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Abstract. The concept of the uniform density is introduced in papers [1], [2]. Some
properties of this concept are studied in this paper. It is proved here that the uniform density has

the Darboux property.
AMS Classification Number: 11B05

Keywords: asymptotic density, uniform density, almost convergence, Darboux
property

Introduction

Let A C N ={1,2,3,...} and m,n € N, m < n. Denote by A(m,n) the
cardinality of the set A N [m, n]. The numbers

dA) = im A1 Gy = ALY

- n—o00 n n—oo n

are called the lower and the upper asymptotic density of the set A. If there exists

Al
d(A) = Tim AL
n—oo n
then it is called the asymptotic density of A.
According to [1], [2] we set

as =min A(t + 1,t + s), o’ =max A(t+ 1,t+ s).
>0 >0

Then there exist .\
w(A) = lim &, G(4) = lim &

s—o0 S s—0o0 S

and they are called the lower and the upper uniform density of A, respectively.
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It is obvious that for every A C N

u(A) < d(A) < d(A) < a(A).

Hence if u(A) exists then d(A) exists as well and u(A) = d(A). The converse
is not true. For example put

A= U {10% + 1,10" +2,...,10F + k} .
k=1
Then d(A) =0, but u(4) =0, a(A) = 1.

Note that the numbers ag and o® can be replaced by the numbers G5 and 37,
respectively, where

Bo=lim A(t+1,t+s), f°= lim A(t+1t+s)

t—o0

(cf. [1], [2]).
In this paper we introduce some elementary remarks, observations on the
concept of the uniform density and prove that this density has the Darboux

property.

1. Uniform density u(A) and lim M (uniformly with respect to
t>0)

We introduce the following observation.

Theorem 1.1. If there exists

(1) lim Alt+1,t+s)

5§—00 S

=1L

uniformly with respect to t > 0, then there exists u(A) and u(A) = L.

Proof. Let € > 0. By the assumption there exists an so = so(¢) € N such that for
each s > sg and each t > 0 we have

(L—e)s < A(t+1,t+s) < (L+e)s.

By the definition of the numbers 3, 3° we get from this for s > sg

L-e<—<
S

b ﬁ—§L+s.
s
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If s — oo we get
L—-e<u(A)<u(A) <L+e.

Since € > 0 is an arbitrary positive number, we get u(A) = L.
The foregoing theorem can be conversed.

Theorem 1.2. If there exists u(A) then

A 1,t
lim A+ 1t+s) _ u(A)
§—00 S
uniformly with respect tot > 0.
Proof. Put u(A) = L. Since
p
L= lim 22 = lim &

p—oo P p—oo P
for every € > 0, there exists a pg such that for each p > pg we have
(L—e)p<ap,<al <(L+e)p.
So we get

(L—e)p< Ig;iélA(t—F L,t+p) < ntagé(A(t+1,t+p) < (L+e)p.

By the definition of A(t + 1,¢ + p) we get from this

Alt+1
t+Lt+p) |,
p
for each p > pg and each ¢t > 0. Hence
A 1,t
lim Alt+1,t+p) =L (=u(A))
p—00 p

uniformly with respect to ¢t > 0.

2. Uniform density and almost convergence

The concept of almost convergence was introduced in [5] (see also [10], p. 60).
A sequence (z,,){° of real numbers almost converges to L if

lim Tn+1 + Tn+2 +---+ Tn+p
p—00 P

=1L
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uniformly with respect to n > 0. If (z,,)7° almost converges to L, we write
F—limz, = L.

One can conjecture that there is a relationship between the uniform density
of a set A C N and the characteristic function x4 of this set (xa(n) =1ifn € A,
xa(n) =0if n € N\A).

Theorem 2.1. Let A C N. Then u(A) = v if and only if F —lim xa(n) = v.

Proof. Let t > 0, s € N. By the definition of the sequence (xa(n));~ we see that

At+1,t+s)  xalt+1)+xat+2)+---+xalt+s)—t

S S

The assertion follows from this equality by Theorem 1.1 and 1.2.

3. Another way for defining the uniform density of sets

IfA={a1<az<---<a,<---} CN is an infinite set then it is well-known
that n n
d(A) = lim —, d(A)= lim —

n—oo An n—00 Un

and n
d(A) = lim —

n—00 U,
(if d(A) exists) (cf. [8], p. 247). A similar result can be stated also for the uniform
density.

Theorem 3.1. Let A ={a; <ay <---<ap <---} C N be an infinite set. Then
u(A) = L if and only if

2) lim —F2 =L,
P—0 Ak4p — Ak41
uniformly with respect to k > 0.
Proof. 1. Let u(A) = L. Consider that for p > 2
p _ AlGhy1, 0hip)
Qk4p — Ok+1 Qk4p — Ok+1 '

By Theorem 1.2 (see (1)) the right-hand side converges by p — oo (uniformly with
respect to k > 0) to u(A) = L. Hence (2) holds.

2. Suppose that (2) holds (uniformly with respect to & > 0). By Theorem 1.1

it suffices to prove that
At +1,t+p)
lim ——————~

p—oo P

=L
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uniformly with respect to ¢ > 0.
We shall show it. Suppose in the first place that ¢ > a;. Then there exist
k,s € N such that

ar <t+1<app1 < <aggs <t+p < arystr-
Then A(t + 1,t + p) equals to s and so

At+1,t4+p) s

p p

Further on the basis of choice of the numbers k, s we get

pts — apr1 <p—1<agpysi1 — ag.
Therefore
S At +1,t+ S
< ( p) < .
Ots+1 — ap + 1 D Qfts — Qk+1

But —a; + 1 < —ag_1, so that

S S S _ s+3 s

Apgst1 — Ok +1 7 Qpgst1 —Qp—1  Qyst1 — k-1 5+ 3

B s+3 (1 3 >
Qg1 — Q-1 s+3)

So we get wholly

5+3 ( 3 > At +1,t+p) s
1— < < )
Akts+1 — Gk—1 s+3 D Ak+s — Qk+1

(3)

Let v > 0. Then by assumption (see (2)) there exists a vy such that for each v > vg
we have

v
(4) << — —L<y
k4o — Ak+1

for all £ > 0.
Using (4) we get from (3)
5+ 3 3 <A(t+1,t+p) s

(5) —L- -L< ~L.
Al4s4+1 — Ak—1 Ak4s+1 — Ak—1 p Qk+4+s — Ak+1

Let s > wg. Then by (4) the right-hand side of (5) is less than . On the
left—-hand side we get
s+3

— — L > —~.
Ak4s+1 — Ak—1



8 7. Galikova, B. Laszl6, T. Salat

Further
-3 -3

> )
Qftstl —Ag—1 S+ 2

since

Ahgst1 — Q-1 = (ar — ap—1) + (ap+1 — ar) + - + (Qhtst1 — Qhps)

and each summand on the right-hand side is > 1.
Hence for every ¢t > a1 we get from (5) (s > o)

3 At +1,t
- (t+1,t+p)

6 —y— - L
(6) (e ) <7
From this A
t+1
i ACELEEP) g
p—00 p

uniformly with respect to t > a;.

It remains the case if 0 < ¢ < ay. Since there is only a finite number of such
t's, it suffices to show that for each fixed ¢, 0 < t < a;, we have

) i At +1,t+p)
p—0o0 p

=1L

If ¢ is fixed, 0 < t < a; and p is sufficiently large we can determine a k such
that ap, <t+p < ag41. Then

0<t<m<as < - <ap <t+p<agt:

and

(8) At +1,t+p) = At + 1,a1) + A(az, ak).
From this

(8) p<agi1, p>ap—ay

and so from (8), (8) we obtain

Alt+1,a1) N Alag, akg1) =1 _ Alt+ 1L,t+p)
P Al+1 - p
(9)
Alt+1,a1) " k—1

p ap — ai

<



Remarks on uniform density of sets of integers 9

Obviously we have A(t+1,a1) < a7 and so

A(t + 1,@1)

= o1) (p— o)

We arrange the left-hand side of (9). We get

A(ag,akﬂ)—l _ 1 k ap+1 — a2 _0(1)+ k
Qk41 Qk41 Q41 — a2 k41 Ag+1 — G2

(if p — oo then k — o0, as well).
Wholly we have

k At +1,t k—1
Lo(l) < (t+1, 4—p)S
Ak+1 — a2 p ar —ax

+ o(1).

If p — o0, then k — oo and by assumption (cf (2)) the terms

k—1 k
-L, ——— L
ag — a Q41 — a2

converge to zero. But then (9) yields

At +1,t

p—oo P

=L

uniformly with respect to ¢ > 0. So u(A) = L.
The following theorem is a simple consequence of Theorem 3.1

Theorem 3.2. Let A = {a1 < az <---} C N be a lacunary set, i.e.

(10) lim (apy1 — an) = +o0.

Then u(A) = 0.

Proof. Let £ > 0. Choose M € N such that M~! < e. By the assumption there
exists an ng such that for each n > ng we get ap41 —an, > M.

Let k > ng, s € N, s > 1. Then
ks — Q1 = (Qky2 — @pt1) + (Qk+3 — agg2) + -+ (Qkts — Qhgs—1) > (s —1)M

and so
s s
< 2e.

<
apts — ag+1 (s — 1M
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Hence for each k > ng and s > 2 we have

S

— < 2e.
Ak+s — Qk+1
If 0 < k < ng, k is fixed, then
(11) lim —> =,

§—=00 Ak4s — k41

since, for sufficiently large s

Akts — Qb1 = [(Art2 — apg1) + o+ (@ngt1 — any)]
+ [(@no+2 = ano+1) + - + (Ahts — akgs—1)] > M(k+s—no— 1)
> M(s— (no +1)).

There exists only a finite number of &’s with 0 < k < ng, so we see that (11)
holds uniformly with respect to k, 0 < k < ng. So we get wholly

. S
lim —— =0
§—=00 Ak4s — Ak+1

uniformly with respect to k > 0. So according to Theorem 3.1, u(A4) = 0.

Remark. The assumption (10) in Theorem 3.2 cannot be replaced by the weaker
assumption

(10" lim (a,41 — an) = +00.

This can be shown by the following example:

A=K+ 1Lk 42,k 4k ={a1 <ap <+ <ap <)
k=1

Here we have u(A4) =0, 4(A) = 1 and (10') is satisfied.

Example 3.1 Let a € R, o > 1. Put ax = [ka], (k = 1,2,...), where [v] denotes
the integer part of v. We show that the uniform density of the set A is é This
follows from Theorem 3.1, since

. D 1
lm ——— = —
P—X0 Ak4p — Ak+1 «
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uniformly with respect to £ > 0. This uniform convergence can be shown by a
simple calculation which gives the estimates (p > 2)

p < p < p
p—Da+1" apyp—ary1 ~ (p—Da-—1

4. Darboux property of the uniform density

For every A C N having the uniform density the number u(A4) belongs to
[0,1]. The natural question arises whether also conversely for every ¢ € [0, 1] there
is a set A C N such that u(A) = t. The answer to this question is positive.

Theorem 4.1.
If t € [0,1] then there is a set A C N with u(A4) =t.

Proof. We can already suppose that 0 < ¢ < 1. Construct the set

PO Y 1 R

Put a, = [%] (k =1,2,...) and set in Example 3.1 o = 1 > 1. So we get

. 1
lim _r - t
P—X0 Ak4p — Ak+1 «

uniformly with respect to k& > 0. The assertion follows by Theorem 3.1.

Let v be a non-negative set function defined on a class S C 2%. The function
v is said to have the Darboux property provided that if v(A) > 0 for A € S and
0 <t <wv(A), then there is a set B C A, B € S such that v(B) =t (cf. [6], [7], [9])-

Theorem 4.2. The uniform density has the Darboux property.
Proof. Let u(A) =6 > 0,

A={ag <ay<---<ap<--}
and 0 < ¢t < §. Construct the set
B={by<by<---<by<--}

in such a way that we set
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Putnk:[k%] (k=1,2,...). Then n; <ng < - <np < -+,
B={an, <ap, <---<ap, <--}, BCA.

We prove that u(B) = t.
By Theorem 3.1 it suffices to show that

(12) lim — —¢

P00 by yp — b1

uniformly with respect to m > 0.
We have (p > 1)

p _ p

bintp —bm+1 An,ypp, — Any gy
By a simple arrangement we get

(13) p _ Pmtp — Nm1 +1 p

bm+p - bm+l anm+p —On,yr Mmtp — Mm+1 +1

A simple estimation gives

0 0

Using this in (13) we get

. p t
14 lim = -
( ) P—=0 NMim4p — Nm4-1 + 1 5

uniformly with respect to m > 0.
Further by assumption

. p
lim
P—=0 Ustp — As41

=9

uniformly with respect to s > 0 (Theorem 3.1).
So we get

Nmgp — Mmt1 + 1 -5

(15) lim

P—00  Apy . — Qny,y

uniformly with respect to m > 0 since the sequence

oo
<nm+p — Nm41 + 1>
Anpyp = gy g p=2
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is a subsequence of the sequence

1
2]

13l
4]
5]
16]
7]
18]
19]

[10]

00
( - >
As4p — As41 p=1

By (13), (14), (15) we get (12) uniformly with respect to m > 0.
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