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Abstract. The almost sure version of Donsker’s theorem is proved in L?(]0,1[), where
1<p<oo. The almost sure functional limit theorem is obtained for the empirical process in L?(]0,1]),
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1. Introduction

The simplest form of the central limit theorem is ﬁsn = N(0,1), as

n — oo, if S, is the n'* partial sum of independent, identically distributed (i.i.d.)
random variables with mean zero and variance o2. Here = denotes convergence
in distribution, while A'(0,1) is the standard normal law. The functional central
limit theorem, proved by Donsker, states that the broken line process connecting
the points (%, 01—\/551-), i =0,1,...,n, converges weakly to the standard Wiener
process W in the space C([0,1]), see Billingsley [3].

A relatively new version of the CLT is the so called almost sure (a.s.) CLT, see
Brosamler [4], Schatte [13], Lacey and Philipp [9]. The simplest form of the a.s. CLT

is the following. Drop loén % weight to the point %\/ESk(w), k=1,...,n. Then

this discrete measure weakly converges to N'(0,1) for P-almost every w € 2. (Here
(Q, A, P) is the underlying probability space.) The almost sure version of Donsker’s
theorem is also known, see e.g. Fazekas and Rychlik [7] and the references therein.

In this paper we will prove the a.s. version of Donker’s theorem in LP(]0, 1[),
see Theorem 2.1.

In this space in contrast to the case of C([0,1]), we can manage without any
maximal inequality. Using elementary facts of probability theory, we derive our
result from the general a.s. limit theorem in Fazekas and Rychlik [7].

A well-known result of statistics is that the uniform empirical process converges
to the Brownian bridge B in the space D(][0, 1]), see Billingsley [3]. The almost sure
version of this theorem is also known, see e.g. Fazekas and Rychlik [7]. The proof
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of that theorem is based on a sophisticated inequality of Dvoretzky, Kiefer and
Wolfowitz.

Here we show that the a.s. version of the limit theorem for the empirical process
is valid in L?(]0,1[), see Theorem 3.1. Our proof uses only elementary facts.

We also prove the (non a.s.) functional limit theorems in LP(]0,1[). Propo-
sition 2.1 is the Donsker theorem, Proposition 3.1 contains the convergence of
the empirical process. The proof of these propositions are straightforward calcu-
lations to check the tightness conditions given in Oliveira and Suquet [12] and
Marcinkiewicz and Zygmund, see e.g. in [5].

All results of this paper was proved for p = 2 in [14].

2. The almost sure Donsker theorem in L?(]0,1])
In this part we consider the process

1

a\/Nn

where So =0, Sy, = X1+ Xo+---+Xg, k> 1, and Xy, Xo,...arei.i.d. real random
variables with EX; = 0 and D?X; = 02 and E|X;|P < co. Here [-] denotes the
integer part. We shall prove a.s. limit theorem for Y;,(¢) in LP(]0,1[). For the sake
of completeness first we prove the usual limit theorem.

We will use the next result due to Marcinkiewicz and Zygmund (see [5]) and
its consequence (Remark 2.1).

Remark 2.1. If {X,,,n > 1} are independent random variables with EX,, = 0,
then for every p > 1 there exists a positive constant C, depending only upon p for

which
n 1/2
<o, ()
=1

p P

n

S,

i=1

Remark 2.2. If {X,,,n > 1} are i.i.d. with EX; =0, E|X1?P < 0 if 2 <p < o0
and E|X;]? <ocif 1 <p<2and S, =3I, X;, then E|S,[P = O (n?/?).

We also need the result below due to Oliveira and Suquet [12].

Remark 2.3. Let (Y, (t),n > 1) be a sequence of random elements in LP(]0, 1[),
p > 1. Assume that

(i) for some v > 1, sup,,>; E[|Ya[|] < oo,
(ii) limp o sup,>; E[|Ya(- + h) = Y, (-)|[F = 0.
Then (Y, (£),n > 1) is tight in (0, 1]).
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Proposition 2.1. The sequence of processes (Y, (t),n > 1) defined in (1) converges
weakly to the standard Wiener process W in LP(]0,1[), where 1 < p < oo.

Proof. According to Theorem 6.2.2. of [8] we have to prove that the family

(Y, (t),n > 1) is tight and (f,Y,(t)) = (f,W) for each f from the dual space
1

of LP(]0,1[). First consider the convergence in distribution of [ Y, (t)f(t)dt to
0

W (t)f(t)dt for f in L9(]0,1[), the dual space of LP(]0, 1]).

o,

But [Y,(t)f(t)dt converges weakly to normal distribution with mean zero and

1
variance [ [min{s,t}f(s)f(t)dsdt. However it is the distribution of the random
0

variable

1
il
0

W (@) f(t)dt.

Now, we prove that the conditions (i) and (ii) of Remark 2.3 are satisfied.
First we show that (i) is fulfilled with v = 2, i.e., sup,>; E[|[Y, |7 < oo is
satisfied. This is implied by the following calculation:
1
— dt
‘ oy/n ovn >
Si

n—1 (i+1)/n 2 1 1 n—1 2
=sup K ——|dt| =supE| —=— S;
nzll) g:/zn U\/ﬁ n>I1) aﬁn;| |
1 2 2
<o (5 S 197 = om e
1 n(n—1 n—1
2n20’ Zz-sup< (2 )>=SUP( 2n><oo.

n>1 n>1

2 2

1
Siny)|| =supE (/
1 n>1 0

SUPEHY I3 = SUPE‘ Stnt)

= sup
n>10

Now we prove condition (ii). This follows from the argument below, where {-}
denotes the fractional part.

E|Yo(t +h) = Yo ()| = E/O1 [V, (t+ h) — Y, ()P dt

1—h
/
0

1

p

dt

1
—5 - —5
g/ LT G
p

+E dt

1
—S5
O'\/ﬁ [nt]

1-h
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+/ af

1-h 4 )
= / ——F |X (n(t+h)) T+ Xy | dt
0

1 P
S+ X dt
U\/—( [n(t+h)] T+ [nt]+l)

p

S[nt dt

nP/QO-p

1
1
+ﬁ Py pE|S[nt |P dt

1-h 1
<[ mmClinte+ )= ) a

1
1
- p/2
+/1_h nP/Qai"O[nt] dt

C

- nP/QUZD

1
/ ([{nt} + {nh}] + h])P/2 dt + S hno!?
0 np/Q
<C*h—0, ash—0.

The proof of Proposition 2.1 is complete.

To prove a.s. Donsker’s theorem we shall need the next result due to Fazekas
and Rychlik [7] (see also Chuprunov and Fazekas [6]). Let ux denote the distribu-
tion of X. Let ¢, be the unit mass at x.

Remark 2.4. Let (M, p) be a complete separable metric space and X,,, n € N, be
a sequence of random elements in M. Assume that there exist C' > 0, ¢ > 0 and
an increasing sequence of positive numbers C,, with lim, . C,, = 00, Cpp41/Cp =
O(1), and M-valued random elements Xy, k,I € N, k <[, such that the random
elements X}, and X} ; are independent for k£ < [ and

C
(2) E (XklaXl)<C(Ck>
1
for k < I, where 8 > 0. Let 0 < dj, < log(Cl+1/Ck), assume that » oo, dp = oo.

Let D,, = Y ,_, dj. Then, for any probability distribution x on the Borel o-algebra
of M, the following two statements are equivalent

1 n
deéxk =, as n — oo for almost every w € ;
k=1

n

1 n
D—ndeuXkéu, as n — oo0.
k=1
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The following result is the a.s. Donsker’s theorem in L?(]0, 1[), where 1 < p < oo.

Theorem 2.1. Let 1 < p < oc.

logn Z OYi( oy = HW,

in L?(]0,1[), as n — oo, for almost every w € Q, where W is the standard Wiener
process and Yy (t,w) = Yj(t) is defined in (1).

Proof. We shall prove that the conditions of Remark 2.4 are fulfilled. The
separability and completeness of space LP(]0,1]) (1 < p < oo) are well-known
facts.

Let us define the process

S
Yin(t) = (Yn(t) — 0—\/kﬁ> I]k/n,l] (1), k=1,2,...,n—1, t€[0,1],

where I4 denotes the indicator function of the set A. Then Yj, and Y are
independent for k < n.

Fr Yo = (/01 0= (Y"(t) B crs—jﬁ> Bumn®)] dt) :
- <E/01 Tnlt) - (Yn(t) - afjﬁ) Lgefm)(2) ’ dt>1/p

P
=+
n

Sy P So Sk

2 (|oval 7t o S )

( o

/2, /2 2 /2 v

p 'g .. _ P p _

< (Upnp 7C 1 F 2P (k= 1P 4 (k)P (n k)))
o

P

n

1/p
————kP2[(k 1)+ (n — k-)])

opnp/2n

So condition (2) of Remark 2.4 holds and the proof of Theorem 2.1 is complete.
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3. The empirical process in L?(]0, 1[)

In this section, we consider the empirical process

n Z I[Ot ] te lovllv

where U; (i = 1,2,...) are independent random variables with uniform distribution
on the interval [0, 1].

For the sake of completeness we prove the weak convergence of Z,.

Proposition 3.1. The process (Z,(t), n > 1) weakly converges to the Brownian
bridge B in space L?(]0,1[), where 1 < p < 0.

1
Proof. First we prove the convergence in distribution of [ Z,(¢)f(t)dt to
0

fB t)dt for each f in L%(]0,1[) the dual space of LP(]0,1]) fZ
converges weakly to the normal distribution with mean zero and variance
11 1

i f(min{s, t} — st)f(s)f(t)dsdt. But it is the distribution of f B(t)f(t)dt.

0

Now we prove that the condition (i) of Remark 2.3 is fulﬁlled with v = 2. Since
| - 1li < |- |2 this will be done if we show sup,,~; E||Z,[|3 < co.

B|Z.|3=E

(Lio,0(Us) — 1) (U;) —t)| dt

2
dt

Iip 4y (Ui) — t)

1! 1
— —_ 2 = — —_ =
n/o E(§—nt)*dt n/o nt(l —t)dt &

where £ is a binomial random variable with parameters t and n.
Now, we will show that condition (ii) of Remark 2.3 is fulfilled.

Bl Za(-+ 1) — Za()IIL = E / \Za(t 4 h) — Za(t)|P dt

1-h 1
:E/ Znt+h) = Za@Pdt+E [ |Za(0)P dt
0 1-h
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1—-h n
_E/ Z Io,t4+1)(Ui) — (t + h))
1 B p
n Z (Zio.¢ dt
— - p
Wl vm ; 10, (U dt
1 1=h| ™ P
- EW/O ; (Lt (Ui) — h)| dt
1 L P
R /1_h - (Io.n(Ui) —t)| dt
1 1=h n P
- np/2/0 E ;(I]tﬂf-i-h]([]z) —h)| dt
1 1 n p
+ np/2 /1_hE Z(I[O q(Us) —t)| dt

n 1/2
1 1
+np/2/1 thE <Z(I[0-,t](Uz‘)—t)2> dt
1 1=h , p/2
RTE /o APE (Y an (Ui) = ) dt

=1

n

p/2
1t )
+ P /1_h BJE (Z(I[O,t](Ui) —t) ) dt,

i=1

where the used the Marcinkiewicz—Zygmund inequality, see Remark 2.1. We will
distinguish two cases. In the first case 1 < p < 2.

n

1 1=h p/2
np/2 /0 AQE (Z(I]t,t-i-h](Ui) — h)2> dt

=1

n

1 1 p/2
+ np/2 ByE <Z(I[07t](Ui) - t)2> dt

1=h i=1
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1 1-h n p/2
= /0 Ap <EZ(IJt-,t+h](Ui) - h)2> dt

=1
1 1 n p/2
+ W/ By (EZ(I[o,tJ(Ui) —L‘)2> dt
1=h i—1
B Ay e 2 20/2
= - nh)?) dt+m 1_h(E(77—mf)) dt

Ag 1-h /2 Bp 1 12
— AN o
= n,,/g/o (nh(1—h)) dt+n 7 /l_h(m‘(l )P/ 2 dt

1
iz
< APhPI?(1—h)"> + BY /1_h(t(1 —4))P/2 gt

< ADRPP(L= 1) 4 BP0, ash =0,

where ¢ is a binomial random variable with parameters h and n, and 7 is binomial
with parameters ¢ and n.

In the second case 2 < p < oco.

1 1—h n p/2
nr/2 J, ALE (Z(I]t,t+h](Ui) - h)2> dt

i=1

1 1 n p/2
T / ByE <Z (o0 (U, 2) dt
AP 1— h 2/p p/2
< np;)2 /0 Z | t,440) (Us) — B[P dt

n 2/p\ P/?

Br 1 s
+ npr/l hE n's (ZIIM(UJ —t|p> dt

1-h n
- ni"/2 _/ E (Z 1t,t+1) (U h|p>
BP p72 n
ot <Z 0.0(Ui —tl”>

AP l-h 7

= 71) ZEUt t+n)(Us) — h|P dt
0

+_/ ZEH[Ot ;) —t|P dt
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1—h
:Ag/ E|I]tt+h( i) — |pdt+B”/ E|IOt]( 5) — tP dt
0

1-h
Ag/ E|§—h|p+B§,’/ Eln—t?
0 1-h
1
= AP [(1 = h)PT h+ hP(1 — h)?] + Bg/ [(1—t)Pt+tP(1 —t)] dt
1-h

1
< AP[(1—h)PTTh 4+ hP(1 — h)?] + Bg;/1 ) 2dt

:Ag[(l—h)p+1h+hp(1—h)2]+2B£h—>O, as h — 0,

where ¢ is a Bernoulli random variable with parameter i and 7 is Bernoulli with
parameter ¢t. This completes the proof of the Proposition 3.1.

Theorem 3.1.
Z 6Zk( w) = KB,

in L?(]0,1[), as n — oo, for almost every w € Q, where B is the Brownian bridge.

log n

Proof. We shall prove that the conditions of Remark 2.4 are fulfilled.

The separability and completeness of LP(]0,1[) are well-known facts. Let us
define the process

1k
Zn(t \/—Z 0, (Ui n;ﬁot

Then Zj, ,, and Zj, are independent for k£ < n.
We show that the condition (2) is valid.

1 1 k p 1/p
E (Zna Zk n) =F (/ _Tl Z(I[O,t](Uz) - t) dt)
0 i=1
1 1 k p 1/p
=—~FE ( > T (Ui) — t) dt)
0 =1
k

INA
:‘H
N

IN
S

IA
:‘H
—~
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where we used the Marcinkiewicz-Zygmund inequality, see Remark 2.1. We will
distinguish two cases. In the first case 1 < p < 2.

. i p/2 1/p
% ( /0 CPE <Z(I[O7t](Ui)—t)2> dt)

=1

<

B
C\’_\
Y
e
~

e
S
|
g
e
~
=
[\v]
oW
~

S8 g8

(f (Bl — k)P ) "

where £ has binomial distribution with parameters ¢ and k.
In the second case 2 < p < 0.

. A p/2 1/p
- ( | ar (Z(qo,ﬂ(m—w?) dt)

=1

C ! " o\ P2\ 7
<75 /OE(k_ (;um] —t|p> ) dt
C 1 - k 1/P
([ G

o 1 ) 1/p
S ()
1/p
:%< kP/2E|¢ — t|pdt>
1/p
:c%(/ E|§—t|”dt>
1/p
- \/_(/ [(1—t)pt+(1—t)tp]dt>
vk 1/p _ vk
gc\/_2 C\/T_l

where £ is a Bernoulli random variable with parameter ¢. This completes the
proof of the Theorem 3.1.
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