ be a fixed positive integer. First we apply (9) when N = 1, n = @Qm,
(m,Q) =1 and m — oco. It is obvious that (8) holds, and so by (9) we have

(11) f(@%) =2f(Q) for Q€ IN,(Q,6AC)=1.

Now let N = Q and n = QF(6CQm + 1) with k, m € IN. It is obvious that (8)
holds for infinity many integers m, because (36ACQQk"’1, 6ACQF + 1) = 1. These
with (9) show that

(12)  F(Q*) = f(Q%) + f(QF") forall Q€ IN,(Q,6AC)=1.

From (11) and (12) we obtain that

(13) f(Q¥) =kf(Q) forall Q€ IN,(Q,6AC)=1.

Thus, by using the additivity of f it follows from (8) and (13) that (9) and (10)
hold for all N, n € IN, and they with n = @m, (m,6ACNQ) = 1, m — oo imply
that

—f (162AC°NQ?) + f (108ACNQ?) + f (54ACPNQ?) = — f (27C°NQ)

+f (18C*NQ) + f (9C°NQ) — f (27C%Q) + f (18C°Q) + f (9C°Q) D

and
—f (192AC°NQ?) + f (144AC°NQ?) + f (48ACPNQ?) = — f (32C°NQ)

+£(24C°NQ) + f (8C*NQ) — £ (32C%Q) + f (24C*Q) + f (8C*Q) + D
hold for all N, @ € IN. Consequently
(14)
—f (27C°NQ) + f (18C°NQ) + f (9C*NQ) — f (27C*Q) + f (18C°Q) + f (9C*Q)
—f (27C*NQ?) + f (18C°NQ?) + f (9C*NQ?) — f (27C?) + f (18C?) + f (9C?)
and
(15)
—f (32C°NQ) + f (24C°NQ) + f (8C*NQ) — f (32C*Q) + f (24C°Q) + f (8C*Q)
= —f (32C°NQ?) + f (24C°NQ?) + f (8C*NQ?) — f (32C?) + f (24C?) + f (8C?)
are satisfied for all N, @Q € IN.

For each prime p let e = e(p) be a non-negative integer for which p¢ || C2.
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First we consider the case when (p,6) = 1. By applying (14) with @ = p,
N =p' (1> 0), we have

F (pl+e<p>+z> iy (pz+e<p>+1> _f (pe<p>+1) _ ¥ (pe<p>) for all >0,

which shows that for all integers 5 > e(p)
(16) FE) =) =1 (p€<p>+1) _ ¥ (pe<p>) '

Now we consider the case p = 2. Applying (14) with Q = 2 and n = 2!, (I > 0) one
can check as above that

(17) FEIY —f (@) = (26(2)+2) _ (26(2)+1) _

Finally, we consider the case p = 3. Applying (15) with Q@ =3 and N = 3!, 1 >0
we also get

(18) FBEPYNY (3% =r (36(3)+2) _ (3e(3)+1> '

Now we write
f(n) = £*(n) + F(n),
where f* is a completely additive function defined as follows:
f (pe(P)-H) _ f (pe(P)) for (p, 6) =1
(19) fip) == .
f (pG(P)"’Q) _ f (p@(P)+1) for p= 2 or p= 3

Then, from (16)-(19) it follows that

F(p*) =F[(»*,6C%)] for (k=0,1,...).
Thus, we have proved that
(20) F(n) = F [(n,60?)]

is satisfied for all n € IN.

We shall prove that f*(n) = 0 for all n € IN and f1(m) = 0 for all m € IN
which are prime to 6AC.

We note that, by considering n = 2m and taking into account (6), we have

f(12ACM + 1) = — f(54C*m) + £(36C*m) + f(18C*m) + D (mod m)



On additive functions satisfying congruence properties 129

Since f = f* + F, from the last relation and (20) we get
fF(12ACm + 1) = f*(m) + [f*(12C?) + F(6C?) + D] (mod m),

which with Lemma 1 shows that f*(n) =0 for all n € IN. This shows that f = F,
ie.

f(n) = fl(n,6C?)]

holds for all n € IN. Now, by applying (3) with n = 6C'm and using the last relation
and Lemma 2, we have that fi(n) = 0 holds for all n € IN which are prime to
6AC.

The proof of Lemma 3 is completed.

3. Proof of Theorem 1

It is obvious that (1) follows from (2). We shall prove that if (1) is true, then
(2) holds.

Assume that the functions f; and fo € A satisfy the congruence (1) for some
integers a > 1,b> 1, ¢ > 1 and d. It is obvious that (1) implies the fulfilment of

filabn 4+ 1) = fo(b*cn) +d — fi(b) (mod n)

for all n € IN. By Lemma 3,

(21) f2(n) = fal(n,6b%?)] forall neIN
and
(22) fi(n) =0

for all n € IN which are prime to 6abc.
We shall prove that

(23) fl (an + b) = f2 (C’fl) + d

is true for all n € IN.
Let K be a positive integer. By (21) and (22), we have

fi(6ab'ct +1) =0,

fal6b*c?(aK + b)t + cK] = fa(cK)
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hold for all positive integers ¢, consequently

f1(aK +b) — f2(cK) —d = fi(aK +b) + fi(6ab ct + 1) — fo(cK) —d
= fila(6b*c(aK + b)t + K) + b] — fo2[6b*c*(a KK + b)t + cK] — d
holds for every positive integer . Thus, by applying (1) with n = 6b*c(aK +b)t+ K,

the last relation proves that (23) holds for n = K.
This completes the proof of Theorem 1.

4. Proof of Theorem 2

As we have shown in the proof of Theorem 1, if the functions fi, fo € A
satisfy (2), then (21) and (22) imply

(24) film) =0 forall m € IN, (m,6abc) =1
and
(25) fo(n) =0 forall nelIN, (m,6bc)=1.

Let D = (a,b), a1 = 5, by = %. It is clear that for each positive integer
M, (M,a1) = 1 there are mg,ng € IN such that

(26) Mmgy = aing + by, (mo, al) =1 and (M, TLQ) = (M, bl)

Let

(27)

. o b
w(M) = { 1, if 2| almwlbl),

. M b
2, if2 /Ya,l—(M) ) (M71b1)'

3

By applying the Chinese Remainder Theorem and using (26)—(27), we can choose a
positive integer t; such that mi = a1ty +mg, n1 = Mty +ng satisfy the following
conditions:
Mmy =aini +b1
ni

is an integer,

and
ni

(. 6abe) = oyt O0e) = 1.

Hence, we infer from (2) and (24)-(25) that

fi(DM) = fi(DMm;) = fi(any +b) = fa(eni) +d = fo [cu(M)(M, by)] +d,
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consequently

(28) frIDM] = fo [cu(M)(M, by)] +d

hold for all M € IN, (M, a1) = 1. This implies that

(29) fi(n)=0 forall neIN, (n, paby) =1,

where p € {1, 2} such that 2| paib;.
Now we prove that

(30) fo(n)=0 forall nelN, (n, uch)=1.

For each positive integer n, let M(n) := ain + by and U(n) := u(ain + by).
Since (M (n), b1) = (n, by) and

a M(n) by —a b1
! ~n, by)

{( z )+1] (mod 2),

n, b1

we have
: b n
1, i 2]ty [(n7_b1)+1],

U(n) :=
: b n
2, 2 Jarpl [<n,—b1> +1]

Hence, (2) and (28) show that
falen) = frlan +b) —d = fL [DM(n)] — d = f2 [cU(n)(n, b1)]

is satisfied for all n € IN, which implies (29). Thus, (29) is proved.
By (29) and (30), the proof of Theorem 2 is completed.
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