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LINEAR RECURRENCES AND ROOTFINDING METHODS

Ferenc Mátyás (Eger, Hungary)

Abstract. Let A,B,G0 and G1 be fixed complex numbers, where AB(|G0|+|G1|) 6=0.

Denote by α and β the roots of the equation λ2−Aλ+B=0 and suppose that |α|>|β|. The

sequence
{

W
(k)

n,d

}

∞

n=0
is defined by W

(k)

n,d
=(akαnk+d−bkβnk+d)/(α−β), where k≥1 and d≥0 are

fixed integers, a=G1−βG0 6=0 and b=G1−αG0. In this paper, using new identities of the sequence
{

W
(k)

n,d

}

∞

n=0
, an other proof is presented for the Newton–Raphson and Halley transformations

(accelerations) of the sequence
{

W
(k)

n,d
/W

(k)
n,0

}

∞

n=0
. It is also shown that the (transformed)

sequences obtained by the secant, Newton–Raphson, Halley and Aitken transformations of the

sequence
{

W
(k)

n,d
/W

(k)
n,0

}

∞

n=0
tend to αd in order of o

(

W
(k)

n,d
/W

(k)
n,0−αd

)

.
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1. Introduction

Let the nth (n ≥ 2) term of the sequence {Gn}∞n=0 be defined by the recursion

Gn = AGn−1 − BGn−2,

where A, B, G0 and G1 are fixed complex numbers and AB(|G0| + |G1|) 6= 0. If
it is needed then the notation Gn(A, B, G0, G1) is also used. For example, the
nth term of the Fibonacci sequence is Fn = Gn(1,−1, 0, 1). The abbreviations
Un = Gn(A, B, 0, 1) and Vn = (A, B, 2, A) will also be very useful for us.

Let α and β be the roots of the equation λ2−Aλ+B = 0 (α+β = A, αβ = B)
and suppose that |α| > |β|. By the well known Binet formula we get that the explicit
form of the term Gn(A, B, G0, G1) is

(1) Gn(A, B, G0, G1) =
aαn − bβn

α − β
(n ≥ 0),
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where a = G1 − βG0, b = G1 − αG0 and suppose that a 6= 0. For example,

Un = (αn − βn) /(α − β) and Vn = αn + βn if α, β =
(

A ±
√

A2 − 4B
)

/2.

Z. Zhang [7] has defined the sequence
{

W
(k)
n,d(A, B, G0, G1)

}∞

n=0
in the follow-

ing manner.

(2) W
(k)
n,d(A, B, G0, G1) =

(

αk + βk
)

W
(k)
n−1,d − αkβkW

(k)
n−2,d (n ≥ 2),

where k ≥ 1 and d ≥ 0 are fixed integers, while

W
(k)
0,d (A, B, G0, G1) =

akαd − bkβd

α − β
, W

(k)
1,d (A, B, G0, G1) =

akαk+d − bkβk+d

α − β
.

For brevity, we write W
(k)
n,d instead of W

(k)
n,d(A, B, G0, G1).

It is obvious that αk and βk are the roots of the equation

λ2 − (αk + βk)λ + αkβk = λ2 − Vkλ + Bk = 0

and |α| > |β| implies |αk| > |β|k. Using the Binet formula for (2) we get that

W
(k)
n,d =

(

W
(k)
1,d − βkW

(k)
0,d

)

αnk −
(

W
(k)
1,d − αkW

(k)
0,d

)

βnk

αk − βk
,

from which

(3) W
(k)
n,d =

akαnk+d − bkβnk+d

α − β

yields for n ≥ 0. It can be seen that W
(k)
n,d is a generalization of Gn because e. g.

Gn = Gn (A, B, G0, G1) = W
(1)
n,0 (A, B, G0, G1) .

If W
(k)
n,0 6= 0 then let

(4) R
(k)
n,d =

W
(k)
n,d

W
(k)
n,0

.

By (3), a 6= 0 and |α| > |β|, one can easily prove that

lim
n→∞

R
(k)
n,d = αd,
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i. e. the sequence
{

R
(k)
n,d

}∞

n=0
tends to the root αd of the polynomial

(5) f(λ) = λ2 − (αd + βd)λ + αdβd = λ2 − Vdλ + Bd.

Recently, many authors have studied the connection between recurrences and
iterative transformations. The main idea is to consider such sequence transfor-
mations T of the convergent sequence {Xn}∞n=0 into the sequence {Tn}∞n=0, where

{Tn}∞n=0 converges more quickly to the same limit X . Thus, one can investigate the
properties of these transformations or the accelerations of the convergence. We say
that {Tn}∞n=0 converges more quickly to X than {Xn}∞n=0 if Tn −X = o(Xn −X),
i. e. if lim

n→∞
((Tn − X) / (Xn − X)) = 0.

The most known four sequence transformations to accelerate the convergence
of a sequence are the secant S(Xn, Xm), Newton–Raphson N(Xn), Halley H(Xn)

and Aitken transformation A(Xn, Xm, Xt), namely if {Xn}∞n=0 =
{

R
(k)
n,d

}∞

n=0
and

X = αd (i. e. the root of f(λ) = 0 in (5)), then

(6) S(Xn, Xm) =
XnXm − Bd

Xn + Xm − Vd
,

(7) N(Xn) =
X2

n − Bd

2Xn − Vd
,

(8) H(Xn) =
X3

n − 3BdXn + VdB
d

3X2
n − 3VdXn + V 2

d − Bd
,

(9) A(Xn, Xm, Xt) =
XnXt − X2

m

Xn − 2Xm + Xt
,

where we assume that division by zero does not occur. (The formulae (6)-(9) can
be obtained from (5) using the known forms of the transformations S, N, H and A,
or they can be found in [4] p. 366 and p. 369.)

Some results from the recent past: G. M. Phillips [5] proved that if r
′

n = Fn+1

Fn

then A(r
′

n−t, r
′

n, r
′

n+t) = r
′

2n. J. H. McCabe and G. M. Phillips [3] generalized this

for r
′′

n = Un+1

Un
, and they also proved that S

(

r
′′

n , r
′′

m

)

= r
′′

n+m and N(r
′′

n) = r
′′

2n. M.

J. Jamieson [1] investigated the case r
′′

n = Fn+d

Fn
for d > 1. J. B. Muskat [4], using

the notations rn = Un+d

Un
and Rn = Vn+d

Vn
(d > 1), proved that

(a) S(rn, rm) = rn+m, S(Rn, Rm) = rn+m,
(10) (b) N(rn) = r2n, N(Rn) = r2n,
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(c) H(rn) = r3n, H(Rn) = R3n,
(d) A(rn−t, rn, rn+t) = r2n, A(Rn−t, Rn, Rn+t) = r2n.

Similar results were obtained for special second order linear recurrences in [2]
by F. Mátyás, while Z. Zhang ([7],[8]) stated and partially proved that

(a) S
(

R
(k)
n,d, R

(k)
m,d

)

= R
(2k)
(n+m)/2,d, (2|n + m),

(11) (b) N
(

R
(k)
n,d

)

= R
(2k)
n,d ,

(c) H
(

R
(k)
n,d

)

= R
(3k)
n,d ,

(d) A
(

R
(k)
n−t,d, R

(k)
n,d, R

(k)
n+t,d

)

= R
(2k)
n,d .

It is easy to see that (11) implies (10) if k = 1, G0 = 0, G1 = 1 or k =
1, G0 = 2, G1 = A. We mention that R. B. Taher and M. Rachidi [6] investigated
the so-called ε–algorithm to the ratio of the terms of linear recurrences of order
r ≥ 2.

The purpose of this paper is to present some new properties of the sequence
{

W
(k)
n,d

}∞

n=0
(see Lemma 1 and Lemma 2) and, using them, to give new proofs

for (11)/(b) and (c), since Z. Zhang, using some other properties proven by him,
presented the proof for only the cases (11)/(a) and (d) in [7] and [8]. We also show

that the transformations S, N, H and A creat such sequences from
{

R
(k)
n,d

}∞

n=0

which tend to αd in order of o
(

R
(k)
n,d − αd

)

.

2. Results

Applying the notations introduced in this paper, assume that k ≥ 1 and d ≥ 0
are fixed integers, in (1) AB (|G0| + |G1|) 6= 0, a 6= 0 and |α| > |β|. We always
assume that division by zero does not occur. First we formulate two lemmas.

Lemma 1. Let n and m be non-negative integers with the same parity. Then

(a) W
(k)
n,dW

(k)
m,d − W

(k)
n,0W

(k)
m,0B

d = W
(2k)
n+m

2 ,d
Ud,

(b) W
(k)
n,dW

(k)
m,0 + W

(k)
m,dW

(k)
n,0 − W

(k)
n,0W

(k)
m,0Vd = W

(2k)
n+m

2 ,0
Ud.

Lemma 2. Let n be a non-negative integer. Then

(a) W
(k)
n,dW

(2k)
n,d − W

(k)
n,0W

(2k)
n,0 Bd = W

(3k)
n,d Ud,

(b) W
(2k)
n,d W

(k)
n,0 − W

(2k)
n,0 W

(k)
n,0 + W

(k)
n,dW

(2k)
n,0 = W

(3k)
n,0 Ud.

Theorem 1. Let n be a non-negative integer. Then
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(a) N
(

R
(k)
n,d

)

= R
(2k)
n,d ,

(b) H
(

R
(k)
n,d

)

= R
(3k)
n,d .

The following theorem implies that the transformations S, N, H and A produce

such sequences from the sequence
{

R
(k)
n,d

}∞

n=0
which tend very quickly to αd.

Theorem 2. Let l > k ≥ 1 be fixed integers. Then

R
(l)
n,d − αd = o

(

R
(k)
n,d − αd

)

.

Corollary. Theorem 1 and (11) show that the transformations S, N, A and H

transform R
(k)
n,d into R

(2k)
n,d and into R

(3k)
n,d , respectively, thus Theorem 2 implies

that all of the mentioned transformations give accelerations of the convergence.

3. Proofs of Lemmas and Theorems

Proof of Lemma 1. Because of the similarity of the proofs we present only the

proof of part (a). Using the explicit form (3) of W
(k)
n,d , we write

W
(k)
n,dW

(k)
m,d − W

(k)
n,0W

(k)
m,0B

d =
(akαnk+d − bkβnk+d)(akαmk+d − bkβmk+d)

(α − β)
2

− (akαnk − bkβnk)(akαmk − bkβmk)αdβd

(α − β)
2 = · · · =

αd − βd

α − β

·a
2kα

n+m
2 2k+d − b2kβ

n+m
2 2k+d

α − β
= UdW

(2k)
n+m

2 ,d
.

Proof of Lemma 2. Here we also give only the proof of part (a). By (3)

W
(k)
n,dW

(2k)
n,d − W

(k)
n,0W

(2k)
n,0 Bd =

(akαnk+d − bkβnk+d)(a2kα2nk+d − b2kβ2nk+d)

(α − β)
2

− (akαnk − bkβnk)(a2kα2nk − b2kβ2nk)αdβd

(α − β)
2 = · · · =

αd − βd

α − β
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·a
3kα3nk+d − b3kβ3nk+d

α − β
= UdW

(3k)
n,d .

Proof of Theorem 1. (a) By (7) and (4)

N
(

R
(k)
n,d

)

=

(

W
(k)

n,d

W
(k)
n,0

)2

− Bd

2W
(k)

n,d

W
(k)
n,0

− Vd

=

(

W
(k)
n,d

)2

−
(

W
(k)
n,0

)2

Bd

2W
(k)
n,d · W (k)

n,0 −
(

W
(k)
n,0

)2

Vd

.

Applying Lemma 1 in the case n = m, we have

N
(

R
(k)
n,d

)

=
Ud · W (2k)

n,d

Ud · W (2k)
n,0

= R
(2k)
n,d .

(b) By the Halley transformation (8) and (4)

H
(

R
(k)
n,d

)

=

(

R
(k)
n,d

)3

− 3BdR
(k)
n,d + VdB

d

3
(

R
(k)
n,d

)2

− 3VdR
(k)
n,d + V 2

d − Bd

=

(

W
(k)
n,d

)3

− 3BdW
(k)
n,d

(

W
(k)
n,0

)2

+ VdB
d
(

W
(k)
n,0

)3

3
(

W
(k)
n,d

)2

W
(k)
n,0 − 3VdW

(k)
n,d

(

W
(k)
n,0

)2

+ (V 2
d − Bd)

(

W
(k)
n,0

)3

=

W
(k)

n,d

(

(

W
(k)

n,d

)2
−Bd(W

(k)
n,0)

2
)

−BdW
(k)
n,0

(

2W
(k)

n,d
W

(k)
n,0

−Vd(W
(k)
n,0)

2
)

W
(k)
n,0

(

(

W
(k)

n,d

)2
−Bd(W

(k)
n,0)

2
)

+

(

W
(k)

n,d
−VdW

(k)
n,0

)(

2W
(k)

n,d
·W

(k)
n,0

−Vd(W
(k)
n,0)

2
)

.

The numerator and the denominator of the last fraction, by Lemma 1, can be
rewritten as

Ud

(

W
(2k)
n,d − BdW

(k)
n,0W

(2k)
n,0

)

and

Ud

(

W
(k)
n,0W

(2k)
n,d +

(

W
(k)
n,d − VdW

(k)
n,0

)

W
(2k)
n,0

)

,

respectively. From these, by Lemma 2,

H
(

R
(k)
n,d

)

=
U2

dW
(3k)
n,d

U2
dW

(3k)
n,0

= R
(3k)
n,d

follows.
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Proof of Theorem 2. To prove the theorem we have to show that

lim
n→∞

R
(l)
n,d − αd

R
(k)
n,d − αd

= 0.

Applying (4) and (3), we get that

R
(l)
n,d − αd

R
(k)
n,d − αd

=
W

(l)
n,d − αdW

(l)
n,0

W
(k)
n,d − αdW

(k)
n,0

W
(k)
n,0

W
(l)
n,0

= · · ·

=

(

b

a

)l−k (

β

α

)n(l−k) 1 −
(

b
a

)k
(

β
α

)nk

1 −
(

b
a

)k
(

β
α

)nl
,

from which, by |α| > |β| and l > k ≥ 1,

lim
n→∞

R
(l)
n,d − αd

R
(k)
n,d − αd

= 0

follows.
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