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REAL NUMBERS THAT HAVE GOOD DIOPHANTINE

APPROXIMATIONS OF THE FORM rn+1/rn

Andreas Dress & Florian Luca (Bielefeld & Morelia)

Abstract. In this note, we show that if α is a real number such that there exist a

constant c and a sequence of non-zero integers (rn)n≥0 with limn→∞ |rn| = ∞ for which
∣

∣

∣
α − rn+1

rn

∣

∣

∣
<

c

|rn|2
holds for all n ≥ 0, then either α ∈ Z\{0, ±1} or α is a quadratic

unit. Our result complements results obtained by P. Kiss who established the converse in Period.
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1. Introduction

Let α be a real number. In this paper, we deal with the topic of approximating
α by rationals. It is well known that there exist a constant c and two sequences of
integers (un)n≥0 and (vn)n≥0 with vn > 0 for all n ≥ 0 and vn diverging to infinity
(with n) such that

(1)
∣

∣

∣
α − un

vn

∣

∣

∣
≤ c

v2
n

holds for all n ≥ 0. By work of Hurwitz (see [5]), one can take c := 1/
√

5 and the

above constant is well known to be best-possible for α :=
1 +

√
5

2
.

Several papers in the literature deal with the question of approximating α by
rationals un/vn requiring un and vn to satisfy (1) as well as some additional
conditions. For example, if α is irrational and a, b and k are integers with k > 1,
then there exist a constant c and two sequences of integers (un)n≥0 and (vn)n≥0

with vn > 0 and vn diverging to infinity such that

(2)
∣

∣

∣
α − un

vn

∣

∣

∣
<

c

v2
n

and un ≡ a (mod k), vn ≡ b (mod k)
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holds for all n ≥ 0. The best-possible constant c in (2) is k2/4 in case a and b are
not both divisible by k (see [3] and [4]).

If α is algebraic and P is a fixed finite set of prime numbers, then Ridout [10]
inferred from Roth’s work [11] that one cannot approximate α too well by rational
numbers u/v where either u or v is divisible only by primes from P . More precisely,
for every given ǫ > 0, the inequality

(3)
∣

∣

∣
α − u

v

∣

∣

∣
<

1

v1+ǫ

has only finitely many integer solutions (u, v) with v > 0 and either u or v divisible
by primes from P , only.

A different type of question was considered by P. Kiss in [6] and [7] (see also
[8] and [9]). In [6], it was shown that if α is a quadratic unit with |α| > 1, then
there exist a constant c and a sequence of integers (rn)n≥0 with |rn| diverging to
infinity such that

(4)
∣

∣

∣
α − rn+1

rn

∣

∣

∣
<

c

|rn|2

holds for all n ≥ 0. In [7] it was shown that, in fact, a statement similar to (4) holds
for both α and αs where s ≥ 2 is some positive integer: There exist a constant c
and a sequence of integers (rn)n≥0 with |rn| diverging to infinity such that both

(5)
∣

∣

∣
α − rn+1

rn

∣

∣

∣
<

c

|rn|2
and

∣

∣

∣
αs − rn+s

rn

∣

∣

∣
<

c

|rn|2

hold for all n ≥ 0.

An explicit description of a sequence (rn)n≥0 satisfying inequalities (5) above
was also given in [7]: Let

f = X2 + AX + B (A, B ∈ Z)

be the minimal polynomial of α over Q. Let β be the other root of f . Since α is a
unit, |B| = |αβ| = 1 must hold which implies that the sequence

(6) rn =
αn − βn

α − β
, n ≥ 1

fulfills the inequalities (5) for all n with c := 2
∑

s−1

i=0
|α|i|β|s−1−i.

One may ask if one can characterize all real numbers α for which there exist
a constant c and a sequence of integers (rn)n≥0 with |rn| diverging to infinity such
that inequality (4) or, respectively, inequalities (5) hold for all n ≥ 0. From the
above remarks, we saw that quadratic units α with |α| > 1 have these properties.
Moreover, the sequence rn := αn (n ≥ 1) shows that integers α with |α| > 1
also belong to this class. It seems natural therefore to inquire if there are any
other candidates α satisfying the above conditions. The perhaps not too surprising,
answer is no. Our exact result is the following.
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Theorem 1. Let α be a real number.

(i) Assume that there exist ǫ > 0 and a sequence of integers (rn)n≥0 with |rn|
diverging to infinity such that

(7)
∣

∣

∣
α − rn+1

rn

∣

∣

∣
<

1

|rn|
3

2
+ǫ

holds for all n ≥ 0. Then, α is a real algebraic integer of absolute value larger than
1 and of degree at most 2. Moreover, if α is irrational, then the absolute value of

its norm is smaller than
√

|α|.
(ii) Assume, moreover, that there exist a constant c and a sequence of integers

(rn)n≥0 with |rn| diverging to infinity such that

(8)
∣

∣

∣
α − rn+1

rn

∣

∣

∣
<

c

|rn|2

holds for all n ≥ 0. Then α is a quadratic unit or a rational integer different from
0 or ±1.

The following result characterizes real numbers α for which - as in (5) - two
different powers can be well approximated by rationals.

Theorem 2. Let α be a real number. Assume that there exist two coprime positive
integers s1 and s2, two positive integers t1 and t2, a real number ǫ > 0, and a
sequence of integers (rn)n≥0 with |rn| diverging to infinity with n such that

(9)
∣

∣

∣
αsi − rn+ti

rn

∣

∣

∣
<

1

|rn|
3

2
+ǫ

hold for all n ≥ 0 and for both i = 1 and 2. Then, either α ∈ Z\{0, ±1} or α is

quadratic irrational with norm smaller than
√

|α| in absolute value. If moreover α
is irrational and there exists a constant c with

(10)
∣

∣

∣
αs1 − rn+t1

rn

∣

∣

∣
<

c

r2
n

,

then α is a quadratic unit.

The proofs of both Theorems 1 and 2 are based on the following result which
follows right away from our recent work [1] and [2].

Theorem DL. Let (rn)n≥0 be a sequence of integers with |rn| diverging to infinity.

(i) Assume that

(11) limn→∞

|r2
n
− rn+1rn−1|
√

|rn|
<

1√
2
.
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Then, the sequence
(rn+1

rn

)

n≥0

is convergent to a limit α that is a non-zero

algebraic integer of degree at most 2. If α is irrational, then its norm is smaller

than
√

|α|. Moreover, there exists n0 ∈ N such that (rn)n≥n0
is binary recurrent.

(ii) If

(12) |r2
n
− rn+1rn−1| < c

holds for some constant c and all n, then α is a quadratic unit or a non-zero integer.

We point out that in our work [1] and [2], we gave more precise descriptions
for both the sequences (rn)n≥0 satisfying (11) or (12), respectively, and the limit

α = lim
n→∞

rn+1

rn

, but the above Theorem DL suffices for our present purposes.

We now proceed to the proofs of Theorems 1 and 2.

2. The Proofs

Proof of Theorem 1. We will prove (i) in detail and we will only sketch the proof
of (ii).

(i) By replacing the sequence (rn)n by the sequence
(

(−1)nrn

)

n
and α by −α

if α < 0, we may assume α ≥ 0 and rn > 0 for all n ≥ 0. By letting n tend to

infinity in (7), we get α = lim
n→∞

rn+1

rn

. Since rn diverges to infinity, we must have

α ≥ 1. We now show that α > 1. Indeed, if α = 1, then inequality (7) becomes

∣

∣

∣
1 − rn+1

rn

∣

∣

∣
<

1

r
3

2
+ǫ

n

,

or

|rn+1 − rn| <
1

r
1

2
+ǫ

n

≤ 1,

therefore rn+1 = rn for all n ≥ 0. This contradicts the fact that rn diverges to
infinity. Hence, α > 1.

Now let δ be a real number with 1 < δ < α, note that γ := 2α − δ exceeds α,
and choose n0 such that

r
3

2
+ǫ

n >
1

α − δ

holds for all n ≥ n0. From inequality (7), we get that

(13) δrn < rn+1 < γrn
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holds for all n ≥ n0. From inequalities (7) for n and n + 1 and the triangular
inequality, we get

|r2
n+1 − rnrn+2|

rnrn+1

=
∣

∣

∣

rn+1

rn

− rn+2

rn+1

∣

∣

∣
<

∣

∣

∣
α − rn+1

rn

∣

∣

∣
+

∣

∣

∣
α − rn+2

rn+1

∣

∣

∣
<

( 1

r
3

2
+ǫ

n

+
1

r
3

2
+ǫ

n+1

)

,

or

(14)
|r2

n+1 − rn+2rn|√
rn+1

<
1

rǫ
n

·
√

rn+1

rn

+
1

rǫ

n+1

·
( rn

rn+1

)

.

Using inequality (13) in (14), we get

(15)
|r2

n+1 − rn+2rn|√
rn+1

<
c1

rǫ
n

+
c2

rǫ

n+1

for all n ≥ n0, where c1 =
√

γ and c2 = 1/δ. We now let n tend to infinity in (15)
and get

(16) lim
n→∞

|r2
n
− rn+1rn−1|√

rn

= 0 <
1√
2
.

Consequently, the conclusion of part (i) of Theorem 1 follows from part (i) of
Theorem DL.

The remaining assertions of part (ii) now follow from putting ǫ := 1/2 in (15)
and invoking rn+1/rn < γ as well as part (ii) of Theorem DL.

Theorem 1 is therefore established.

Remark 1. The occurence of ǫ > 0 in the exponent in inequality (7) is unnecessary.
A closer investigation of the arguments used in the proof of Theorem 1 shows that
the conclusion of part (i) of Theorem 1 remains valid if inequality (7) is replaced
by the weaker inequality

(7′)
∣

∣

∣
α − rn+1

rn

∣

∣

∣
<

1 − ǫ√
2(

√

|α| + 1/|α|)
· 1

r
3

2

n

.

Remark 2. Assume that α is a real number such that the hypotheses of either
part (i9 or part (ii) of Theorem 1 are fulfilled. Using the full strength of our
results from [1] and [2], we can infer that if α is an integer, then (rn)n≥0 is a
geometrical progression of ratio α from some n on. However, if α is quadratic and
the hypotheses of part (ii) of Theorem 1 are fulfilled, we can only infer that (rn)n≥0

is binary recurrent from some n on, and that its charateristic equation is precisely
the minimal polynomial of α over Q. However, we cannot infer that (rn)n≥0 is the
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Lucas sequence of the first kind for α given by formula (6), mostly because the
constant c appearing in inequality (8) is arbitrary. Of course, if one imposes that
the constant c appearing in inequality (8) is small enough (for example, c = 1/2),
then the rational numbers rn+1/rn are exactly the convergents of α, therefore rn

is indeed given by formula (6) for all n (up to some linear shift in the index n).

Proof of Theorem 2. If one replaces the sequence (rn)n≥0 by the sequence
(Rn)n≥0 = (rnt1

)n≥0, then the first inequality (9) together with part (i) of
Theorem 1 show that αs1 is an algebraic integer, different than 0 or ±1, of
degree at most 2. Similarly, if one replaces the sequence (rn)n≥0 by the sequence
(Rn)n≥0 = (rnt2

)n≥0, then the second part of inequality (9) together with part (ii)
of Theorem 1 show that αs2 is an algebraic integer, different that 0 or ±1, of degree
at most 2.

From here on, all we need to establish is that α is itself algebraic of degree
at most 2. Assume that this is not so and let K := Q[α] and Ki := Q[αsi ] for
i = 1, 2. Since s1 and s2 are coprime, we get that K = Q[αs1 , αs2 ]. Moreover, we
must have [Ki : Q] = 2 for both i = 1 and 2, i.e. K is a biquadratic real extension
of Q and Gal(K/Q) ∼= Z2 ⊕Z2. Hence, there exist two non-trivial elements σ1 and
σ2 in Gal(K/Q) with σi(α

si ) = αsi , i.e.

(17) 1 =
σi(α

si)

αsi

=
(σi(α)

α

)si

for i = 1, 2. Since K is a real field and σi is non-trivial, formula (17) implies that
σi(α) = −α for i = 1, 2. Hence, σ1(α) = σ2(α), which implies σ1 = σ2. But this is
a contradiction. The remaining of the assertions of Theorem 2 follow from Theorem
1.

Theorem 2 is therefore established.
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