LINEAR RECURRENCES AND ROOTFINDING METHODS

Ferenc Mátyás (Eger, Hungary)

Abstract. Let A, B, G_0 and G_1 be fixed complex numbers, where $AB(|G_0|+|G_1|)\neq 0$. Denote by α and β the roots of the equation $\lambda^2 - A\lambda + B = 0$ and suppose that $|\alpha| > |\beta|$. The sequence $\left\{W_{n,d}^{(k)}\right\}_{n=0}^{\infty}$ is defined by $W_{n,d}^{(k)} = \left(a^k \alpha^{nk+d} - b^k \beta^{nk+d}\right)/(\alpha-\beta)$, where $k \ge 1$ and $d \ge 0$ are fixed integers, $a = G_1 - \beta G_0 \neq 0$ and $b = G_1 - \alpha G_0$. In this paper, using new identities of the sequence $\left\{W_{n,d}^{(k)}\right\}_{n=0}^{\infty}$, an other proof is presented for the Newton–Raphson and Halley transformations (accelerations) of the sequence $\left\{W_{n,d}^{(k)}/W_{n,0}^{(k)}\right\}_{n=0}^{\infty}$. It is also shown that the (transformed) sequences obtained by the secant, Newton–Raphson, Halley and Aitken transformations of the sequence $\left\{W_{n,d}^{(k)}/W_{n,0}^{(k)}\right\}_{n=0}^{\infty}$ tend to α^d in order of $o\left(W_{n,d}^{(k)}/W_{n,0}^{(k)} - \alpha^d\right)$.

AMS Classification Number: 11B39, 65B05.

Keywords: linear recursive sequences, rootfinding methods, accelerations of convergence.

1. Introduction

Let the n^{th} $(n \ge 2)$ term of the sequence $\{G_n\}_{n=0}^{\infty}$ be defined by the recursion

$$G_n = AG_{n-1} - BG_{n-2},$$

where A, B, G_0 and G_1 are fixed complex numbers and $AB(|G_0| + |G_1|) \neq 0$. If it is needed then the notation $G_n(A, B, G_0, G_1)$ is also used. For example, the n^{th} term of the Fibonacci sequence is $F_n = G_n(1, -1, 0, 1)$. The abbreviations $U_n = G_n(A, B, 0, 1)$ and $V_n = (A, B, 2, A)$ will also be very useful for us.

Let α and β be the roots of the equation $\lambda^2 - A\lambda + B = 0$ ($\alpha + \beta = A$, $\alpha\beta = B$) and suppose that $|\alpha| > |\beta|$. By the well known Binet formula we get that the explicit form of the term $G_n(A, B, G_0, G_1)$ is

(1)
$$G_n(A, B, G_0, G_1) = \frac{a\alpha^n - b\beta^n}{\alpha - \beta} \quad (n \ge 0),$$

Research supported by the Hungarian OTKA Foundation No. T 032898.

where $a = G_1 - \beta G_0$, $b = G_1 - \alpha G_0$ and suppose that $a \neq 0$. For example, $U_n = (\alpha^n - \beta^n) / (\alpha - \beta)$ and $V_n = \alpha^n + \beta^n$ if $\alpha, \beta = (A \pm \sqrt{A^2 - 4B}) / 2$.

Z. Zhang [7] has defined the sequence $\left\{W_{n,d}^{(k)}(A,B,G_0,G_1)\right\}_{n=0}^\infty$ in the following manner.

(2)
$$W_{n,d}^{(k)}(A, B, G_0, G_1) = (\alpha^k + \beta^k) W_{n-1,d}^{(k)} - \alpha^k \beta^k W_{n-2,d}^{(k)} \quad (n \ge 2)$$

where $k \ge 1$ and $d \ge 0$ are fixed integers, while

$$W_{0,d}^{(k)}(A, B, G_0, G_1) = \frac{a^k \alpha^d - b^k \beta^d}{\alpha - \beta}, \quad W_{1,d}^{(k)}(A, B, G_0, G_1) = \frac{a^k \alpha^{k+d} - b^k \beta^{k+d}}{\alpha - \beta}$$

For brevity, we write $W_{n,d}^{(k)}$ instead of $W_{n,d}^{(k)}(A, B, G_0, G_1)$.

It is obvious that α^k and β^k are the roots of the equation

$$\lambda^2 - (\alpha^k + \beta^k)\lambda + \alpha^k\beta^k = \lambda^2 - V_k\lambda + B^k = 0$$

and $|\alpha| > |\beta|$ implies $|\alpha^k| > |\beta|^k$. Using the Binet formula for (2) we get that

$$W_{n,d}^{(k)} = \frac{\left(W_{1,d}^{(k)} - \beta^k W_{0,d}^{(k)}\right) \alpha^{nk} - \left(W_{1,d}^{(k)} - \alpha^k W_{0,d}^{(k)}\right) \beta^{nk}}{\alpha^k - \beta^k}$$

from which

(3)
$$W_{n,d}^{(k)} = \frac{a^k \alpha^{nk+d} - b^k \beta^{nk+d}}{\alpha - \beta}$$

yields for $n \ge 0$. It can be seen that $W_{n,d}^{(k)}$ is a generalization of G_n because e.g.

$$G_n = G_n (A, B, G_0, G_1) = W_{n,0}^{(1)} (A, B, G_0, G_1)$$

If $W_{n,0}^{(k)} \neq 0$ then let

(4)
$$R_{n,d}^{(k)} = \frac{W_{n,d}^{(k)}}{W_{n,0}^{(k)}}.$$

By (3), $a \neq 0$ and $|\alpha| > |\beta|$, one can easily prove that

$$\lim_{n \to \infty} R_{n,d}^{(k)} = \alpha^d,$$

i. e. the sequence
$$\left\{R_{n,d}^{(k)}\right\}_{n=0}^{\infty}$$
 tends to the root α^d of the polynomial

(5)
$$f(\lambda) = \lambda^2 - (\alpha^d + \beta^d)\lambda + \alpha^d\beta^d = \lambda^2 - V_d\lambda + B^d.$$

Recently, many authors have studied the connection between recurrences and iterative transformations. The main idea is to consider such sequence transformations T of the convergent sequence $\{X_n\}_{n=0}^{\infty}$ into the sequence $\{T_n\}_{n=0}^{\infty}$, where $\{T_n\}_{n=0}^{\infty}$ converges more quickly to the same limit X. Thus, one can investigate the properties of these transformations or the accelerations of the convergence. We say that $\{T_n\}_{n=0}^{\infty}$ converges more quickly to X than $\{X_n\}_{n=0}^{\infty}$ if $T_n - X = o(X_n - X)$, i. e. if $\lim_{n \to \infty} ((T_n - X) / (X_n - X)) = 0$.

The most known four sequence transformations to accelerate the convergence of a sequence are the secant $S(X_n, X_m)$, Newton–Raphson $N(X_n)$, Halley $H(X_n)$ and Aitken transformation $A(X_n, X_m, X_t)$, namely if $\{X_n\}_{n=0}^{\infty} = \{R_{n,d}^{(k)}\}_{n=0}^{\infty}$ and $X = \alpha^d$ (i. e. the root of $f(\lambda) = 0$ in (5)), then

(6)
$$S(X_n, X_m) = \frac{X_n X_m - B^d}{X_n + X_m - V_d}$$

(7)
$$N(X_n) = \frac{X_n^2 - B^d}{2X_n - V_d},$$

(8)
$$H(X_n) = \frac{X_n^3 - 3B^d X_n + V_d B^d}{3X_n^2 - 3V_d X_n + V_d^2 - B^d},$$

(9)
$$A(X_n, X_m, X_t) = \frac{X_n X_t - X_m^2}{X_n - 2X_m + X_t}$$

where we assume that division by zero does not occur. (The formulae (6)-(9) can be obtained from (5) using the known forms of the transformations S, N, H and A, or they can be found in [4] p. 366 and p. 369.)

Some results from the recent past: G. M. Phillips [5] proved that if $r'_n = \frac{F_{n+1}}{F_n}$ then $A(r'_{n-t}, r'_n, r'_{n+t}) = r'_{2n}$. J. H. McCabe and G. M. Phillips [3] generalized this for $r''_n = \frac{U_{n+1}}{U_n}$, and they also proved that $S\left(r''_n, r''_m\right) = r''_{n+m}$ and $N(r''_n) = r''_{2n}$. M. J. Jamieson [1] investigated the case $r''_n = \frac{F_{n+d}}{F_n}$ for d > 1. J. B. Muskat [4], using the notations $r_n = \frac{U_{n+d}}{U_n}$ and $R_n = \frac{V_{n+d}}{V_n}$ (d > 1), proved that

(a)
$$S(r_n, r_m) = r_{n+m}$$
, $S(R_n, R_m) = r_{n+m}$,
(10) (b) $N(r_n) = r_{2n}$, $N(R_n) = r_{2n}$,

$$\begin{array}{ll} (c) \ H(r_n) = r_{3n}, & H(R_n) = R_{3n}, \\ (d) \ A(r_{n-t}, r_n, r_{n+t}) = r_{2n}, & A(R_{n-t}, R_n, R_{n+t}) = r_{2n}. \end{array}$$

Similar results were obtained for special second order linear recurrences in [2] by F. Mátyás, while Z. Zhang ([7],[8]) stated and partially proved that

(a)
$$S\left(R_{n,d}^{(k)}, R_{m,d}^{(k)}\right) = R_{(n+m)/2,d}^{(2k)}, \quad (2|n+m),$$

(11) (b) $N\left(R_{n,d}^{(k)}\right) = R_{n,d}^{(2k)},$
(c) $H\left(R_{n,d}^{(k)}\right) = R_{n,d}^{(3k)},$
(d) $A\left(R_{n-t,d}^{(k)}, R_{n,d}^{(k)}, R_{n+t,d}^{(k)}\right) = R_{n,d}^{(2k)}.$

It is easy to see that (11) implies (10) if $k = 1, G_0 = 0, G_1 = 1$ or $k = 1, G_0 = 2, G_1 = A$. We mention that R. B. Taher and M. Rachidi [6] investigated the so-called ε -algorithm to the ratio of the terms of linear recurrences of order $r \geq 2$.

The purpose of this paper is to present some new properties of the sequence $\left\{W_{n,d}^{(k)}\right\}_{n=0}^{\infty}$ (see Lemma 1 and Lemma 2) and, using them, to give new proofs for (11)/(b) and (c), since Z. Zhang, using some other properties proven by him, presented the proof for only the cases (11)/(a) and (d) in [7] and [8]. We also show that the transformations S, N, H and A creat such sequences from $\left\{R_{n,d}^{(k)}\right\}_{n=0}^{\infty}$ which tend to α^d in order of $o\left(R_{n,d}^{(k)} - \alpha^d\right)$.

2. Results

Applying the notations introduced in this paper, assume that $k \ge 1$ and $d \ge 0$ are fixed integers, in (1) $AB(|G_0| + |G_1|) \ne 0, a \ne 0$ and $|\alpha| > |\beta|$. We always assume that division by zero does not occur. First we formulate two lemmas.

Lemma 1. Let n and m be non-negative integers with the same parity. Then

(a)
$$W_{n,d}^{(k)}W_{m,d}^{(k)} - W_{n,0}^{(k)}W_{m,0}^{(k)}B^d = W_{\frac{n+m}{2},d}^{(2k)}U_d,$$

(b) $W_{n,d}^{(k)}W_{m,0}^{(k)} + W_{m,d}^{(k)}W_{n,0}^{(k)} - W_{n,0}^{(k)}W_{m,0}^{(k)}V_d = W_{\frac{n+m}{2},0}^{(2k)}U_d.$

Lemma 2. Let n be a non-negative integer. Then

(a)
$$W_{n,d}^{(k)}W_{n,d}^{(2k)} - W_{n,0}^{(k)}W_{n,0}^{(2k)}B^d = W_{n,d}^{(3k)}U_d,$$

(b) $W_{n,d}^{(2k)}W_{n,0}^{(k)} - W_{n,0}^{(2k)}W_{n,0}^{(k)} + W_{n,d}^{(k)}W_{n,0}^{(2k)} = W_{n,0}^{(3k)}U_d.$

Theorem 1. Let n be a non-negative integer. Then

(a)
$$N\left(R_{n,d}^{(k)}\right) = R_{n,d}^{(2k)},$$

(b) $H\left(R_{n,d}^{(k)}\right) = R_{n,d}^{(3k)}.$

The following theorem implies that the transformations S, N, H and A produce such sequences from the sequence $\left\{R_{n,d}^{(k)}\right\}_{n=0}^{\infty}$ which tend very quickly to α^d .

Theorem 2. Let $l > k \ge 1$ be fixed integers. Then

$$R_{n,d}^{(l)} - \alpha^d = o\left(R_{n,d}^{(k)} - \alpha^d\right).$$

Corollary. Theorem 1 and (11) show that the transformations S, N, A and H transform $R_{n,d}^{(k)}$ into $R_{n,d}^{(2k)}$ and into $R_{n,d}^{(3k)}$, respectively, thus Theorem 2 implies that all of the mentioned transformations give accelerations of the convergence.

3. Proofs of Lemmas and Theorems

Proof of Lemma 1. Because of the similarity of the proofs we present only the proof of part (a). Using the explicit form (3) of $W_{n,d}^{(k)}$, we write

$$W_{n,d}^{(k)}W_{m,d}^{(k)} - W_{n,0}^{(k)}W_{m,0}^{(k)}B^{d} = \frac{(a^{k}\alpha^{nk+d} - b^{k}\beta^{nk+d})(a^{k}\alpha^{mk+d} - b^{k}\beta^{mk+d})}{(\alpha - \beta)^{2}}$$
$$-\frac{(a^{k}\alpha^{nk} - b^{k}\beta^{nk})(a^{k}\alpha^{mk} - b^{k}\beta^{mk})\alpha^{d}\beta^{d}}{(\alpha - \beta)^{2}} = \dots = \frac{\alpha^{d} - \beta^{d}}{\alpha - \beta}$$
$$\cdot \frac{a^{2k}\alpha^{\frac{n+m}{2}2k+d} - b^{2k}\beta^{\frac{n+m}{2}2k+d}}{\alpha - \beta} = U_{d}W_{\frac{n+m}{2},d}^{(2k)}.$$

Proof of Lemma 2. Here we also give only the proof of part (a). By (3)

$$W_{n,d}^{(k)}W_{n,d}^{(2k)} - W_{n,0}^{(k)}W_{n,0}^{(2k)}B^{d} = \frac{(a^{k}\alpha^{nk+d} - b^{k}\beta^{nk+d})(a^{2k}\alpha^{2nk+d} - b^{2k}\beta^{2nk+d})}{(\alpha - \beta)^{2}}$$
$$-\frac{(a^{k}\alpha^{nk} - b^{k}\beta^{nk})(a^{2k}\alpha^{2nk} - b^{2k}\beta^{2nk})\alpha^{d}\beta^{d}}{(\alpha - \beta)^{2}} = \dots = \frac{\alpha^{d} - \beta^{d}}{\alpha - \beta}$$

$$\cdot \frac{a^{3k} \alpha^{3nk+d} - b^{3k} \beta^{3nk+d}}{\alpha - \beta} = U_d W_{n,d}^{(3k)}.$$

Proof of Theorem 1. (a) By (7) and (4)

$$N\left(R_{n,d}^{(k)}\right) = \frac{\left(\frac{W_{n,d}^{(k)}}{W_{n,0}^{(k)}}\right)^2 - B^d}{\frac{2W_{n,d}^{(k)}}{W_{n,0}^{(k)}} - V_d} = \frac{\left(W_{n,d}^{(k)}\right)^2 - \left(W_{n,0}^{(k)}\right)^2 B^d}{2W_{n,d}^{(k)} \cdot W_{n,0}^{(k)} - \left(W_{n,0}^{(k)}\right)^2 V_d}.$$

Applying Lemma 1 in the case n = m, we have

$$N\left(R_{n,d}^{(k)}\right) = \frac{U_d \cdot W_{n,d}^{(2k)}}{U_d \cdot W_{n,0}^{(2k)}} = R_{n,d}^{(2k)}.$$

(b) By the Halley transformation (8) and (4)

$$\begin{split} H\left(R_{n,d}^{(k)}\right) &= \frac{\left(R_{n,d}^{(k)}\right)^3 - 3B^d R_{n,d}^{(k)} + V_d B^d}{3\left(R_{n,d}^{(k)}\right)^2 - 3V_d R_{n,d}^{(k)} + V_d^2 - B^d} \\ &= \frac{\left(W_{n,d}^{(k)}\right)^3 - 3B^d W_{n,d}^{(k)} \left(W_{n,0}^{(k)}\right)^2 + V_d B^d \left(W_{n,0}^{(k)}\right)^3}{3\left(W_{n,d}^{(k)}\right)^2 W_{n,0}^{(k)} - 3V_d W_{n,d}^{(k)} \left(W_{n,0}^{(k)}\right)^2 + (V_d^2 - B^d) \left(W_{n,0}^{(k)}\right)^3} \\ &= \frac{W_{n,d}^{(k)} \left(\left(W_{n,d}^{(k)}\right)^2 - B^d \left(W_{n,0}^{(k)}\right)^2\right) - B^d W_{n,d}^{(k)} \left(2W_{n,d}^{(k)} W_{n,0}^{(k)} - V_d \left(W_{n,0}^{(k)}\right)^2\right)}{W_{n,0}^{(k)} \left(\left(W_{n,d}^{(k)}\right)^2 - B^d \left(W_{n,0}^{(k)}\right)^2\right) + \left(W_{n,d}^{(k)} - V_d W_{n,0}^{(k)}\right) \left(2W_{n,d}^{(k)} \cdot W_{n,0}^{(k)} - V_d \left(W_{n,0}^{(k)}\right)^2\right)}. \end{split}$$

The numerator and the denominator of the last fraction, by Lemma 1, can be rewritten as

$$U_d \left(W_{n,d}^{(2k)} - B^d W_{n,0}^{(k)} W_{n,0}^{(2k)} \right)$$

and

$$U_d \left(W_{n,0}^{(k)} W_{n,d}^{(2k)} + \left(W_{n,d}^{(k)} - V_d W_{n,0}^{(k)} \right) W_{n,0}^{(2k)} \right),$$

respectively. From these, by Lemma 2,

$$H\left(R_{n,d}^{(k)}\right) = \frac{U_d^2 W_{n,d}^{(3k)}}{U_d^2 W_{n,0}^{(3k)}} = R_{n,d}^{(3k)}$$

follows.

Proof of Theorem 2. To prove the theorem we have to show that

$$\lim_{n \to \infty} \frac{R_{n,d}^{(l)} - \alpha^d}{R_{n,d}^{(k)} - \alpha^d} = 0$$

Applying (4) and (3), we get that

$$\frac{R_{n,d}^{(l)} - \alpha^d}{R_{n,d}^{(k)} - \alpha^d} = \frac{W_{n,d}^{(l)} - \alpha^d W_{n,0}^{(l)}}{W_{n,d}^{(k)} - \alpha^d W_{n,0}^{(k)}} \frac{W_{n,0}^{(k)}}{W_{n,0}^{(l)}} = \cdots$$
$$= \left(\frac{b}{a}\right)^{l-k} \left(\frac{\beta}{\alpha}\right)^{n(l-k)} \frac{1 - \left(\frac{b}{a}\right)^k \left(\frac{\beta}{\alpha}\right)^{nk}}{1 - \left(\frac{b}{a}\right)^k \left(\frac{\beta}{\alpha}\right)^{nl}},$$

from which, by $|\alpha| > |\beta|$ and $l > k \ge 1$,

$$\lim_{n \to \infty} \frac{R_{n,d}^{(l)} - \alpha^d}{R_{n,d}^{(k)} - \alpha^d} = 0$$

follows.

References

- JAMIESON, M. J., Fibonacci numbers and Aitken sequences revisited, Amer. Math. Monthly, 97 (1990), 829–831.
- [2] MÁTYÁS, F., Recursive formulae for special continued fraction convergents, Acta Acad. Paed. Agriensis Sect. Mat., 26 (1999), 49–56.
- [3] MCCABE J. H. AND PHILLIPS, G. M., Aitken sequences and generalized Fibonacci numbers, *Math. Comp.*, 45 (1985), 553–558.
- [4] MUSKAT, J. B., Generalized Fibonacci and Lucas sequences and rootfinding methods, *Math. Comp.*, **61** (1993), 365–372.
- [5] PHILLIPS, G. M., Aitken sequences and Fibonacci numbers, Amer Math. Monthly, 91 (1984), 354–357.
- [6] TAHER R. B. AND RACHIDI, M., Application of the ε algorithm to the ratio of *r*-generalized Fibonacci sequences, *The Fibonacci Quarterly*, **39** (2001), 22–26.
- [7] ZHANG, Z., A class of sequences and the Aitken transformation, *The Fibonacci Quarterly*, 36 (1998), 68–71.

[8] ZHANG, Z., Generalized Fibonacci sequences and a Generalization of the Q-Matrix, The Fibonacci Quarterly, 37 (1999), 203–207.

Ferenc Mátyás

Károly Eszterházy College Department of Mathematics Leányka str. 4. H-3300 Eger, Hungary e-mail: matyas@ektf.hu