RECIPROCAL INVARIANT DISTRIBUTED SEQUENCES CONSTRUCTED BY SECOND ORDER LINEAR RECURRENCES

Sándor H.-Molnár (Budapest, Hungary)

Dedicated to the memory of Professor Péter Kiss

Abstract. In this paper we determine necessary and sufficient conditions for the sequence $(G_{n+1}/G_n)_{n=0}^{\infty}$ to become a reciprocal invariant distributed sequence modulo 1, where G_n is the n-th term of a non-degenerate second order linear recurrence of real numbers.

1. Introduction

Let $G = G(A, B, G_0, G_1) = (G_n)_{n=0}^{\infty}$ be a second order linear recursive sequence of real numbers defined by the recursion

(1)
$$G_n = AG_{n-1} + BG_{n-2} \qquad (n > 1),$$

where A, B and the initial terms G_0, G_1 are fixed real numbers with restrictions $AB \neq 0$, $D = A^2 + 4B \neq 0$ and $G_0^2 + G_1^2 > 0$. It is well-known that the terms of G can be written in the form

$$(2) G_n = a\alpha^n - b\beta^n,$$

where α and β are the roots of the characteristic polynomial $x^2 - Ax - B$ of the sequence G and $a = \frac{G_1 - G_0 \beta}{\alpha - \beta}$, $b = \frac{G_1 - G_0 \alpha}{\alpha - \beta}$ (see e.g. I. Niven and H. S. Zuckerman [9], p. 91).

Troughout this paper we assume $|\alpha| \ge |\beta|$ and the sequence is non-degenerate, i.e. α/β is not a root of unity and $ab \ne 0$. If $G_{n_0} = 0$ we may also suppose that $G_n \ne 0$ for $n \ne n_0$, since P. Kiss [2] proved that a non-degenerate sequence G has at most one zero term.

Distribution properties of the Fibonacci sequence G = G(1, 1, 0, 1) and more general integer valued and real valued recurrences were studied by several authors. Here we only mention the papers [4], [3], [5] and [7], connected with our topic.

The object of this paper is to determine necessary and sufficient conditions for the sequence $(G_{n+1}/G_n)_{n=0}^{\infty}$ to become a reciprocal invariant distributed sequence modulo 1. (The definition of reciprocal invariant will be given later.)

The sequence $\omega = (x_n)_{n=1}^{\infty}$ is said to have asymptotic distribution function modulo 1 (a.d.f. mod 1) F if

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \chi(x, x_n) = F(x) \quad \text{for} \quad 0 \le x \le 1,$$

where the function χ is defined by

$$\chi(x,y) = \begin{cases} 1, & \text{if } 0 \le \{y\} < x, \\ 0, & \text{if } x \le \{y\} \end{cases}$$

and $\{y\}$ denotes the fractional part of the real number y.

In [8] the following definition was introduced.

Definition. Let $\omega = (x_n)_{n=1}^{\infty}$ and $\xi = (f(x_n))_{n=1}^{\infty}$ be sequences of real numbers, where f is a real-valued function. If the sequences ω and ξ have a.d.f. mod 1 and these functions are identical, then we say ω is f invariant distributed sequence modulo 1. (i.d. mod 1 to f.)

In special cases:

- (i) if ω is i.d. mod 1 to $f(x) = \frac{1}{x}$, we say ω is reciprocal invariant distributed sequence mod 1,
- (ii) if ω is i.d. mod 1 to $f(x) = \sqrt{x}$ we say ω is a square root invariant distributed sequence mod 1.
- P. Kiss and R. F. Tichy in [4] investigated the asymptotic distribution function modulo 1 of the sequence $(G_{n+1}/G_n)_{n=1}^{\infty}$ when D < 0. Their theorem can be extended to any sequence $(G_{n+k}/G_n)_{n=1}^{\infty}$, where k is a nonzero integer. We prove:

Theorem 1. Let $G = (G_n)_{n=0}^{\infty}$ be a linear recurring sequence defined by $G_n = AG_{n-1} + BG_{n-2}$, (n > 1) with nonzero real coefficients A and B, real initial values G_0, G_1 (not both G_0 and G_1 are zero) and with negative discriminant $D = A^2 + 4B$. Let $k \neq 0$ be an integer. If the number $\Theta = \frac{1}{\pi} \arctan \frac{\sqrt{-D}}{A}$ is irrational, then the asymptotic distribution function modulo 1 H of the sequence $(G_{n+k}/G_n)_{n=1}^{\infty}$ is given by

(3)
$$H(x) = H_1(x - \{c\}) + H_1(\{c\})$$

with

(4)
$$H_1(x) = x + \frac{1}{\pi} \arctan \frac{\sin(2\pi x)}{\exp(2\pi|d|) - \cos(2\pi x)},$$

$$c = r^k \cos(k\pi\Theta), \quad d = -r^k \sin(k\pi\Theta) \text{ and } r = |\alpha| = \left| \frac{A + \sqrt{A^2 + 4B}}{2} \right|.$$

Theorem 2. Let $G = (G_n)_{n=0}^{\infty}$ be a non-degenerate second order linear recursive sequence defined by $G_n = AG_{n-1} + BG_{n-2}$ (n > 1) with nonzero real coefficients A and B, real initial values G_0, G_1 (where $G_0^2 + G_1^2 \neq 0$) and negative discriminant $D = A^2 + 4B$. The sequence $\omega = (G_{n+1}/G_n)_{n=1}^{\infty}$ is reciprocal invariant distributed modulo 1 if and only if B = -1.

Theorem 3. Let $G = (G_n)_{n=0}^{\infty}$ be a non-degenerate second order linear recursive sequence defined by the recursion $G_n = AG_{n-1} + BG_{n-2}$ (n > 1) with nonzero integer coefficients A and B, integer initial values G_0, G_1 (where $G_0^2 + G_1^2 \neq 0$) and with positive discriminant $D = A^2 + 4B$. The sequence $\omega = (G_{n+1}/G_n)_{n=1}^{\infty}$ is reciprocal invariant distributed modulo 1 if and only if B = 1.

2. Proofs

Proof of Theorem 1. Let G be a second order linear recursive sequence satisfying the conditions of Theorem 1. We know from [2] that the zero multiplicity of G is at most one and one element is not relevant for the asymptotic distribution function therefore without loss of generality we may assume that $G_n \neq 0$ for $n \geq 0$. In (2) α, β and a, b are complex conjugate numbers since $D = A^2 + 4B < 0$ and we can write

(5)
$$\alpha = r \exp(i\pi\Theta), \qquad \beta = r \exp(-i\pi\Theta)$$

and

(6)
$$a = r_1 \exp(i\pi\omega), \qquad b = r_1 \exp(-i\pi\omega),$$

where $\exp(x)$ denotes the usual exponential function and

$$0 < \Theta = \frac{1}{\pi} \arctan \frac{\sqrt{-D}}{A} < 1, \quad \omega = \frac{1}{\pi} \arctan \frac{AG_0 - 2G_1}{G_0 \sqrt{-D}},$$

while r and r_1 are positive real numbers, $a \neq 0$ and $b \neq 0$. Since G is a non-degenerate sequence we have Θ is an irrational number.

By (2), (5) and (6) we obtain for all $n \ge \max\{0, -k\} = n_0$ that

$$\frac{G_{n+k}}{G_n} = \frac{r_1 r^{n+k} \exp(i\pi(\omega + (n+k)\Theta)) + r_1 r^{n+k} \exp(-i\pi(\omega + (n+k)\Theta))}{r_1 r^n \exp(i\pi(\omega + n\Theta)) + r_1 r^n \exp(-i\pi(\omega + n\Theta))}$$

$$= r^k \frac{\cos(\pi(\omega + (n+k)\Theta))}{\cos(\pi(\omega + n\Theta))} = r^k (\cos(\pi k\Theta) - \sin(\pi k\Theta) \cdot \tan(\pi(\omega + n\Theta)))$$
$$= c + d \tan(\pi(\omega + n\Theta)),$$

where $c = r^k \cos(k\pi\Theta)$, $d = -r^k \sin(k\pi\Theta)$ are nonzero real numbers independent on n. Note that the proof of the inequality

$$\left| \frac{1}{N} \sum_{n=n_0}^{N+n_0-1} \chi\left(x, \frac{G_{n+k}}{G_n}\right) - \int_0^1 \chi(x, c + d\tan(\pi(y + \omega))dy \right|$$

$$\leq 4\sqrt{|r^k \sin(k\pi\Theta)|} \sqrt{\Delta_N} + 6\Delta_N,$$

where $\Delta_N = \Delta_N(\Theta n)$ denotes the discrepancy of the sequence $(\Theta n)_{n=1}^{\infty}$ which is analogous to described in [4] by P. Kiss and R. F. Tichy. Since we only need a.d.f. mod 1, we omit the proof.

In the following we compute the integral

(7)
$$H(x) = \int_0^1 \chi(x, c + d \tan(\pi(y + \omega)) dy = \int_{-1/2}^{1/2} \chi(x, c + d \tan(\pi(y + \omega)) dy$$

in the case c = 0. By the substitution $u = d \tan(\pi y)$ we get

(8)
$$H_1(x) = \frac{|d|}{\pi} \int_{-\infty}^{\infty} \frac{\chi(x,u)}{d^2 + u^2} du.$$

We use the Fourier series expansion of the characteristic function

$$\chi(x,u) = x + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin(2\pi mx)}{m} \cos(2\pi mu) + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{1 - \cos(2\pi mx)}{m} \sin(2\pi mu)$$

and the integral formulae

$$\int_{-\infty}^{\infty} \frac{\cos(2\pi mu)}{d^2 + u^2} du = \frac{\pi}{|d|} \exp(-2\pi m|d|), \int_{-\infty}^{\infty} \frac{\sin(2\pi mu)}{d^2 + u^2} du = 0 \quad \text{(see e.g. [1])}.$$

By swapping summation and integration and applying Lebesgue's theorem on dominated convergence we have

$$H_1(x) = x + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin(2\pi mx)}{m} \exp(-2\pi m|d|) = x + \frac{1}{\pi} \Im\left(\sum_{m=1}^{\infty} \frac{w^m}{m}\right),$$

where $w = \exp(2\pi(-|d|+ix))$. Since -|d| < 0, we have |w| < 1 and $\Re(1-w) > 0$, so $\sum_{m=1}^{\infty} \frac{w^m}{m} = -\log(1-w)$. Since

$$\Im(1-w) = \exp(-2\pi|d|)\sin(2\pi x)$$
 and $\Re(1-w) = 1 - \exp(-2\pi|d|)\cos(2\pi x)$

it follows that

$$H_1(x) = x + \frac{1}{\pi} \arctan \frac{\exp(-2\pi|d|) \sin(2\pi x)}{1 - \exp(-2\pi|d|) \cos(2\pi x)}$$
$$= x + \frac{1}{\pi} \arctan \frac{\sin(2\pi x)}{\exp(2\pi|d|) - \cos(2\pi x)}.$$

Since $H_1(-x) = -H_1(x)$, $H(x) = H_1(x-c) - H_1(-c) = H_1(x-c) + H_1(c)$, the proof of the theorem is complete.

Proof of Theorem 2. Let G be a second order linear recursive sequence satisfying the conditions of Theorem 2. By [4] the a.d.f. mod 1 of the sequence $(G_{n+1}/G_n)_{n=1}^{\infty}$ is $F(x) = F_1(x - \{A/2\}) + F_1(\{A/2\})$, where

$$F_1(x) = x + \frac{1}{\pi} \arctan \frac{\sin(2\pi x)}{\exp(\pi\sqrt{-D}) - \cos(2\pi x)}.$$

One can check that $\omega = (G_n/G_{n+1})_{n=0}^{\infty} = (G_{n-1}/G_n)_{n=1}^{\infty} = \xi$. The a. d. f. mod 1 ω and ξ are identical which is easy to derive by Theoem 1. Indeed, if k = -1 and $c = r^{-1}\cos(-\pi\Theta) = \frac{r\cos(\pi\Theta)}{r^2} = -\frac{A}{2B}$ and $d = -r^{-1}\sin(-\pi\Theta) = \frac{r\sin(\pi\Theta)}{r^2} = -\frac{\sqrt{-D}}{2B}$ then

$$H(x) = H_1\left(x - \left\{\frac{-A}{2B}\right\}\right) + H_1\left(\left\{\frac{-A}{2B}\right\}\right),$$

where

$$H_1(x) = x + \frac{1}{\pi} \arctan \frac{\sin(2\pi x)}{\exp\left(\frac{\pi\sqrt{-D}}{-B}\right) - \cos(2\pi x)}.$$

We have to decide some necessary and sufficient conditions for the equality

(9)
$$F(x) = H(x) \quad 0 \le x \le 1.$$

A straightforward calculation shows that the derivate of F(x) and H(x) is given by

(10)
$$F'(x) = 1 + 2 \frac{E_1 \cos\left(2\pi \left(x - \left\{\frac{A}{2}\right\}\right)\right) - 1}{E_1^2 - 2E_1 \cos\left(2\pi \left(x - \left\{\frac{A}{2}\right\}\right)\right) + 1}$$

and

(11)
$$H'(x) = 1 + 2 \frac{E_2 \cos\left(2\pi \left(x - \left\{\frac{-A}{2B}\right\}\right)\right) - 1}{E_2^2 - 2E_2 \cos\left(2\pi \left(x - \left\{\frac{-A}{2B}\right\}\right)\right) + 1},$$

where

$$E_1 = \exp(\pi \sqrt{-D})$$
 and $E_2 = \exp\left(\frac{\pi \sqrt{-D}}{B}\right)$.

This yields that the graph of F(x) is steepest at $\{A/2\}$ and the graph of H(x) is steepest at $\{\frac{-A}{2B}\}$. By (9) we get $x_0 = \{A/2\} = \{\frac{-A}{2B}\}$ and thus

$$F(x_0) = F_1(0) + F_1\left(\left\{\frac{A}{2}\right\}\right) = F_1\left(\left\{\frac{A}{2}\right\}\right)$$

and

$$H(x_0) = H_1(0) + H_1\left(\left\{\frac{-A}{2B}\right\}\right) = H_1\left(\left\{\frac{A}{2}\right\}\right).$$

On the other hand,

$$F_1\left(\left\{\frac{A}{2}\right\}\right) = H_1\left(\left\{\frac{A}{2}\right\}\right)$$

implies

$$\exp(\pi\sqrt{-D}) = \exp\left(\frac{\pi\sqrt{-D}}{-B}\right)$$

and B = -1. If B = -1 then F(x) = H(x) $(0 \le x \le 1)$ is trivially true. Therefore B = -1 is a necessary and sufficient condition for $(G_{n+1}/G_n)_{n=0}^{\infty}$ to be reciprocal invariant distributed mod 1.

Proof of Theorem 3. Suppose $|\alpha| \geq |\beta|$, where α and β are the roots of the characteristic polynomial of G. By the conditions of Theorem 3, D > 0, therefore $|\alpha| > |\beta|$. From $\alpha\beta = -B \in \mathbf{Z}$ and $B \neq 0$ it follows that $|\alpha| > 1$. Then $(G_{n+1}/G_n)_{n=0}^{\infty}$ and $(G_n/G_{n+1})_{n=0}^{\infty}$ is convergent (c.f. [7]).

Indeed,

$$\lim_{n \to \infty} \frac{G_{n+1}}{G_n} = \lim_{n \to \infty} \frac{a\alpha^{n+1} - b\beta^{n+1}}{a\alpha^n - b\beta^n} = \lim_{n \to \infty} \alpha \frac{1 - (b/a)(\beta/\alpha)^{n+1}}{1 - (b/a)(\beta/\alpha)^n} = \alpha$$

and

$$\lim_{n \to \infty} \frac{G_n}{G_{n+1}} = \frac{1}{\alpha}.$$

The sequence $(G_{n+1}/G_n)_{n=0}^{\infty}$ can only be reciprocal invariant distributed mod 1 if $\alpha \equiv \frac{1}{\alpha} \pmod{1}$.

If $\alpha > 1$ then $0 < \frac{1}{\alpha} < 1$, therefore there is a positive integer c, for which $\alpha - c = \frac{1}{\alpha}$. By multiplying the equality by α , we have

$$\alpha^2 - c\alpha - 1 = 0.$$

If $\alpha < -1$ then $-1 < \frac{1}{\alpha} < 0$, therefore

(13)
$$\alpha^2 + (c-1)\alpha - 1 = 0.$$

So there exists an integer A, such that α is a root of the equation

$$(14) x^2 - Ax - 1 = 0.$$

The constants in (1), by the condition of Theorem 3, are integers and at the same time (14) is the characteristic equation of the sequence G, so therefore the condition B = 1 is necessary.

An easy calculation shows that if $|\alpha| > 1$ and B = 1 then the sequence $(G_{n+1}/G_n)_{n=0}^{\infty}$ and $(G_n/G_{n+1})_{n=0}^{\infty}$ are such ones that their limit points are greater and smaller, alternately. Then there exists and a.d.f. mod 1 for both sequences, which is the function

$$F(x) = \begin{cases} 0, & \text{if } 0 \le x < \{\alpha\}, \\ \frac{1}{2}, & \text{if } x = \{\alpha\}, \\ 1, & \text{if } \{\alpha\} < x \le 1. \end{cases}$$

The proof is complete.

References

- [1] DWIGHT, H. B., Tables of integrals and other mathematical data, 4th edition, Macmillan Company, 1961.
- [2] Kiss, P., Zero terms in second order linear recurrences, *Math. Sem. Notes* (Kobe Univ.), 7 (1979), 145–152.
- [3] Kiss, P. and H.-Molnár, S. On distribution of linear recurrences modulo 1, Studia Sci. Math. Hungar., 17 (1982), 113–127.
- [4] Kiss, P. and Tichy, R. F., Distribution of the ratios of the terms of a second order linear recurrence, *Indag Math.*, **48** (1986), 79–86.
- [5] Kiss, P. and Tichy, R. F., A discrepancy problem with applications to linear recurrences I., *Proc. Japan Acad.*, 65, **5** (1989), 135–138.
- [6] Kuipers, L. and Niederreiter, H., Uniform distribution of sequences, Wiley, New York, 1974.
- [7] MÁTYÁS, F., Másodrendű lineáris rekurzív sorozatok elemeinek hányadosáról (On the quotients of the elements of linear recursive sequence of second order), Mat. Lapok, 27 (1976/79), 379–389 (In Hungarian).

[8] H.-Molnár, S., Sequences and their transforms with identical asymptotic distribution function modulo 1, *Studia Sci. Math. Hungarica*, **29** (1994), 315–322.

[9] NIVEN, I. and ZUCKERMAN, H. S., An introduction to the theory of numbers, Wiley, New York, 1960.

Sándor H.-Molnár

Department of Mathematics Budapest Business School Department of Mathematics H–1149 Budapest, Buzogány str. 10–12. Hungary

e-mail: s.molnar@freemail.hu