^{*}P-Finsler spaces with vanishing Douglas tensor

S. BÁCSÓ, I. PAPP

Abstract. The purpose of the present paper is to prove that a *P-Randers space with vanishing Douglas tensor is a Riemannian space if the dimension is greater then three.

1. Introduction

Let $F^n(M^n, L)$ be an *n*-dimensional Finsler space, where M^n is a connected differentiable manifold of dimension n and L(x, y) is the fundamental function defined on the manifold $T(M) \setminus 0$ of nonzero tangent vectors. Let us consider a geodesic curve $x^i = x^i(t)$, $(t_0 \leq t \leq t_1)$. The system of differential equations for geodesic curves of F^n with respect to canonical parameter t is given by

$$\frac{d^2x^i}{dt^2} = -2G^i(x,y), \quad y^i = \frac{dx^i}{dt},$$

where

$$G^{i} = \frac{1}{4}g^{ir} \left(y^{s} \left(\frac{\partial L_{(r)}^{2}}{\partial x^{s}} \right) - \frac{\partial L^{2}}{\partial x^{r}} \right),$$

$$g_{ij} = \frac{1}{2}L_{(i)(j)}^{2}, \quad {}_{(i)} = \frac{\partial}{\partial y^{i}}, \text{ and } \left(g^{ij} \right) = \left(g_{ij} \right)^{-1}.$$

The Berwald connection coefficients $G_j^i(x, y)$, $G_{jk}^i(x, y)$ can be derived from the function G^i , namely $G_j^i = G_{(j)}^i$ and $G_{jk}^i = G_{j(k)}^i$. The Berwald covariant derivative with respect to the Berwald connection can be written as

(1)
$$T_{j;k}^i = \partial T_j^i / \partial x^k - T_{j(r)}^i G_k^r + T_j^r G_{rk}^i - T_r^i G_{jk}^r.$$

(Throughout the present paper we shall use the terminology and definitions described in Matsumoto's monograph [6].)

This work was partially supported by the Ministry of Culture and Education of Hungary under Grant No. FKFP 0457.

¹ The Roman indices run over the range 1, ..., n.

2. Douglas tensor, Randers metric, *P-space

Let us consider two Finsler space $F^n(M^n, L)$ and $\overline{F}^n(M^n, \overline{L})$ on a common underlying manifold M^n . A diffeomorphism $F^n \to \overline{F}^n$ is called geodesic if it maps an arbitrary geodesic of F^n to a geodesic of \overline{F}^n . In this case the change $L \to \overline{L}$ of the metric is called projective. It is well-known that the mapping $F^n \to \overline{F}^n$ is geodesic iff there exist a scalar field p(x, y) satisfying the following equation

(2)
$$\overline{G}^i = G^i + p(x, y)y^i, \quad p \neq 0.$$

The projective factor p(x, y) is a positive homogeneous function of degree one in y. From (2) we obtain the following equations

(3)
$$\overline{G}_j^i = G_j^i + p\delta_j^i + p_j y^i, \quad p_j = p_{(j)},$$

(4)
$$\overline{G}^i_{jk} = G^i_{jk} + p_j \delta^i_k + p_k \delta^i_j + p_{jk} y^i, \quad p_{jk} = p_{j(k)},$$

(5)
$$\overline{G}^i_{jkl} = G^i_{jkl} + p_{jk}\delta^i_l + p_{jl}\delta^i_k + p_{kl}\delta^i_j + p_{jkl}y^i, \quad p_{jkl} = p_{jk(l)}$$

Substituting $p_{ij} = (\overline{G}_{ij} - G_{ij})/(n+1)$ and $p_{ijk} = (\overline{G}_{ij(k)} - G_{ij(k)})/(n+1)$ into (5) we obtain the so called Douglas tensor which is invariant under geodesic mappings, that is

(6)
$$D^{i}_{jkl} = G^{i}_{jkl} - \left(y^{i}G_{jk(l)} + \delta^{i}_{j}G_{kl} + \delta^{i}_{k}G_{jl} + \delta^{i}_{l}G_{jk}\right)/(n+1),$$

which is invariant under geodesic mappings, that is

(7)
$$D^i_{jkl} = \overline{D}^i_{jkl}.$$

We now consider some notions and theorems for special Finsler spaces.

Definition 1. ([1]) In an *n*-dimensional differentiable manifold M^n a Finsler metric $L(x,y) = \alpha(x,y) + \beta(x,y)$ is called Randers metric, where $\alpha(x,y) = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric in M^n and $\beta(x,y) = b_i(x)y^i$ is a differential 1-form in M^n . The Finsler space $F^n = (M^n, L) = \alpha + \beta$ with Randers metric is called Randers space.

Definition 2. ([1]) The Finsler metric $L = \alpha^2/\beta$ is called Kropina metric. The Finsler space $F^n = (M^n, L) = \alpha^2/\beta$ with Kropina metric is called Kropina space.

Definition 3. ([1], [6]) A Finsler space of dimension n > 2 is called *C*-reducible, if the tensor $C_{ijk} = \frac{1}{2}g_{ij(k)}$ can be written in the form

(8)
$$C_{ijk} = \frac{1}{n+1} \left(h_{ij}C_k + h_{ik}C_j + h_{jk}C_i \right),$$

where $h_{ij} = g_{ij} - l_i l_j$ is the angular metric tensor and $l_i = L_{(i)}$.

Theorem 1. ([7]) A Finsler space F^n , $n \ge 3$, is C-reducible iff the metric is a Randers metric or a Kropina metric.

Definition 4. ([4], [5]) A Finsler space F^n is called *P-Finsler space, if the tensor $P_{ijk} = \frac{1}{2}g_{ij;k}$ can be written in the form

(9)
$$P_{ijk} = \lambda(x, y)C_{ijk}.$$

Theorem 2. ([4]) For n > 3 in a *C*-reducible **P*-Finsler space $\lambda(x, y) = k(x)L(x, y)$ holds and k(x) is only the function of position.

3. *P-Randers space with vanishing Douglas tensor

Definition 5. ([3]) A Finsler space is said to be of Douglas type or Douglas space, iff the functions $G^i y^j - G^j y^i$ are homogeneous polynomials in (y^i) of degree three.

Theorem 3. ([3]) A Finsler space is of Douglas type iff the Douglas tensor vanishes identically.

Theorem 4. ([5]) For n > 3, in a *C*-reducible **P*-Finsler space $D_{jkl}^i = 0$ holds.

If we consider a Randers change

$$\overline{L}(x,y) \to L(x,y) + \beta(x,y),$$

where $\beta(x, y)$ is a closed one-form, then this change $\overline{L} \to L$ is projective.

Definition 6. ([1]) A Finsler space is called Landsberg space if the condition $P_{ijk} = 0$ holds.

Theorem 5. ([2]) If there exist a Randers change with respect to a projective scalar p(x, y) between a Landsberg and a *P-Finsler space (fulfilling the condition $\overline{P}_{ijk} = p(x, y)\overline{C}_{ijk}$), then p(x, y) can be given by the equation

(10)
$$p(x,y) = e^{\varphi(x)}\overline{L}(x,y).$$

It is well-known that the Riemannian space is a special case of the Landsberg space. In a Riemannian space we have $D_{jkl}^i = 0$, and a *P-Randers space with a closed one-form $\beta(x, y)$ is a Finsler space with vanishing Douglas tensor

Theorem 6. ([3]) A Randers space is a Douglas space iff $\beta(x, y)$ is a closed form. Then

(11)
$$2G^{i} = \gamma^{i}_{jk}y^{j}y^{k} + \frac{r_{lm}y^{l}y^{m}}{\alpha + \beta}y^{i},$$

where $\gamma_{jk}^{i}(x)$ is the Levi–Civita connection of a Riemannian space, r_{lm} is equal to $b_{i;j}$ hence r_{lm} depends only on position.

From the Theorem 6. and (10) follows that

$$\frac{r_{lm}y^ly^m}{\alpha+\beta} = e^{\varphi(x)}(\alpha+\beta)$$

that is

$$\frac{r_{lm}y^l y^m}{\overline{L}} = e^{\varphi(x)}\overline{L}.$$

From the last equation we obtain

$$r_{lm}y^l y^m = e^{\varphi(x)}\overline{L}^2.$$

Differentiating twice this equation by y^l and y^m we get

$$b_{i;j} = e^{\varphi(x)} \overline{g}_{ij}.$$

This means that the metrical tensor \overline{g}_{ij} depends only on x, so we get the following

Theorem. A *P-Randers space with vanishing Douglas tensor is a Riemannian space if the dimension is greater than three.

4. Further possibilities

From Theorem 1, Theorem 4 and our Theorem follows that only the *P-Kropina spaces can be *P-C reducible spaces with vanishing Douglas tensor which are different from Riemannian spaces. We would like to investigate this letter case in a forthcoming paper.

References

- P. L. ANTONELLI, R. S. INGARDEN, M. MATSUMOTO, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ., Dordrecht, Boston, London, 1993.
- [2] S. BACSÓ, On geodesic mapping of special Finsler spaces, Rendiconti Palermo (to appear).
- [3] S. BÁCSÓ, M. MATSUMOTO, On Finsler spaces of Douglas type, A generalisation of the notion of Berwald space, Publ. Math. Debrecen, 51 (1997), 385–406.
- [4] H. IZUMI, On *P-Finsler spaces I., II. Memoirs of the Defense Academy, Japan, 16 (1976), 133–138, 17 (1977), 1–9.
- [5] H. IZUMI, On *P-Finsler spaces of scalar curvature, Tensor, N. S. 38 (1982), 220– 222.
- [6] M. MATSUMOTO, S. HOJO, A conclusive theorem on C-reducible Finsler spaces, Tensor, N. S. 32 (1978), 225–230.

Sándor Bácsó Lajos Kossuth University Institute of Mathematics and Informatics 4010 Debrecen P.O. Box 12 Hungary *E-mail:* sbacso@math.klte.hu

Ildikó Papp Lajos Kossuth University Institute of Mathematics and Informatics 4010 Debrecen P.O. Box 12 Hungary *E-mail:* ipapp@math.klte.hu