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Abstract. The concept of the uniform density is introduced in papers [1], [2]. Some
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Introduction

Let A ⊆ N = {1, 2, 3, . . .} and m, n ∈ N , m < n. Denote by A(m, n) the
cardinality of the set A ∩ [m, n]. The numbers

d(A) = lim
n→∞

A(1, n)

n
, d̄(A) = lim

n→∞

A(1, n)

n

are called the lower and the upper asymptotic density of the set A. If there exists

d(A) = lim
n→∞

A(1, n)

n

then it is called the asymptotic density of A.

According to [1], [2] we set

αs = min
t≥0

A(t + 1, t + s), αs = max
t≥0

A(t + 1, t + s).

Then there exist

u(A) = lim
s→∞

αs

s
, ū(A) = lim

s→∞

αs

s

and they are called the lower and the upper uniform density of A, respectively.
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It is obvious that for every A ⊆ N

u(A) ≤ d(A) ≤ d̄(A) ≤ ū(A).

Hence if u(A) exists then d(A) exists as well and u(A) = d(A). The converse
is not true. For example put

A =

∞
⋃

k=1

{

10k + 1, 10k + 2, . . . , 10k + k
}

.

Then d(A) = 0, but u(A) = 0, ū(A) = 1.

Note that the numbers αs and αs can be replaced by the numbers βs and βs,
respectively, where

βs = lim
t→∞

A(t + 1, t + s), βs = lim
t→∞

A(t + 1, t + s)

(cf. [1], [2]).

In this paper we introduce some elementary remarks, observations on the
concept of the uniform density and prove that this density has the Darboux
property.

1. Uniform density u(A) and lim
s→∞

A(t+1,t+s)
s

(uniformly with respect to

t ≥ 0)

We introduce the following observation.

Theorem 1.1. If there exists

(1) lim
s→∞

A(t + 1, t + s)

s
= L

uniformly with respect to t ≥ 0, then there exists u(A) and u(A) = L.

Proof. Let ε > 0. By the assumption there exists an s0 = s0(ε) ∈ N such that for
each s > s0 and each t ≥ 0 we have

(L − ε)s < A(t + 1, t + s) < (L + ε)s.

By the definition of the numbers βs, β
s we get from this for s > s0

L − ε ≤
βs

s
≤

βs

s
≤ L + ε.
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If s → ∞ we get
L − ε ≤ u(A) ≤ ū(A) ≤ L + ε.

Since ε > 0 is an arbitrary positive number, we get u(A) = L.

The foregoing theorem can be conversed.

Theorem 1.2. If there exists u(A) then

lim
s→∞

A(t + 1, t + s)

s
= u(A)

uniformly with respect to t ≥ 0.

Proof. Put u(A) = L. Since

L = lim
p→∞

αp

p
= lim

p→∞

αp

p

for every ε > 0, there exists a p0 such that for each p > p0 we have

(L − ε)p < αp ≤ αp < (L + ε)p.

So we get

(L − ε)p < min
t≥0

A(t + 1, t + p) ≤ max
t≥0

A(t + 1, t + p) < (L + ε)p.

By the definition of A(t + 1, t + p) we get from this

∣

∣

∣

∣

A(t + 1, t + p)

p
− L

∣

∣

∣

∣

≤ ε

for each p > p0 and each t ≥ 0. Hence

lim
p→∞

A(t + 1, t + p)

p
= L (= u(A))

uniformly with respect to t ≥ 0.

2. Uniform density and almost convergence

The concept of almost convergence was introduced in [5] (see also [10], p. 60).

A sequence (xn)∞1 of real numbers almost converges to L if

lim
p→∞

xn+1 + xn+2 + · · · + xn+p

p
= L
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uniformly with respect to n ≥ 0. If (xn)∞1 almost converges to L, we write
F − lim xn = L.

One can conjecture that there is a relationship between the uniform density
of a set A ⊆ N and the characteristic function χA of this set (χA(n) = 1 if n ∈ A,
χA(n) = 0 if n ∈ N\A).

Theorem 2.1. Let A ⊆ N . Then u(A) = v if and only if F − limχA(n) = v.

Proof. Let t ≥ 0, s ∈ N . By the definition of the sequence (χA(n))
∞

1 we see that

A(t + 1, t + s)

s
=

χA(t + 1) + χA(t + 2) + · · · + χA(t + s) − t

s
.

The assertion follows from this equality by Theorem 1.1 and 1.2.

3. Another way for defining the uniform density of sets

If A = {a1 < a2 < · · · < an < · · ·} ⊆ N is an infinite set then it is well–known
that

d(A) = lim
n→∞

n

an

, d̄(A) = lim
n→∞

n

an

and

d(A) = lim
n→∞

n

an

(if d(A) exists) (cf. [8], p. 247). A similar result can be stated also for the uniform
density.

Theorem 3.1. Let A = {a1 < a2 < · · · < an < · · ·} ⊆ N be an infinite set. Then

u(A) = L if and only if

(2) lim
p→∞

p

ak+p − ak+1
= L

uniformly with respect to k ≥ 0.

Proof. 1. Let u(A) = L. Consider that for p ≥ 2

p

ak+p − ak+1
=

A(ak+1, ak+p)

ak+p − ak+1
.

By Theorem 1.2 (see (1)) the right-hand side converges by p → ∞ (uniformly with
respect to k ≥ 0) to u(A) = L. Hence (2) holds.

2. Suppose that (2) holds (uniformly with respect to k ≥ 0). By Theorem 1.1
it suffices to prove that

lim
p→∞

A(t + 1, t + p)

p
= L
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uniformly with respect to t ≥ 0.

We shall show it. Suppose in the first place that t ≥ a1. Then there exist
k, s ∈ N such that

ak < t + 1 ≤ ak+1 < · · · < ak+s ≤ t + p < ak+s+1.

Then A(t + 1, t + p) equals to s and so

A(t + 1, t + p)

p
=

s

p
.

Further on the basis of choice of the numbers k, s we get

ak+s − ak+1 ≤ p − 1 < ak+s+1 − ak.

Therefore
s

ak+s+1 − ak + 1
<

A(t + 1, t + p)

p
<

s

ak+s − ak+1
.

But −ak + 1 ≤ −ak−1, so that

s

ak+s+1 − ak + 1
≥

s

ak+s+1 − ak−1
=

s + 3

ak+s+1 − ak−1

s

s + 3

=
s + 3

ak+s+1 − ak−1

(

1 −
3

s + 3

)

.

So we get wholly

(3)
s + 3

ak+s+1 − ak−1

(

1 −
3

s + 3

)

<
A(t + 1, t + p)

p
<

s

ak+s − ak+1
.

Let γ > 0. Then by assumption (see (2)) there exists a v0 such that for each v > v0

we have

(4) −γ <
v

ak+v − ak+1
− L < γ

for all k ≥ 0.

Using (4) we get from (3)

(5)
s + 3

ak+s+1 − ak−1
−L−

3

ak+s+1 − ak−1
<

A(t + 1, t + p)

p
−L <

s

ak+s − ak+1
−L.

Let s > v0. Then by (4) the right-hand side of (5) is less than γ. On the
left–hand side we get

s + 3

ak+s+1 − ak−1
− L > −γ.
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Further
−3

ak+s+1 − ak−1
≥

−3

s + 2
,

since

ak+s+1 − ak−1 = (ak − ak−1) + (ak+1 − ak) + · · · + (ak+s+1 − ak+s)

and each summand on the right-hand side is ≥ 1.

Hence for every t ≥ a1 we get from (5) (s > v0)

(6) −γ −
3

s + 2
<

A(t + 1, t + p)

p
− L < γ

From this

lim
p→∞

A(t + 1, t + p)

p
= L

uniformly with respect to t ≥ a1.

It remains the case if 0 ≤ t < a1. Since there is only a finite number of such
t′s, it suffices to show that for each fixed t, 0 ≤ t < a1, we have

(7) lim
p→∞

A(t + 1, t + p)

p
= L.

If t is fixed, 0 ≤ t < a1 and p is sufficiently large we can determine a k such
that ak ≤ t + p < ak+1. Then

0 ≤ t < a1 < a2 < · · · < ak ≤ t + p < ak+1

and

(8) A(t + 1, t + p) = A(t + 1, a1) + A(a2, ak).

From this

(8′) p < ak+1, p > ak − a1

and so from (8), (8′) we obtain

(9)

A(t + 1, a1)

p
+

A(a2, ak+1) − 1

ak+1
≤

A(t + 1, t + p)

p

≤
A(t + 1, a1)

p
+

k − 1

ak − a1
.
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Obviously we have A(t + 1, a1) ≤ a1 and so

A(t + 1, a1)

p
= o(1) (p → ∞).

We arrange the left-hand side of (9). We get

A(a2, ak+1) − 1

ak+1
= −

1

ak+1
+

k

ak+1 − a2

ak+1 − a2

ak+1
= o(1) +

k

ak+1 − a2

(if p → ∞ then k → ∞, as well).

Wholly we have

k

ak+1 − a2
+ o(1) ≤

A(t + 1, t + p)

p
≤

k − 1

ak − a1
+ o(1).

If p → ∞, then k → ∞ and by assumption (cf (2)) the terms

k − 1

ak − a1
− L,

k

ak+1 − a2
− L

converge to zero. But then (9) yields

lim
p→∞

A(t + 1, t + p)

p
= L

uniformly with respect to t ≥ 0. So u(A) = L.

The following theorem is a simple consequence of Theorem 3.1

Theorem 3.2. Let A = {a1 < a2 < · · ·} ⊆ N be a lacunary set, i.e.

(10) lim
n→∞

(an+1 − an) = +∞.

Then u(A) = 0.

Proof. Let ε > 0. Choose M ∈ N such that M−1 < ε. By the assumption there
exists an n0 such that for each n > n0 we get an+1 − an > M .

Let k > n0, s ∈ N , s > 1. Then

ak+s − ak+1 = (ak+2 − ak+1) + (ak+3 − ak+2) + · · ·+ (ak+s − ak+s−1) > (s − 1)M

and so
s

ak+s − ak+1
<

s

(s − 1)M
< 2ε.
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Hence for each k > n0 and s ≥ 2 we have

s

ak+s − ak+1
< 2ε.

If 0 ≤ k ≤ n0, k is fixed, then

(11) lim
s→∞

s

ak+s − ak+1
= 0,

since, for sufficiently large s

ak+s − ak+1 = [(ak+2 − ak+1) + · · · + (an0+1 − an0
)]

+ [(an0+2 − an0+1) + · · · + (ak+s − ak+s−1)] > M(k + s − n0 − 1)

≥ M(s − (n0 + 1)).

There exists only a finite number of k′s with 0 ≤ k ≤ n0, so we see that (11)
holds uniformly with respect to k, 0 ≤ k ≤ n0. So we get wholly

lim
s→∞

s

ak+s − ak+1
= 0

uniformly with respect to k ≥ 0. So according to Theorem 3.1, u(A) = 0.

Remark. The assumption (10) in Theorem 3.2 cannot be replaced by the weaker
assumption

(10′) lim
n→∞

(an+1 − an) = +∞.

This can be shown by the following example:

A =
∞
⋃

k=1

{k! + 1, k! + 2, . . . , k! + k} = {a1 < a2 < · · · < an < · · ·}.

Here we have u(A) = 0, ū(A) = 1 and (10′) is satisfied.

Example 3.1 Let α ∈ R, α > 1. Put ak = [kα], (k = 1, 2, . . .), where [v] denotes
the integer part of v. We show that the uniform density of the set A is 1

α
. This

follows from Theorem 3.1, since

lim
p→∞

p

ak+p − ak+1
=

1

α
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uniformly with respect to k ≥ 0. This uniform convergence can be shown by a
simple calculation which gives the estimates (p ≥ 2)

p

(p − 1)α + 1
≤

p

ak+p − ak+1
≤

p

(p − 1)α − 1
.

4. Darboux property of the uniform density

For every A ⊆ N having the uniform density the number u(A) belongs to
[0, 1]. The natural question arises whether also conversely for every t ∈ [0, 1] there
is a set A ⊆ N such that u(A) = t. The answer to this question is positive.

Theorem 4.1.
If t ∈ [0, 1] then there is a set A ⊆ N with u(A) = t.

Proof. We can already suppose that 0 < t < 1. Construct the set

A =

{[

1

t

]

,

[

2

t

]

, . . . ,

[

k

t

]

, . . .

}

= {a1 < a2 < · · ·}.

Put ak = [k
t
] (k = 1, 2, . . .) and set in Example 3.1 α = 1

t
> 1. So we get

lim
p→∞

p

ak+p − ak+1
=

1

α
= t

uniformly with respect to k ≥ 0. The assertion follows by Theorem 3.1.

Let v be a non-negative set function defined on a class S ⊆ 2N . The function
v is said to have the Darboux property provided that if v(A) > 0 for A ∈ S and
0 < t < v(A), then there is a set B ⊆ A, B ∈ S such that v(B) = t (cf. [6], [7], [9]).

Theorem 4.2. The uniform density has the Darboux property.

Proof. Let u(A) = δ > 0,

A = {a1 < a2 < · · · < ak < · · ·}

and 0 < t < δ. Construct the set

B = {b1 < b2 < · · · < bk < · · ·}

in such a way that we set

bk = a[k δ
t ]

(k = 1, 2, . . .).
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Put nk = [k δ
t
] (k = 1, 2, . . .). Then n1 < n2 < · · · < nk < · · · ,

B = {an1
< an2

< · · · < ank
< · · ·}, B ⊆ A.

We prove that u(B) = t.

By Theorem 3.1 it suffices to show that

(12) lim
p→∞

p

bm+p − bm+1
= t

uniformly with respect to m ≥ 0.

We have (p > 1)

p

bm+p − bm+1
=

p

anm+p
− anm+1

.

By a simple arrangement we get

(13)
p

bm+p − bm+1
=

nm+p − nm+1 + 1

anm+p
− anm+1

p

nm+p − nm+1 + 1
.

A simple estimation gives

(p − 1)
δ

t
− 1 < nm+p − nm+1 < (p − 1)

δ

t
+ 1.

Using this in (13) we get

(14) lim
p→∞

p

nm+p − nm+1 + 1
=

t

δ

uniformly with respect to m ≥ 0.

Further by assumption

lim
p→∞

p

as+p − as+1
= δ

uniformly with respect to s ≥ 0 (Theorem 3.1).

So we get

(15) lim
p→∞

nm+p − nm+1 + 1

anm+p
− anm+1

= δ

uniformly with respect to m ≥ 0 since the sequence

(

nm+p − nm+1 + 1

anm+p
− anm+1

)∞

p=2
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is a subsequence of the sequence

(

p

as+p − as+1

)∞

p=1

.

By (13), (14), (15) we get (12) uniformly with respect to m ≥ 0.
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