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Abstract. In this paper we determine necessary and sufficient conditions for the sequence
(Gn41/Gn)2 o to become a reciprocal invariant distributed sequence modulo 1, where G,, is the

N-th term of a non-degenerate second order linear recurrence of real numbers.

1. Introduction

Let G = G(A,B,Go,G1) = (G,)22, be a second order linear recursive
sequence of real numbers defined by the recursion

(1) Gp=AGp_1+BGpy (n>1),

where A, B and the initial terms G, G are fixed real numbers with restrictions
AB #0,D = A2 +4B # 0 and G + G3 > 0. It is well-known that the terms of G

can be written in the form
(2) Gn =aa" — bﬂna

where « and 3 are the roots of the characteristic polynomial 22 — Az — B of the
sequence G and a = Gla__%"ﬂ,b = Gla__Gﬁoo‘ (see e.g. I. Niven and H. S. Zuckerman
[9], p. 91).

Troughout this paper we assume |a| > |5| and the sequence is non-degenerate,
i.e. a/B is not a root of unity and ab # 0. If G,,, = 0 we may also suppose that
Gr # 0 for n # ng, since P. Kiss [2]| proved that a non-degenerate sequence G has
at most one zero term.

Distribution properties of the Fibonacci sequence G = G(1,1,0,1) and more
general integer valued and real valued recurrences were studied by several authors.
Here we only mention the papers [4], [3], [5] and [7], connected with our topic.

The object of this paper is to determine necessary and sufficient conditions for

the sequence (Gp41/Gn)22, to become a reciprocal invariant distributed sequence

modulo 1. (The definition of reciprocal invariant will be given later.)
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The sequence w = (x,)22; is said to have asymptotic distribution function
modulo 1 (a.d.f. mod 1) F' if

N —o0

N
1
lim Nng:lx(a:,a:n):F(x) for 0<x<1,

where the function x is defined by

1, 0 <Ay} <z,

and {y} denotes the fractional part of the real number y.
In [8] the following definition was introduced.

Definition. Let w = (2,)22; and & = (f(z,))2; be sequences of real numbers,
where f is a real-valued function. If the sequences w and £ have a.d.f. mod 1 and
these functions are identical, then we say w is f invariant distributed sequence
modulo 1. (i.d. mod 1 to f.)

In special cases:
(i) if w is i.d. mod 1 to f(z) = %, we say w is reciprocal invariant distributed
sequence mod 1,
(i) if wisid. mod 1 to f(z) = +/z we say w is a square root invariant distributed
sequence mod 1.
P. Kiss and R. F. Tichy in [4] investigated the asymptotic distribution function
modulo 1 of the sequence (Gp41/Gn)5e; when D < 0. Their theorem can be
extended to any sequence (Gn1r/Gr)5e,, where k is a nonzero integer. We prove:

Theorem 1. Let G = (Gp,)5%, be a linear recurring sequence defined by G,, =
AG,_1+ BGp—2, (n > 1) with nonzero real coefficients A and B, real initial
values Go,G1 (not both Gy and Gy are zero) and with negative discriminant

D = A% + 4B. Let k # 0 be an integer. If the number © = %arctan VZD is

irrational, then the asymptotic distribution function modulo 1 H of the sequence
(Gntk/Gn)Sy is given by

(3) H(zx) = Hy (z — {c}) + H1 ({¢})
with
B 1 sin(27z)
(4) Hy(z) =z + - arctan exp(27|d|) — cos(2mx)’

c=r1r"cos(kr©), d= —rFsin(knO) andr = |a| = ““7 “32’”43‘.
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Theorem 2. Let G = (G),)5% be a non-degenerate second order linear recursive
sequence defined by G,, = AG,,_1 + BG,_o (n > 1) with nonzero real coefficients
A and B, real initial values Go, Gy (where G3 + G3 # 0) and negative discriminant
D = A% +4B. The sequence w = (Gp,+1/Gp)5<, is reciprocal invariant distributed
modulo 1 if and only if B = —1.

Theorem 3. Let G = (G,)2%, be a non-degenerate second order linear recursive
sequence defined by the recursion G, = AG,,—1 + BG,,_2 (n > 1) with nonzero
integer coefficients A and B, integer initial values Go, Gy (where G3 + G3 # 0)
and with positive discriminant D = A% + 4B. The sequence w = (Gp41/Gr)2%, is
reciprocal invariant distributed modulo 1 if and only if B = 1.

2. Proofs

Proof of Theorem 1. Let G be a second order linear recursive sequence satisfying
the conditions of Theorem 1. We know from [2] that the zero multiplicity of G is at
most one and one element is not relevant for the asymptotic distribution function
therefore without loss of generality we may assume that G,, # 0 for n > 0. In (2)
a, 3 and a,b are complex conjugate numbers since D = A% 4+ 4B < 0 and we can
write

(5) a = rexp(inO), B =rexp(—in®)
and
(6) a =11 exp(inw), b =r1exp(—inw),

where exp(x) denotes the usual exponential function and

v—D 1 AGy — 2G4

<1, w=—arctan————,

A ™ Gom

while r» and r; are positive real numbers, a # 0 and b # 0. Since G is a non-
degenerate sequence we have © is an irrational number.

By (2), (5) and (6) we obtain for all n > max{0, —k} = ng that

1
0 < ©® = — arctan
™

Gnir  mir"Fexp(in(w + (n + k)O)) + rir"* exp(—ir(w + (n + k)O))

Gn rir™ exp(im(w + nO)) + r1r™ exp(—im(w + nO))

Lk cos(m(w + (n+ k)O))

cos(m(w +n®O)) = r#(cos(mk®) — sin(7kO) - tan(m(w + nO)))

= ¢+ dtan(n(w 4+ nO)),
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where ¢ = r¥ cos(kn0),d = —r¥sin(kw©) are nonzero real numbers independent
on n. Note that the proof of the inequality

n=ngo

1 N+ng—1 G 1
N > X (w gf’“) —/x(x,c+dtan(7r(y+w))dy
" 0

[Tk sin(km©)|\/An + 6AN,

where Ay = An(0n) denotes the discrepancy of the sequence (On)5° ; which is
analogous to described in [4] by P. Kiss and R. F. Tichy. Since we only need a.d.f.
mod 1, we omit the proof.

In the following we compute the integral

1/2

(7) H(x):/o x(x,c+ dtan(n(y + w))dy = /X(x,c+dtan(7r(y+w))dy
~1/2

in the case ¢ = 0. By the substitution u = dtan(wy) we get

_ld
®) (@) /6124—u2

We use the Fourier series expansion of the characteristic function

1 = sin(2 1 = 1—cos(2
x(z,u) =x+ — sin2rmz) cos(2mmu) + — Z 1 = cos(2mma) sin(2wmu)
& m=1 m m=1 m
and the integral formulae
T cos(2mmu) T sin(2mmu)
/ Wdu |d| eXp( 27Tm|d|), / Wdu =0 (see e.g. [1])

By swapping summation and integration and applying Lebesgue’s theorem on
dominated convergence we have

oo

1 < sin(2mma) 1 w™
H = = E i Skl —9 = e E -
1(x)=a+ - — exp(—2mm|d|) = x + -3 < ) ,

m=1
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where w = exp(2m(—|d| 4 ix)). Since —|d| < 0, we have |w| < 1 and R(1 —w) > 0,
o > 2 =—log(l—w). Since

(1 — w) = exp(—27]|d|) sin(27z) and R(1 — w) = 1 — exp(—27|d|) cos(2mx)
it follows that

exp(—27|d|) sin(27x)
1 — exp(—2m]d|) cos(2mx)

1
Hi(x)=a+ — arcta

sin(2mx)
exp(27|d|) — cos(27z)’

Since Hy(—xz) = —Hy(z), H(z) = Hi(x — ¢) — Hi(—c) = Hi(xz — ¢) + Hi(c), the
proof of the theorem is complete.

1
=T+ — arctan

Proof of Theorem 2. Let G be a second order linear recursive sequence satisfying
the conditions of Theorem 2. By [4] the a.d.f. mod 1 of the sequence (Gp11/Gp)S%
is F(z) = Fi(x —{A4/2}) + F1({A/2}), where

sin(2mx)

1
Fy(xz) = z + — arctan .
exp(mv—D) — cos(2mx)

One can check that w = (G /Grt1),g = (Gn-1/Gn),—; =& Thea. d. f. mod
1 w and & are identical which is easy to derive by Theoem 1. Indeed, if K = —1 and

c=r"1tcos(—mO) = 7“0?(2”9) =—standd = —r!sin(—70) = mh;(f@) =L
then
—A —A
H(z) = H, <x — {ﬁ}) + H; <{ﬁ}> )

where

1 sin (2

Hy(z) = z + — arctan sin(2mz) .
T exp (’” ) — cos(2nmx)

We have to decide some necessary and sufficient conditions for the equality
(9) Fx)=H(z) 0<z<1.

A straightforward calculation shows that the derivate of F(x) and H(z) is given
by

E; cos (27 (z —
E? — 2F cos (27 (x

{z})
—{

~—

})

(10) Flz)=1+2

SIES
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and

L Escos (2m (z— {52 }))
(11) H(x)_1+2E§_2E2COS(27T( 2]3{2§})) 1’
where

-D
E, =exp(mrv—D) and FE;=exp <7T B ) .

This yields that the graph of F(x) is steepest at {A/2} and the graph of H(x) is
steepest at { 74 | . By (9) we get 29 = {A/2} = {54} and thus

r=rir s ({2) -5 (2)
o ({52]) - (2])
CEIRCE

exp(mv—D) = exp (

and

[\

implies

)

and B=—1.1If B= —1then F(z) = H(z) (0 <z <1)is trivially true. Therefore
B = —1 is a necessary and sufficient condltlon for (Gn4+1/Gn)22 to be reciprocal
invariant distributed mod 1.

Proof of Theorem 3. Suppose |a| > |3|, where o and 8 are the roots of the
characteristic polynomial of G. By the conditions of Theorem 3, D > 0, therefore
|| > |8]. From af = —B € Z and B # 0 it follows that |a| > 1. Then
(Gr1/Gn)2y and (G, /Grt1)22, is convergent (c.f. [7]).

Indeed,

n+1l n+1 _ n+1
lim GGn+1 = lim @ b6 lim al (b/a)(5/c) =

n—-00 n n—-s00 W - n—oo 1- (b/a)(ﬂ/a)"

and

n
lim = —.
n——--oo Gn+1 «

The sequence (Gpt1/Gn)S% can only be reciprocal invariant distributed mod 1 if
=1 (mod1).
[0}
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If « > 1 then 0 < % < 1, therefore there is a positive integer ¢, for which
a—c= % By multiplying the equality by «, we have

(12) o> —ca—1=0.

If « < —1 then —1 < é < 0, therefore

(13) a?+(c—1Da—-1=0.

So there exists an integer A, such that « is a root of the equation
(14) 22— Ar —1=0.

The constants in (1), by the condition of Theorem 3, are integers and at the same
time (14) is the characteristic equation of the sequence G, so therefore the condition
B =1 is necessary.

An easy calculation shows that if |« > 1 and B = 1 then the sequence
(Gnt1/Gn)S2 and (G, /Gri1)52, are such ones that their limit points are greater
and smaller, alternately. Then there exists and a.d.f. mod 1 for both sequences,
which is the function

0, if0<z<{a},
F(z) =41, ifz={a},
1, iffa}<z<l.

The proof is complete.
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