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RECIPROCAL INVARIANT DISTRIBUTED SEQUENCES

CONSTRUCTED BY SECOND ORDER LINEAR RECURRENCES
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Dedicated to the memory of Professor Péter Kiss

Abstract. In this paper we determine necessary and sufficient conditions for the sequence

(Gn+1/Gn)∞
n=0 to become a reciprocal invariant distributed sequence modulo 1, where Gn is the

n-th term of a non-degenerate second order linear recurrence of real numbers.

1. Introduction

Let G = G(A, B, G0, G1) = (Gn)∞n=0 be a second order linear recursive
sequence of real numbers defined by the recursion

(1) Gn = AGn−1 + BGn−2 (n > 1),

where A, B and the initial terms G0, G1 are fixed real numbers with restrictions
AB 6= 0, D = A2 + 4B 6= 0 and G2

0 + G2
1 > 0. It is well-known that the terms of G

can be written in the form

(2) Gn = aαn − bβn,

where α and β are the roots of the characteristic polynomial x2 − Ax − B of the

sequence G and a = G1−G0β
α−β , b = G1−G0α

α−β (see e.g. I. Niven and H. S. Zuckerman

[9], p. 91).

Troughout this paper we assume |α| ≥ |β| and the sequence is non-degenerate,
i.e. α/β is not a root of unity and ab 6= 0. If Gn0

= 0 we may also suppose that
Gn 6= 0 for n 6= n0, since P. Kiss [2] proved that a non-degenerate sequence G has
at most one zero term.

Distribution properties of the Fibonacci sequence G = G(1, 1, 0, 1) and more
general integer valued and real valued recurrences were studied by several authors.
Here we only mention the papers [4], [3], [5] and [7], connected with our topic.

The object of this paper is to determine necessary and sufficient conditions for
the sequence (Gn+1/Gn)∞n=0 to become a reciprocal invariant distributed sequence
modulo 1. (The definition of reciprocal invariant will be given later.)
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The sequence ω = (xn)∞n=1 is said to have asymptotic distribution function
modulo 1 (a.d.f. mod 1) F if

lim
N→∞

1

N

N
∑

n=1

χ(x, xn) = F (x) for 0 ≤ x ≤ 1,

where the function χ is defined by

χ(x, y) =

{

1, if 0 ≤ {y} < x,
0, if x ≤ {y}

and {y} denotes the fractional part of the real number y.

In [8] the following definition was introduced.

Definition. Let ω = (xn)∞n=1 and ξ = (f(xn))∞n=1 be sequences of real numbers,
where f is a real–valued function. If the sequences ω and ξ have a.d.f. mod 1 and
these functions are identical, then we say ω is f invariant distributed sequence
modulo 1. (i.d. mod 1 to f.)

In special cases:

(i) if ω is i.d. mod 1 to f(x) = 1
x , we say ω is reciprocal invariant distributed

sequence mod 1,

(ii) if ω is i.d. mod 1 to f(x) =
√

x we say ω is a square root invariant distributed
sequence mod 1.

P. Kiss and R. F. Tichy in [4] investigated the asymptotic distribution function
modulo 1 of the sequence (Gn+1/Gn)∞n=1 when D < 0. Their theorem can be
extended to any sequence (Gn+k/Gn)∞n=1, where k is a nonzero integer. We prove:

Theorem 1. Let G = (Gn)∞n=0 be a linear recurring sequence defined by Gn =
AGn−1 + BGn−2, (n > 1) with nonzero real coefficients A and B, real initial
values G0, G1 (not both G0 and G1 are zero) and with negative discriminant

D = A2 + 4B. Let k 6= 0 be an integer. If the number Θ = 1
π arctan

√
−D
A is

irrational, then the asymptotic distribution function modulo 1 H of the sequence
(Gn+k/Gn)∞n=1 is given by

(3) H(x) = H1 (x − {c}) + H1 ({c})

with

(4) H1(x) = x +
1

π
arctan

sin(2πx)

exp(2π|d|) − cos(2πx)
,

c = rk cos(kπΘ), d = −rk sin(kπΘ) and r = |α| =
∣

∣

∣

A+
√

A2+4B
2

∣

∣

∣
.
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Theorem 2. Let G = (Gn)∞n=0 be a non-degenerate second order linear recursive
sequence defined by Gn = AGn−1 +BGn−2 (n > 1) with nonzero real coefficients
A and B, real initial values G0, G1 (where G2

0 +G2
1 6= 0) and negative discriminant

D = A2 + 4B. The sequence ω = (Gn+1/Gn)∞n=1 is reciprocal invariant distributed
modulo 1 if and only if B = −1.

Theorem 3. Let G = (Gn)∞n=0 be a non-degenerate second order linear recursive
sequence defined by the recursion Gn = AGn−1 + BGn−2 (n > 1) with nonzero
integer coefficients A and B, integer initial values G0, G1 (where G2

0 + G2
1 6= 0)

and with positive discriminant D = A2 + 4B. The sequence ω = (Gn+1/Gn)∞n=1 is
reciprocal invariant distributed modulo 1 if and only if B = 1.

2. Proofs

Proof of Theorem 1. Let G be a second order linear recursive sequence satisfying
the conditions of Theorem 1. We know from [2] that the zero multiplicity of G is at
most one and one element is not relevant for the asymptotic distribution function
therefore without loss of generality we may assume that Gn 6= 0 for n ≥ 0. In (2)
α, β and a, b are complex conjugate numbers since D = A2 + 4B < 0 and we can
write

(5) α = r exp(iπΘ), β = r exp(−iπΘ)

and

(6) a = r1 exp(iπω), b = r1 exp(−iπω),

where exp(x) denotes the usual exponential function and

0 < Θ =
1

π
arctan

√
−D

A
< 1, ω =

1

π
arctan

AG0 − 2G1

G0

√
−D

,

while r and r1 are positive real numbers, a 6= 0 and b 6= 0. Since G is a non-
degenerate sequence we have Θ is an irrational number.

By (2), (5) and (6) we obtain for all n ≥ max{0,−k} = n0 that

Gn+k

Gn
=

r1r
n+k exp(iπ(ω + (n + k)Θ)) + r1r

n+k exp(−iπ(ω + (n + k)Θ))

r1rn exp(iπ(ω + nΘ)) + r1rn exp(−iπ(ω + nΘ))

= rk cos(π(ω + (n + k)Θ))

cos(π(ω + nΘ))
= rk(cos(πkΘ) − sin(πkΘ) · tan(π(ω + nΘ)))

= c + d tan(π(ω + nΘ)),



104 S. H.-Molnár

where c = rk cos(kπΘ), d = −rk sin(kπΘ) are nonzero real numbers independent
on n. Note that the proof of the inequality

∣

∣

∣

∣

∣

∣

1

N

N+n0−1
∑

n=n0

χ

(

x,
Gn+k

Gn

)

−
1
∫

0

χ(x, c + d tan(π(y + ω))dy

∣

∣

∣

∣

∣

∣

≤ 4
√

|rk sin(kπΘ)|
√

∆N + 6∆N ,

where ∆N = ∆N (Θn) denotes the discrepancy of the sequence (Θn)∞n=1 which is
analogous to described in [4] by P. Kiss and R. F. Tichy. Since we only need a.d.f.
mod 1, we omit the proof.

In the following we compute the integral

(7) H(x) =

∫ 1

0

χ(x, c + d tan(π(y + ω))dy =

1/2
∫

−1/2

χ(x, c + d tan(π(y + ω))dy

in the case c = 0. By the substitution u = d tan(πy) we get

(8) H1(x) =
|d|
π

∞
∫

−∞

χ(x, u)

d2 + u2
du.

We use the Fourier series expansion of the characteristic function

χ(x, u) = x +
1

π

∞
∑

m=1

sin(2πmx)

m
cos(2πmu) +

1

π

∞
∑

m=1

1 − cos(2πmx)

m
sin(2πmu)

and the integral formulae

∞
∫

−∞

cos(2πmu)

d2 + u2
du =

π

|d| exp(−2πm|d|),
∞
∫

−∞

sin(2πmu)

d2 + u2
du = 0 (see e.g. [1]).

By swapping summation and integration and applying Lebesgue’s theorem on
dominated convergence we have

H1(x) = x +
1

π

∞
∑

m=1

sin(2πmx)

m
exp(−2πm|d|) = x +

1

π
ℑ
(

∞
∑

m=1

wm

m

)

,
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where w = exp(2π(−|d| + ix)). Since −|d| < 0, we have |w| < 1 and ℜ(1 − w) > 0,

so
∞
∑

m=1

wm

m = − log(1 − w). Since

ℑ(1 − w) = exp(−2π|d|) sin(2πx) and ℜ(1 − w) = 1 − exp(−2π|d|) cos(2πx)

it follows that

H1(x) = x +
1

π
arctan

exp(−2π|d|) sin(2πx)

1 − exp(−2π|d|) cos(2πx)

= x +
1

π
arctan

sin(2πx)

exp(2π|d|) − cos(2πx)
.

Since H1(−x) = −H1(x), H(x) = H1(x − c) − H1(−c) = H1(x − c) + H1(c), the
proof of the theorem is complete.

Proof of Theorem 2. Let G be a second order linear recursive sequence satisfying
the conditions of Theorem 2. By [4] the a.d.f. mod 1 of the sequence (Gn+1/Gn)∞n=1

is F (x) = F1(x − {A/2}) + F1({A/2}), where

F1(x) = x +
1

π
arctan

sin(2πx)

exp(π
√
−D) − cos(2πx)

.

One can check that ω = (Gn/Gn+1)
∞

n=0 = (Gn−1/Gn)
∞

n=1 = ξ. The a. d. f. mod
1 ω and ξ are identical which is easy to derive by Theoem 1. Indeed, if k = −1 and

c = r−1 cos(−πΘ) = r cos(πΘ)
r2 = − A

2B and d = −r−1 sin(−πΘ) = r sin(πΘ)
r2 = −

√
−D
2B

then

H(x) = H1

(

x −
{−A

2B

})

+ H1

({−A

2B

})

,

where

H1(x) = x +
1

π
arctan

sin(2πx)

exp
(

π
√
−D

−B

)

− cos(2πx)
.

We have to decide some necessary and sufficient conditions for the equality

(9) F (x) = H(x) 0 ≤ x ≤ 1.

A straightforward calculation shows that the derivate of F (x) and H(x) is given
by

(10) F
′

(x) = 1 + 2
E1 cos

(

2π
(

x −
{

A
2

}))

− 1

E2
1 − 2E1 cos

(

2π
(

x −
{

A
2

}))

+ 1
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and

(11) H
′

(x) = 1 + 2
E2 cos

(

2π
(

x −
{

−A
2B

}))

− 1

E2
2 − 2E2 cos

(

2π
(

x −
{

−A
2B

}))

+ 1
,

where

E1 = exp(π
√
−D) and E2 = exp

(

π
√
−D

B

)

.

This yields that the graph of F (x) is steepest at {A/2} and the graph of H(x) is

steepest at
{

−A
2B

}

. By (9) we get x0 = {A/2} =
{

−A
2B

}

and thus

F (x0) = F1(0) + F1

({

A

2

})

= F1

({

A

2

})

and

H(x0) = H1(0) + H1

({−A

2B

})

= H1

({

A

2

})

.

On the other hand,

F1

({

A

2

})

= H1

({

A

2

})

implies

exp(π
√
−D) = exp

(

π
√
−D

−B

)

and B = −1. If B = −1 then F (x) = H(x) (0 ≤ x ≤ 1) is trivially true. Therefore
B = −1 is a necessary and sufficient condition for (Gn+1/Gn)∞n=0 to be reciprocal
invariant distributed mod 1.

Proof of Theorem 3. Suppose |α| ≥ |β|, where α and β are the roots of the
characteristic polynomial of G. By the conditions of Theorem 3, D > 0, therefore
|α| > |β|. From αβ = −B ∈ Z and B 6= 0 it follows that |α| > 1. Then
(Gn+1/Gn)∞n=0 and (Gn/Gn+1)

∞
n=0 is convergent (c.f. [7]).

Indeed,

lim
n−→∞

Gn+1

Gn
= lim

n−→∞

aαn+1 − bβn+1

aαn − bβn
= lim

n−→∞
α

1 − (b/a)(β/α)n+1

1 − (b/a)(β/α)n
= α

and

lim
n−→∞

Gn

Gn+1
=

1

α
.

The sequence (Gn+1/Gn)∞n=0 can only be reciprocal invariant distributed mod 1 if
α ≡ 1

α (mod 1).
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If α > 1 then 0 < 1
α < 1, therefore there is a positive integer c, for which

α − c = 1
α . By multiplying the equality by α, we have

(12) α2 − cα − 1 = 0.

If α < −1 then −1 < 1
α < 0, therefore

(13) α2 + (c − 1)α − 1 = 0.

So there exists an integer A, such that α is a root of the equation

(14) x2 − Ax − 1 = 0.

The constants in (1), by the condition of Theorem 3, are integers and at the same
time (14) is the characteristic equation of the sequence G, so therefore the condition
B = 1 is necessary.

An easy calculation shows that if |α| > 1 and B = 1 then the sequence
(Gn+1/Gn)∞n=0 and (Gn/Gn+1)

∞
n=0 are such ones that their limit points are greater

and smaller, alternately. Then there exists and a.d.f. mod 1 for both sequences,
which is the function

F (x) =







0, if 0 ≤ x < {α},
1
2 , if x = {α},
1, if {α} < x ≤ 1.

The proof is complete.
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