
Acta Acad. Paed. Agriensis, Sectio Mathematicae 28 (2001) 35–42

MULTIPLICATIVE FUNCTIONS SATISFYING

A CONGRUENCE PROPERTY IV.

Bui Minh Phong (Budapest, Hungary)

Abstract. It is proved that if an integer-valued completely multiplicative function f with

f(n) 6= 0 (∀n ∈ N) and a polynomial P (x) = a0 + a1x + · · · + akxk ∈ Q[x] satisfy the

relation

AP P (E)f(n + m) ≡ AP P (E)f(n) (mod m)

for a suitable non-zero integer AP and for all n, m ∈ N, where

P (E)f(n) = a0f(n) + a1f(n + 1) + · · · + akf(n + k),

then there is a non-negative integer α such that f(n) = nα for all n ∈ N. A similar result is

true for P (x) = (x − 1)k and a multiplicative function f .
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1. Introduction

An arithmetical function f(f(n) 6≡ 0) is said to be multiplicative if (n, m)
= 1 implies

f(nm) = f(n)f(m),

and it is called completely multiplicative if this equation holds for all positive
integers n and m. Let M and M∗ be the set of all integer-valued multiplicative
and completely multiplicative functions, respectively. Throughout this paper we
apply the usual notations, i.e. P denotes the set of primes, N the set of positive
intgers and Q the set of rational numbers, respectively.

The problem concerning the characterization of some arithmetical functions
by congruence properties was studied by several authors. The first result of this
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type was found by M. V. Subbarao [9], namely he proved in 1966 that if f ∈ M
satisfies the relation

(1) f(n + m) ≡ f(n) (mod m)

for all n, m ∈ N, then f(n) is a power of n with non-negative integer exponent. In
[4] among others we extended this result by proving that if f ∈ M and (1) holds
for all n ∈ N and for all m ∈ P , then f(n) also is of the same form. For further
results and generalizations of the above problem we refer the papers [1] and [4]-[8].

Let
P (x) = a0 + a1x + · · · + akxk (ak 6= 0)

be an arbitrary polynomial with integer coefficients. In the space of the sequences
{x1, x2, . . .} let E, I, ∆ denote the operators defined by the following relations

Exn = xn+1, Ixn = xn, ∆xn = xn+1 − xn.

For the polynomial P (x) and the function f(n) we have

P (E)f(n) = a0f(n) + a1f(n + 1) + · · · + akf(n + k).

For any fixed subsets A, B of N we shall denote by KP (A, B) the set of all
f ∈ M for which

(2) P (E)f(n + m) ≡ P (E)f(n) (mod m)

holds for all n ∈ A and m ∈ B. It is obvious that

(3) ϕa(n) = na

is a solution of (2) for every non-negative integer a and for every triplet (P, A, B).
In the case P (x) = 1, for example, from the result of [4], we have

KP (N,P) = {ϕ0, ϕ1, . . . , ϕa, . . .}

and
KP (P ,N) = {ϕ0, ϕ1, . . . , ϕa, . . .},

where ϕa(n) is defined in (3).

We are interested for a characterization of those triplets (P, A, B) for which

(4) KP (A, B) = {ϕ0, ϕ1, . . . , ϕa, . . .}

is satisfied. In [5]-[6] we proved that (4) holds for the following two cases:

(a) P (x) = (x − 1)k (k ∈ N), A = N, B = P ,
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(b) P (x) = xM − 1 (M ∈ N), A = N, B = P .

Hence we apply the method of I. Kátai [2]-[3] to prove the following.

Theorem 1. Let f ∈ M∗ with condition

(5) f(n) 6= 0 for all n ∈ N.

Let P (x) be a non-zero polynomial with rational coefficients for which there exists
a suitable non-zero integer AP such that

(6) AP P (E)f(n + m) ≡ AP P (E)f(n) (mod m)

for all n ∈ N and m ∈ N. Then there is a non-negative integer α such that

(7) f(n) = nα for all n ∈ N.

We mention that in the special case P (x) = (x− 1)k, Theorem 1 is true under
the assumption f ∈ M.

Theorem 2. Let f ∈ M and let A 6= 0, k ≥ 0 be integers. If ∆kf(n) satisfies the
relation

(8) A∆kf(n + m) ≡ A∆kf(n) (mod m)

for all n ∈ N and m ∈ N, then (7) holds.

2. Proof of Theorem 2

In the proof of Theorem 2 we shall use the following results.

Lemma 1. Let f(n) be an integer-valued arithmetic function and let
k ∈ N, Q ∈ N. If ∆kf(n) satisfies the relation

(9) ∆kf(n + Q) ≡ ∆kf(n) (mod Q)

for all n ∈ N, then for s = 1, 2, . . . , k

(10) ∆k−sf(n + tQ) − ∆k−sf(n) ≡
s−1
∑

j=0

(

n − 1

j

)

∆k−s+j
f (Q, t) (mod Q)
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holds for all n ∈ N, t ∈ N, where

∆i
f (Q, t) := ∆if(1 + tQ) − ∆if(1) (i = 0, 1, . . .).

Furthermore, if Q is a prime, then (9) implies that

(11) ∆k−s
f (Q, t) ≡

[ s−1

Q
]

∑

j=0

(

t

j + 1

)

∆k−s+jQ
f (Q, 1) (mod Q)

holds for all t ∈ N, where [x] denotes the largest integer not exceeding x.

This lemma and its proof can be found in [5] (see Lemma 1-2 ).

Lemma 2. Let α ∈ N and f ∈ M. If

(12) f(n + pα) ≡ f(n) (mod p)

for all n ∈ N and p ∈ P, then f ∈ M∗ and for each q ∈ P

f(q) = qa(q),

where a(q) ≥ 0 is an integer.

This lemma is indentical to Lemma 3 in [5].

Now we prove Theorem 2.

Assume that f ∈ M and (8) is true for all n, m ∈ N. First we shall prove that
there exists an α ∈ N such that (12) holds for all n ∈ N and for all p ∈ P . If k = 0,
then (12) is obviously true.

Assume that k ≥ 1 be an integer. Let α be a fixed positive integer such that

(13) p0 := max(|A|, k − 1) < 2α−1.

Since
A∆kf(n) = ∆k(Af(n)),

by (8) it follows that

∆k(Af(n + pα−1)) ≡ ∆k(Af(n)) (mod pα−1)

holds for all n ∈ N and for all p ∈ P . Thus, by using Lemma 1 and (13), for
s = 1, 2, . . . , k we have

(14) ∆k−sf(n + tpα−1) − ∆k−sf(n) ≡
s−1
∑

j=0

(

n − 1

j

)

∆k−s+j
f (pα−1, t) (mod p)
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holds for all n, t ∈ N, p ∈ P . Applying (14) in the case n = 1 + ipα−1 and t = 1,
one can deduce from (13) that

∆k−sf(1 + (i + 1)pα−1) − ∆k−sf(1 + ipα−1) ≡
s−1
∑

j=0

(

ipα−1

j

)

∆k−s+j
f (pα−1, 1)

(15) ≡ ∆k−s
f (pα−1, 1) (mod p),

since it is obvious that for a prime p

(

ipα−1

j

)

≡ 0 (mod p) if 1 ≤ j < pα−1.

From (15) we infer that

∆k−s
f (pα−1, t) ≡ t∆k−s

f (pα−1, 1) (mod p),

and so

(16) ∆0
f (pα−1, p) ≡ ∆1

f (pα−1, p) ≡ · · · ≡ ∆k−1
f (pα−1, p) ≡ 0 (mod p)

holds for all p ∈ P . By using (14) with k = s and t = p, (16) implies (12). Thus,
(12) is proved.

Now, from Lemma 2 we have f ∈ M∗ and

(17) f(q) = qa(q)

for each q ∈ P , where a(q) ≥ 0 is an integer.

It is clear from (8) that

∆kf(n + p) ≡ ∆kf(n) (mod p)

for all n ∈ N and p ∈ P satisfying the condition p > |A|. By using (11) in the case
k = s, we have

(18) f(1 + tp) − f(1) ≡ t (f(1 + p) − f(1)) (mod p)

for all t ∈ N and for every prime p > p0 := max(|A|, k − 1), because
[

k−1
p

]

= 0 for

p ≥ k. Considering t = p + 2 and taking account (18) we get

(f(1 + p) − 1)2 ≡ 0 (mod p),
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and so by (18) we have

(19) f(1 + tp) − f(1) ≡ 0 (mod p)

for all t ∈ N and for every prime p > p0.

Let q, r be distinct primes and let a(q) ≥ a(r). Then there is a prime p such
that

p > max(p0, q
a(q)−a(r)) and qrs − 1 ≡ 0 (mod p)

for some positive integer s. Using (19), we have f(qrs) ≡ f(1) = 1 (mod p) and

f(qrs) = qa(q)rsa(r) ≡ qa(q)−a(r) (mod p),

which implies a(p) = a(q) = α . Hence, f(n) = nα for all n ∈ N. This completes
the proof of Theorem 2.

3. Proof of Theorem 1

Let f ∈ M∗ and f(n) 6= 0 for all n ∈ N. We denote by If the set of all
polinomials P with rational coefficients for which there exists a suitable non-zero
integer AP such that

AP P (E)f(n + m) ≡ AP P (E)f(n) (mod m)

holds for all n, m ∈ N. By our assumption (6), we have If 6= ∅. It is clear to check
that

(i) cP (x) ∈ If for every P ∈ If , c ∈ Q

(ii) P (x) + P ′(x) ∈ If for every P, P ′ ∈ If

(iii) xP (x) ∈ If for every P ∈ If . Thus, (i)-(iii) show that If is an ideal in Q[x].

Let
S(x) = c0 + c1x + · · · + ckxk (ck = 1)

be a polynomial of minimum degree in If . If k = 0, then Theorem 1 follows from
Theorem 2. In the following we assume that k ≥ 1. Let

S(x) = (x − θ1) . . . (x − θk).

From the fundamental theorem of symmetric polynomials it follows that for a fixed
integer s ≥ 1 the polynomial

k
∏

j=1

xs − θs
j

x − θj
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has rational coefficients, consequently

Qs(x
s) = (xs − θs

1) . . . (xs − θs
k) ∈ If .

Then, by the definition of If there is a non-zero integer As such that

(20) AsQs(E
s)f(n + m) ≡ AsQs(E

s)f(n) (mod m)

for all n, m ∈ N. On the other hand, by using the fact f ∈ M∗, we have

(21) Qs(E
s)f(sn) = f(s)Qs(E)f(n).

Therefore, (20) and (21) imply that

AsQs(E
s)f [s(n + m)] ≡ AsQs(E

s)f(sn) (mod sm)

and

(22) Asf(s)Qs(E)f(n + m) ≡ Asf(s)Qs(E)f(n) (mod sm)

for all n, m ∈ N. Since f(s) 6= 0 and f(s) is an integer, (22) shows that Qs(x) ∈ If .
Thus

δ(x) = (S(x), Qs(x)) ∈ If

and so deg δ(x) = k, S(x) = Qs(x). This implies that

{θ1, . . . , θk} = {θs
1, . . . , θ

s
k}

for all s ∈ N, consequently

θ1 = · · · = θk = 1 and S(x) = (x − 1)k.

Thus, Theorem 1 follows directly from Theorem 2.

References

[1] Iványi, A., On multiplicative functions with congruence property, Ann. Univ.
Sci. Budapest, Eötvös, Sect. Math. 15 (1972), 133-137.

[2] Kátai, I., On arithmetic functions with regularity properties, Acta Sci. Math.,
45 (1983), 253-260.

[3] Kátai, I., Multiplicative functions with regularity properties I, Acta Math.
Hungar., 42 (1983), 295-308.

[4] Phong, B. M., Multiplicative functions satisfying a congruence property,
Studia Sci. Math. Hungar., 26 (1991), 123-128.



42 Bui Minh Phong

[5] Phong, B. M., Multiplicative functions satisfying a congruence property II.,
Ann. Univ. Sci. Budapest. Eötvös, Sec. Math. 33 (1990), 253-259.

[6] Phong, B. M., Multiplicative functions satisfying a congruence property III.,
Publ. Math. Debrecen 39/1 - 2 (1991), 149-153.

[7] Phong, B. M., Multiplicative functions satisfying a congruence property V,
Acta Math. Hungar., 62 (1993), 81-87.

[8] Phong, B. M. and Fehér, J., Note on multiplicative functions satisfying
congruence property, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. 33 (1990),
261-265.

[9] Subbarao, M. V., Arithmetic functions satisfying congruence property,
Canad. Math. Bull., 9 (1966), 143-146.

Bui Minh Phong
Department of Computer Algebra
Eötvös Loránd University
Pázmány Péter sét. 1/D
H-1117 Budapest, Hungary
e-mail: bui@compalg.inf.elte.hu


