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On a theorem of type Hardy–Littlewood
with respect to the Vilenkin-like systems

GYÖRGY GÁT

Abstract. In this paper we give a convergence test for generalized (by the author)

Vilenkin–Fourier series. This convergence theorem is of type Hardy–Littlewood for the

ordinary Vilenkin system is proved in 1954 by Yano.

Introduction and the result

First we introduce some necessary definitions and notations of the the-
ory of the Vilenkin systems. The Vilenkin systems were introduced by N. Ja.

Vilenkin in 1947 (see e.g. [7]). Let m := (mk, k ∈ N) (N := {0, 1, . . .}) be a
sequence of integers each of them not less than 2. Let Zmk

denote the mk-th
discrete cyclic group. Zmk

can be represented by the set {0, . . . ,mk − 1},
where the group operation is the mod mk addition and every subset is
open. The measure on Zmk

is defined such that the measure of every sin-
gleton is 1/mk (k ∈ N). Let

Gm :=
∞
×

k=0
Zmk

.

This gives that every x ∈ Gm can be represented by a sequence x = (xi, i ∈
N), where xi ∈ Zmi

(i ∈ N). The group operation on Gm (denoted by
+) is the coordinate-wise addition (the inverse operation is denoted by −),
the measure (denoted by µ) and the topology are the product measure and
topology. Consequently, Gm is a compact Abelian group. If supn∈N

mn <∞,
then we call Gm a bounded Vilenkin group. If the generating sequence m
is not bounded, then Gm is said to be an unbounded Vilenkin group. The
boundedness of the group Gm is supposed over all of this paper and denote
by supn∈N

mn < ∞. c denotes an absolute constant (may depend only on
supnmn) which may not be the same at different occurences.

A base for the neighborhoods of Gm can be given as follows

I0(x) :=Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}
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for x ∈ Gm, n ∈ P :=N \ {0}. Let 0 = (0, i ∈ N) ∈ Gm denote the
nullelement of Gm, In := In(0) (n ∈ N). Let I := {In(x) : x ∈ Gm, n ∈ N}.
The elements of I are called intervals on Gm.

Furthermore, let Lp(Gm) (1 ≤ p ≤ ∞) denote the usual Lebesgue
spaces (| . |p the corresponding norms) on Gm, An the σ algebra generated
by the sets In(x) (x ∈ Gm) and En the conditional expectation operator
with respect to An (n ∈ N) (f ∈ L1.)

Let M0 := 1, Mn+1 :=mnMn (n ∈ N) be the generalized powers. Then
each natural number n can be uniquely expressed as

n =

∞
∑

i=0

niMi (ni ∈ {0, 1, . . . ,mi − 1}, i ∈ N),

where only a finite number of ni’s differ from zero. The generalized Rade-
macher functions are defined as

rn(x) := exp(2πı
xn

mn

) (x ∈ Gm, n ∈ N, ı :=
√
−1).

Then

ψn :=

∞
∏

j=0

r
nj

j (n ∈ N)

the nth Vilenkin function. The system ψ := (ψn:n ∈ N) is called a Vilenkin
system. Each ψn is a character of Gm and all the characters of Gm are of
this form. Define the m-adic addition as

k ⊕ n :=
∞
∑

j=0

(kj + nj (mod mj))Mj (k, n ∈ N).

Then, ψk⊕n = ψkψn, ψn(x + y) = ψn(x)ψn(y), ψn(−x) = ψ̄n(x), |ψn| =
1 (k, n ∈ N, x, y ∈ Gm).

Let functions αn, α
(k)
j :Gm → C (n, j, k ∈ N) satisfy:

(i) α
(k)
j is measurable with respect to Aj (j, k ∈ N),

(ii) |α(k)
j | = α

(k)
j (0) = α

(k)
0 = α

(0)
j = 1 (j, k ∈ N),

(iii) αn :=
∏∞

j=0 α
(n(j))
j , n(j) :=

∑∞
i=j niMi (n ∈ N).

Let χn :=ψnαn (n ∈ N). The system {χn : n ∈ N} is called a Vilenkin-like
(or ψα) system ([2]–[4]).
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We mention some examples.

1. If α(k)
j = 1 for each k, j ∈ N, then we have the “ordinary” Vilenkin

systems.

2. If mj = 2 for all j ∈ N and α(n(j))
j = (βj)

(nj), where

βj(x) = exp
(

2πı
(xj−1

22
+ · · · + x0

2j+1

))

(n, j ∈ N, x ∈ Gm),

then we have the character system of the group of 2-adic integers (see e.g.
[5], [4]).

3. If

tn(x) := exp



2πı





∞
∑

j=0

nj

Mj+1





∞
∑

j=0

xjMj



 (x ∈ Gm, n ∈ N),

then we have a Vilenkin-like system which is usefull in the approximation
theory of limit periodic, almost even arithmetical functions ([2], [4]).

In [3] we proved that a Vilenkin-like system is orthonormal and com-
plete in L1(Gm). Define the Fourier coefficients, the partial sums of the
Fourier series, the Dirichlet kernels with respect to the Vilenkin-like system
χ as follows.

f̂χ(n) = f̂(n) :=

∫

Gm

fχ̄n, Sχ
nf = Snf :=

n−1
∑

k=0

f̂χ(k)χk,

Dχ
n(y, x) = Dn(y, x) :=

n−1
∑

k=0

χn(y)χ̄n(x),

It is known ([2]) that

DMn
(y, x) = DMn

(y − x) =

{

Mn, if y − x ∈ In(0),
0, if y − x /∈ In(0),

SMn
f(y) = Mn

∫

In(y)

f dµ = Enf(y) (f ∈ L1(Gm), n ∈ N)

and

Dn(y, x) = χn(y)χ̄n(x)
∞
∑

j=0

DMj
(y − x)

mj−1
∑

p=mj−nj

rp
j (x)
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(x ∈ Gm, n ∈ N, f ∈ L1(Gm)). Then, y − x /∈ Is gives

(1) |Dn(y, x)| ≤ cMs (s ∈ N)

([2]). It is also known ([2]) that for y − x /∈ Is

(2)

Ms−1
∑

t=0

χjMs+t(y)χ̄jMs+t(x) = 0 (j ∈ N).

Moreover,

Sχ
nf(y) =

∫

Gm

f(x)Dn(y, x) dµ

(n ∈ N, y ∈ Gm). For more details on Vilenkin-like systems see e.g. [2]–[4].
The following theorem of type Hardy–Littlewood for the ordinary Vi-

lenkin system is proved in 1954 by Yano ([8]). We generalize this result for
Vilenkin-like systems.

Theorem. Suppose that the following two conditions hold for function

f ∈ L1(Gm) and for a y ∈ Gm.

(1) MnlogMn

∫

In
|f(x+ y) − f(y)| dµ(x) → 0 (n → ∞),

(2) |f̂(k)| ≤ ck−δ for some δ > 0.
Then Snf(y) converges to f(y).

Proof. Denote by

(3) Mn logMn

∫

In

|f(x+ y) − f(y)| dµ(x)=: εn → 0.

(3) implies that

(4) |SMn
f(y) − f(y)| = Mn

∣

∣

∣

∣

∣

∫

In(y)

f(x) − f(y) dµ(x)

∣

∣

∣

∣

∣

≤ εn

logMn

for n ∈ N. Let k ∈ N and n ∈ N for which Mn ≤ k < Mn+1. Also, let
n ≥ n0 ∈ N be some integer depend on n for which r ≤ n/n0 that is the
ratio of n and n0 has a lower bound, where constant r ∈ N is discussed
later.

Skf(y) =

∫

Gm

f(x)
k−1
∑

j=0

χj(y)χ̄j(x) dµ(x)

=

∫

Gm

f(x+ y)
k−1
∑

j=0

χj(y)χ̄j(x+ y) dµ(x)
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and
∫

Gm

f(y)

k−1
∑

j=Mn

χj(y)χ̄j(x+ y) dµ(x) = 0

gives

(5) Skf(y)−SMn
f(y) =

∫

Gm

(f(x+ y)− f(y))

k−1
∑

j=Mn

χj(y)χ̄j(x+ y) dµ(x).

In (5) we integrate over Gm which is the disjoint union of In, In0
\ In and

Gm \ In0
. Since sequence m is bounded, then we have

(6)

∣

∣

∣

∣

∣

∣

∫

In

(f(x+ y) − f(y))

k−1
∑

j=Mn

χj(y)χ̄j(x+ y) dµ(x)

∣

∣

∣

∣

∣

∣

≤ (k −Mn)

∫

In

|f(x+ y) − f(y)| dµ(x) ≤ cεn/ logMn.

By (1) we have

(7)

∣

∣

∣

∣

∣

∣

∫

In0
\In

(f(x+ y) − f(y))
k−1
∑

j=Mn

χj(y)χ̄j(x+ y) dµ(x)

∣

∣

∣

∣

∣

∣

≤
n−1
∑

s=n0

cMs

∫

Is\Is+1

|f(x+ y) − f(y)| dµ(x) ≤
n−1
∑

s=n0

cεs

logMs

.

Finally, we have x ∈ Gm \ In0
. This by (2) implies

n
∑

s=n0

ks−1
∑

j=0

Ms−1
∑

l=0

χ̄k(s+1)+jMs+l(x+ y)χk(s+1)+jMs+l(y) = 0.

Denote by

J(x+ y, y) :=

n0−1
∑

s=0

ks−1
∑

j=0

Ms−1
∑

l=0

χ̄k(s+1)+jMs+l(x+ y)χk(s+1)+jMs+l(y).
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Then,

(8)

∣

∣

∣

∣

∣

∣

∫

Gm\In0

(f(x+ y) − f(y))

k−1
∑

j=Mn

χj(y)χ̄j(x+ y) dµ(x)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Gm\In0

(f(x+ y) − f(y))J(x+ y, y) dµ(x)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

In0

(f(x+ y) − f(y))J(x+ y, y) dµ(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Gm

(f(x+ y) − f(y))J(x+ y, y) dµ(x)

∣

∣

∣

∣

≤ cMn0

∫

In0

|f(x+ y) − f(y)| dµ(x)

+

∣

∣

∣

∣

∫

Gm

f(x+ y)J(x+ y, y) dµ(x)

∣

∣

∣

∣

≤ cεn0
/ logMn0

+

n0−1
∑

s=0

ks−1
∑

j=0

Ms−1
∑

l=0

|f̂(k(s+1) + jMs + l)|

≤ cεn0
+ cn02−δn ≤ cεn0

+
( c

2δr

)n0

.

At last by (4), (6), (7), (8), we get

|Skf(y) − SMn
f(y)| ≤ |SMn

f(y) − f(y)|

+

∣

∣

∣

∣

∣

∣

∫

In

(f(x+ y) − f(y))
k−1
∑

j=Mn

χj(y)χ̄j(x+ y) dµ(x)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

In0
\In

(f(x+ y) − f(y))

k−1
∑

j=Mn

χj(y)χ̄j(x+ y) dµ(x)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

Gm\In0

(f(x+ y) − f(y))

k−1
∑

j=Mn

χj(y)χ̄j(x+ y) dµ(x)

∣

∣

∣

∣

∣

∣

≤ c
εn

logMn

+ cεn/ logMn +

n−1
∑

s=n0

cεs

logMs

+ cεn0
+

( c

2δr

)n0

≤ cεn0
+ cεn + sup

s≥n0

εs(1/n0 + · · · + 1/n) +

(

c̃

2δr

)n0

→ 0
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as n → ∞, where constant r ∈ N is given as c̃
2δr < 1 and n0 → ∞ (as

n → ∞) provided that r ≤ n/n0. That is the proof of the theorem is
complete.
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