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ON TRANSFORMATION MATRICES CONNECTED

TO NORMAL BASES IN CUBIC FIELDS
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Dedicated to the memory of Professor Péter Kiss

Abstract. In the paper it is proved that special class of circulant matrices transforming

normal bases of orders in cubic fields to normal bases of their suborders consists of matrices of the

type circ3(a1,a2,a3) where a1+a2+a3=±1 and one of the equalities a1=a2, a1=a3, a2=a3 holds.
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1. Introduction

Let K be a cyclic algebraic number field of degree n over the rational numbers
Q. Such a field has a normal basis over the rationals Q i.e. a basis consisting of all
conjugations of one element. Transformation matrices between two normal bases
of K over Q are exactly regular rational circulant matrices of degree n. In the
paper [4], the special class of circulant matrices with integral rational elements is
characterized by the following proposition.

Proposition 1. Let K be a cyclic algebraic number field of degree n over rational

numbers. Let

A = circn(a1, a2, . . . , an)

be a circulant matrix and a1, a2, . . . , an ∈ Z. By Ai, i = 1, 2, . . . n we denote the

algebraic complement of element ai in the matrix A. Let

a1 + a2 + · · · + an = ±1

and

ai ≡ aj (mod h)

for i, j ∈ {1, 2, . . . , n}, where

h =
detA

gcd(A1, A2, . . . , An)
.
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Then the matrix A transforms a normal basis of an order B of the field K to a

normal basis of an order C of the field K, where C ⊆ B.

2. Results

Theorem 1. Let A be a circulant matrix A = circ3(a1, a2, a3), ai ∈ Z, where

a1 + a2 + a3 = ±1.

Then the following conditions are equivalent

(1) ai ≡ aj (mod h) for i, j ∈ {1, 2, 3}, where

h =
detA

gcd(A1, A2, A3)
,

where Ai is algebraic complement of element ai in the matrix A for every

i ∈ {1, 2, 3}.

(2) One of the next equalities holds

a1 = a2 or a2 = a3 or a1 = a3 .

Proof. (1) ⇒ (2) Let A = circ3(a1, a2, a3) be a circulant matrix fulfilling
assumptions of our theorem. If a1 + a2 + a3 = 1, we can write

A = (1 − a2 − a3, a2, a3) .

Determinant of the matrix A is

(1)
detA = 1 + 3a2

2 + 3a2
3 − 3a2 − 3a3 + 3a2a3

= (1 − 3a2)(1 − 3a3) + 3(a2 − a3)
2

and the subdeterminants are

A1 = 1 + a2
2 + a2

3 − 2a2 − 2a3 + a2a3 ,

A2 = a2
2 + a2

3 + a2a3 − a3 ,

A3 = a2
2 + a2

3 + a2a3 − a2 .
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Their greatest common divisor is

gcd(A1, A2, A3) = gcd(A1 − A2, A2, A3 − A2)

= gcd(1 − 2a2 − a3, a
2
2 + a2

3 + a2a3 − a3, a3 − a2)

= gcd
(

1 − 2a2 − a3 + (a3 − a2), a
2
2 + a2

3 + a2a3 − a3 + (a2 + 2a3)(a3 − a2), a3 − a2

)

= gcd(1 − 3a2,−a3 + 3a2
3, a3 − a2)

= gcd
(

1 − 3a2,−a3(1 − 3a3), a3 − a2

)

.

In regards with (1) we obtain that gcd(A1, A2, A3)
2 is a divisor of detA. Now we

need to prove that detA is a divisor of gcd(A1, A2, A3)
2
.

Because of ai ≡ aj (mod h) for i, j ∈ {1, 2, 3}, we obtain the congruences

(2)

a3 − a2 ≡ 0 (mod h),

1 − 3a2 ≡ 0 (mod h),

1 − 3a3 ≡ 0 (mod h).

Then h is a divisor of gcd(A1, A2, A3),

gcd(A1, A2, A3) = kh = k
detA

gcd(A1, A2, A3)
,

gcd(A1, A2, A3)
2

= k detA ,

and detA is a divisor of gcd(A1, A2, A3)
2
. Therefore

detA = ±gcd(A1, A2, A3)
2

and
h = gcd(A1, A2, A3) .

In regards of (2) we denote

hX = 1 − 3a2 , hY = 1 − 3a3 , hZ = a2 − a3 ,

then
detA = h2XY + 3h2Z2 .

We obtain the equation XY + 3Z2 = ±1. Assumption a1 + a2 + a3 = 1 yields the
equation hX + 3hZ = hY .

(a) Let detA = −h2. From the system of equations

XY + 3Z2 = −1 ,

X + 3Z = Y ,
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we obtain the quadratic equation in Z

3Z2 − 3ZY + (Y 2 + 1) = 0

which has a negative discriminant, so there is no integral solution.

(b) Let detA = h2. We obtain a system of equations

XY + 3Z2 = 1 ,

X + 3Z = Y .

From the integral solutions of this system it follows that

(a) X = 1, Y = 1, Z = 0 or X = −1, Y = −1, Z = 0 then a2 = a3,

(b) X = 1, Y = −2, Z = −1 or X = −1, Y = 2, Z = 1 then a1 = a2,

(c) X = 2, Y = −1, Z = −1 or X = −2, Y = 1, Z = 1 then a1 = a3.

The case a1 + a2 + a3 = −1 can be proved similarly.

(2) ⇒ (1) Without loss of generality it is sufficient to suppose that a2 = a3,
so we can denote the matrix A = circ3(a, b, b). The algebraic complements are
A1 = (a−b)(a+b), A2 = A3 = b(b−a) so the gcd(A1, A2, A3) = (b−a) gcd(b, a+b).
From the fact that a + 2b = ±1 it follows gcd(a, b) = 1 and so gcd(b, a + b) = 1.
Hence h = (b−a)2/(b−a) = b−a and because b ≡ a (mod b−a), the condition (1)
holds.

Corollary 1. Let K be a cyclic algebraic number field of degree 3 over Q. Let the

matrix A = circ3(a, b, b) satisfy assumptions of Theorem 1 and transform a normal

basis of the order B to a normal basis (γ1, γ2, γ3) of the order C, where C ⊆ B.

Then any polynomial cycle of f ∈ Z[X ] contains at most one of the elements

γ1, γ2, γ3.

Proof. From [3, Theorem 1] it follows that if a number γi (i = {1, 2, 3}) does not
generate the power basis of order C, then two of elements γ1, γ2, γ3 cannot be in
the same polynomial cycle for a polynomial with rational integral coefficients. So
it is sufficient to prove that γi (for example γ1) does not generate a power basis
of C.

Let (β1, β2, β3) be a normal basis of an order B. Let matrix A = circ3(a, b, b)
satisfy the assumption of Theorem 1. Then the matrix A transforms the basis
(β1, β2, β3) to the basis (γ1, γ2, γ3), where

(γ1, γ2, γ3) = (β1, β2, β3)A
T .

Because the basis (β1, β2, β3) is a normal basis of an order, thus

β1 + β2 + β3 = ±1
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holds, and

γ1 = aβ1 + b(β2 + β3) = aβ1 + b(±1 − β1) = (a − b)β1 ± b .

Elements γ2 and γ3 can be composed similarly, and we obtain the basis (γ1, γ2, γ3)
in the form

γ1 = (a − b)β1 ± b ,

γ2 = (a − b)β2 ± b ,

γ3 = (a − b)β3 ± b .

We consider the basis (1, γ1, γ
2
1), where

γ2
1 = (a − b)2β2

1 ± 2b(a − b)β1 + b2

the basis (β1, β2, β3) is an integral basis, therefore there exist b1, b2, b3 ∈ Z such
that

γ2
1 = (a − b)2(b1β1 + b2β2 + b3β3) ± 2b(a− b)β1 + b2

=
(

(a − b)b1 ± 2b
)

(a − b)β1 + (a − b)2b2β2 + (a − b)2b3β3 + b2 .

Let
s1 = (a − b)b1 ± 2b ,

s2 = (a − b)b2 ,

s3 = (a − b)b3 .

Then

γ2
1 = s1(a − b)β1 + s2(a − b)β2 + s3(a − b)β3 + b2

= s1

(

(a − b)β1 ± b
)

+ s2

(

(a − b)β2 ± b
)

+ s3

(

(a − b)β3 ± b
)

+ b2 ∓ (s1 + s2 + s3)b

= s1γ1 + s2γ2 + s3γ3 + b2 ∓ (s1 + s2 + s3)b

Because γ1 + γ2 + γ3 = ±1, we can write

b2 ∓ (s1 + s2 + s3)b = r(γ1 + γ2 + γ3) ,

so
γ2
1 = (s1 + r)γ1 + (s2 + r)γ2 + (s3 + r)γ3 .

Suppose that (γ1, γ2, γ3) and (1, γ1, γ
2
1) are bases of the order C over Z.

Then the matrix C transforming the basis (γ1, γ2, γ3) to the basis (1, γ1, γ
2
1) has

determinant equals ±1. But

detC = ±

∣

∣

∣

∣

∣

∣

1 1 s1 + r
1 0 s2 + r
1 0 s3 + r

∣

∣

∣

∣

∣

∣

= ±(s2 − s3) = ±(a − b)(b2 − b3)
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where a, b, b2, b3 ∈ Z, which is a contradiction to a ≡ b (mod h), where h 6= ±1.
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