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On a conjecture about the equation
Ame +Amy — Am=

ALEKSANDER GRYTCZUK

Abstract. Let A be a given integral 2x2 matrix. We prove that the equation

has a solution in positive integers z,y,z and m>2 if and only if the matrix A is a nilpotent

matrix or the matrix A has an eigenvalue a:1++\/§.

1. Introduction
First we note that (%) is equivalent to the following Fermat’s equation
(1) X"+Y"m=2"m>2,

where X = A*) Y = AY and Z = A*.

It has been recently proved by A. WILES [12], R. TAYLOR and A.
WILES [11] that (1) has no solution in nonzero integers X,Y,Z if m > 2.
But, in contrast to the classical case, the Fermat’s equation (1) has infinitely
many solutions in 2 x 2 integral matrices X,Y, Z for m = 4. This fact was
discovered by R. Z. DOMIATY [2] in 1966. Namely, he proved that, if

0 1 0 1 0 1
X_<a 0>, Y—<b 0> and Z_<c 0),
where a, b, ¢ are integer solutions of the Pythagorean equation a? + b? = 2,

then
Xt +yt=27"%

Other results connected with Fermat’s equation in the set of matrices are
given in monograph [10] by P. RIBENBOIM. In these investigations it is
an important problem to give a necessary and sufficient condition for the
solvability of (1) in the set of matrices. Such type results were proved re-
cently by A. KHAZANOV [7], when the matrices X,Y, Z belong to SLy(Z),
SL3(Z) or GL3(Z). In particular, he proved that there are solutions of (1)
in X,Y,Z € SLy(Z) if and only if m is not a multiple of 3 or 4. We proved
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in [4] a necessary condition for the solvability of (1) in 2 x 2 integral matrices
X, Y, Z having a determinant form. More precisely, we proved (see [4], Thm.
2) that the equation (%) does not hold in positive integers x,y, z and m > 2,

if A= <(1) i) Another proof of this cited result was given by D. Frejman

[3]-
M. H. LE and CH. L1 [8] proved the following generalization of our
result: Let A = Z ccl be a given integral matrix such that r = Tr A =

a+d >0 and det A= ad — bc < 0, then (%) does not hold.

In their paper they posed the following

Conjecture. Let A be an integral 2 x 2 matrix. The equation (%) has
a solution in natural numbers x, vy, z and m > 2 if and only if the matrix A
is a nilpotent matrix.

A corrected version of this Conjecture was proved by the same authors
in [9].

In the present paper we prove the following

Theorem. The equation (x) has a solution in positive integers x,y, z
and m > 2 if and only if the matrix A is a nilpotent matrix or the matrix

A has an eigenvalue o = 1%\/5

B

We note that the condition matrix A has an eigenvalue o = 1*; is

equivalent to TrA = det A = 1 (cf. [9]). On the other hand it is easy to
see that the condition det A = 1 implies that the matrix A cannot be a
nilpotent matrix, thus the original Conjecture of M. H. LE and CH. Li is
not true.

We also note that X. CHEN [1] proved that if A,, is the companion
matrix for the polynomial f(x) = 2" — 2" ! — ... —x —1 then the equation
(%) with A = A,, has no solution in positive integers z,y,z and m > 2 for
any fixed integer n > 2.

Futher result of this type is contained by [5]. Namely, we proved the
following:

Let A = (a;5)
If the equation

nxn D€ a matrix with at least one real eigenvalue o > V2.

2) AT 4 A% = A

has a solution in positive integers r, s and ¢t then max{r —t,s —t} = —1.
From this cited result one can obtain the corresponding results of the
papers [1], [3], [4], [8] as particular cases.
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2. Basic Lemmas

Lemma 1. Let A = CCL 2) be an integral matrix such that Tr A # 0
or det A # 0 and let
r=a+d=TrA, s=-detdA, Ag=7r, A1 =1rAg+s
and
A, =rA,_1+8A,_o if n>2

Then for every natural number n > 2, we have

an_ (@ b\" _ aA,_o+sA,_3 bA, _2
c d CcA,_» dA,_o+sA,_3 )’
where we put A_; = 1.
The proof of this Lemma immediately follows from Theorem 1 of [6].

Lemma 2. Let A be an integral matrix satisfying the assumptions of
Lemma 1 and let A,, be the recurrence sequence associated with the matrix
A as in Lemma 1. Moreover, let A,, be the discriminant of the characteristic
polynomial of A™ if n > 2 and let Ay = A = r? +4s. Then for every natural
number n > 2 we have A,, = AA%_,,.

The proof of Lemma 2 is given in [4].

Lemma 3. Let A = <a b
c d

22 — (Tr A)x + det A be the characteristic polynomial of A with the roots
o, # ILQ\/E and the discriminant A = r2 + 4s, wherer = a+d = Tr A

and s = —det A. If s # 0 and A # 0 then the equation () has no solutions
in natural numbers x,y,z and m > 2.

Proof. If z = z and (%) is satisfied then A™¥ = 0, thus det A = 0,
which contradicts to our assumption. Similarly we obtain a contradiction
when y = z. If x = y then by (x) it follows that 2A™* = A™# hence
4(det A)™* = (det A)"™* and so we obtain a contradiction, because the last
equality is impossible in natural numbers x,y,2z and m > 2 with integer
det A # 0.

Further on we can assume that if (%) is satisfied, then z,y and z are

> be an integral matrix and let f(x) =

distinct natural numbers. Since s = — det A # 0, therefore there exists the
inverse matrix A~! and from (x) we obtain

(3) A=z o gmly=2) — ] if min{x,y, 2z} = z

(4) A=) LT = AmGETYif min{x,y, 2} =,

(5) I+ A™W=®) = AmGE=0) - if min{z,y, 2} =,
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10

0 1
Let {A,} be the recurrence sequence associated with the matrix A.
Then applying Lemma 1 to (3) we obtain

where I =

m(z—z)—2 + Am(y z)—2 (det A) ( m(z—z)—3 + Am(y—z)—B) = 17

0,
(6)
m(z—z)— 2+Am(y z)—2 0

d (Am(m—z)—Q + Am(y—z) 2

)

a(A ) -
b (Am@—z)—2+ Am(y—2)—2) =
c(A ) =

) — (det A) (Ape—s)—5 + Am(y—2)—3) = L.

From Lemma 1, (4) and (5) we obtain similar formulae to (6).
Suppose that b # 0 or ¢ # 0. Then from (6) we get det A = £1. On the
other hand since A # 0, therefore from Lemma 2 we can deduce that

(7) Ap_y = —— (™ — ).

N

Substituting (7) to (6) we obtain
(8) am(m—z) + am(y—z) _ ﬁm(m—z) + ﬁm(y—z) - 1.

By (4) and (5) we similarly have

(9) amE=Y) _ mle—y) — Bm(zfy) _ 5m(w*y) =1
and
(10) am(z—m) - Oém,(y—m) — /Bm(z—m) - ﬂm(y—m) =1.

From (8)—(10) it follows that in all cases

(11) "™+ o™ =a™* and [+ MY ="

for natural numbers x,y, z and m > 2, which can be written in the forms
(12) am™@=) 4 qm=2) =1 and gmETH) 4o gm—E) —

Since A # 0, thus we consider two cases: A > 0 or A < 0. Let us suppose

that A > 0. Since A =r? +4s and s = —det A = +1, so we have A > 5. If
r > 0 then we obtain

r+\/221+2\/3>\/§>1.

(13) a=—7
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From (13) and (12) it follows that both exponents m(z — z) and m(y — z)
must be negative. On the other hand fom (13) we have a2 < 1 and by
(12) it follows that it cannot happen that both exponents m(x — z) and
m(y — z) are < —2. Therefore one of them must be equal to -1 and we
obtain m(z — z) = —1 or m(y — z) = —1. But this is impossible, because
m > 2 and x,y, z are positive integers.

After this we consider the case r < 0. Let us suppose that » < 0 and

put r = —r’/, where ' > 0. Then we have
r—+A '+ VA
/8: = — :—5
2 2
and
A1 5
B=r'+y5 = +2f>\/§>1.

Substituting 5 = — [ to the second equation of (12) we obtain
(14) (_1)m(mfz) (5/)m(mfz) + (_1)m(yfz) (5/)m(y7z) -1

If m is even then as in our previous case we obtain a contradiction. So, we
can assume that m is an odd natural number greater than 2. If x — z and
y — z are odd then it is easy to see that (14) does not hold. Therefore one
of them must be even and from (14) we obtain

(15) (5/)m(m_z) - (ﬁ')m(y_z) =1, if z—2 isevenand y—2z isodd
and
(16) (5/)m(y_z) — (ﬁ/)m(m_z) =1, if y—z isevenand x—z is odd.

Because of the symmetry, it is sufficient to consider one of these equations.
Let us suppose that (15) is satisfied. If z —z > 0 and y — z > 0 then, by(15),
it follows that x — z > y — z. On the other hand, (15) can be represented in
the form

(a7 (@ ()" —1) =1

The condition z—2z > y—z implies > y and since ' > V2,m > 2, 2—2z > 0
and y — z > 0, therefore (17) is impossible. Hence we get that one of the
differences x — z so y — z must be negative. Suppose that £ — z < 0 and
y — 2z > 0. Then from (15)

(18) (8" = ()" 41
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m(z—x)

follows. It is easy to see that (B’)m(xfz) = ((ﬂ’)ﬂ) * . On the other

hand we have (3')7% < + and we obtain

m(z—x) —_
_ o\ =z 1 2 1
(8™ = ((ﬂ’) 2) o< (s <z,
2 2
because @ > 1. Therefore from (18) we get

B 1= ()" <

9

N —

which is impossible. In a similar way we obtain a contradiction in the case
r—z > 0and y—z < 0. It remains to consider the case when both differences
x — z and y — z are negative. From (15) we have

(19) 1= (8" (5| < (g™ Lo grymeA)

On the other hand we have
m(z—x)

(20) e = (@) T < (3) T <

N

and

m(z—y)

@) <(3) T <

Hence, by (19)—(21), we get a contradiction.

Further on we have to consider the case r = 0. But in this case we have
a=1,8 = —1 and we can can observe that (12) is impossible.

Now, we can consider the case A < 0. Since s = —det A = +1 and
A = r? +4s < 0, therefore we have s = —1 and the inequality 2 — 4 < 0
implies —2 < r < 2, that is, r = —1,0, 1.

The case r = 1 is impossble by the assumptions on the eigenvalues of
the matrix A.

If » = 0 then we obtain that a = 7,3 = —i and it is easy to check that
(12) does not hold.

If r = —1 then a = _1%“/5 is the third root of unity. Analyzing the
exponents m(x — z) and m(y — z) modulo 3 in (12) we get a contradiction.
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Summarizing, we obtain that in the case b # 0 or ¢ # 0 the equation (x)
has no solution in positive integers x,y, z and m > 2. So, b = ¢ = 0 and the

matrix A can be reduced to a diagonal matrix of the form A = (8 2)

On the other hand for every natural number k& we have

RG]

If () is satisfied then, by (22), it follfows that

(23) a™® 4 g™ = amz’ d™* MY = 7
From the assumption of Lemma 3 we have s = — det A # 0. This condition
implies ad # 0, because det A = det <g 2) = ad. Therefore (23) does not

hold.
Considering all of the cases the proof of Lemma 3 is complete.

Now, we can prove the following.

Lemma 4. Let A = <a 0
c d

TrA,s = —detA and A = 7% +4s. If s # 0 and A = 0, then (%) has
no solutions in positive integers x,y,z and m > 2.

> be an integral matrix and let r =

Proof. Since s # 0, therefore using Lemma 1 in similar way as in the
proof of Lemma 3, for the case b # 0 or ¢ # 0 we obtain s = —det A = +1.

Since, A = r2 +4s = 0, thus s = —1 and consequently 72> — 4 = 0, so we
have r = £2. Therefore we get « = =5 =1ifr=2and a= 3= —1if
r = —2. From the well-known theorem of Schur it follows that for any given

matrix A there is an unitary matrix P such that
(24) A= P*TP,
where T is the upper triangular matrix having on the main diagonal the

eigenvalues of the matrix A.

Suppose that the matrix A = <CCL 2 > with integer entries has the
eigenvalues «, (3.
From (24) by easy induction we obtain

(25) AF = p*T*P
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for every natural number k, where T% is the upper triangular matrix with
the eigenvalues o, 3% on the main diagonal. If (x) is satisfied then, by (25),
it follows that

(26) A L U
and from (26) we have
(27) ™ ™ = amz’ ﬁmm + ﬁmy — ﬁmz'

Since in our case @« = (3 = %1 so we can see that (27) does not hold.
Therefore we have b = ¢ = 0 and we get a contradiction as we have got it in
the last step of the proof of Lemma 3. So the proof of Lemma 4 is complete.

a

Lemma 5. Let A = < . b> be an itegral matrix and let r = Tr A, s =

d
—det A and A = 1% +4s. If s = 0 and A # 0 then the equation (x) has no
solution in positive integers x,y,z and m > 2.

Proof. From the assumptions of Lemma 5 it follows that r # 0 and
therefore we can use Lemma 1. Since s = 0 so, by Lemma 1, it follows that

k
a b ark=1  prk-1 1({a b _
(28) A* = (c d> - <c7’k_1 drk_1> =t <c d> =rTlA,

If (%) is satisfied then from (28) we obtain
(29) R S A

Being r # 0, it is easy to see that the equation (29) is impossible in positive
integers x,y, 2 and m > 2. This proves Lemma 5.

3. Proof of the Theorem

Suppose that the equation (%) has a solution in postive integers z,y, z
and m > 2. Then by Lemma 3, Lemma 4 and Lemma 5 it follows that
s = detA = 0 and »r = TrA = 0 or the matrix A has an eigenvalue
o = 1Jr;—“/g.Inthecauses:rzowehavea:—alamds:—detA:
—(ad — be) = — (—=d? — bc) = d* + be = 0 and also putting d = —a we have
a? + bc = 0. On the other hand we have

(30) A% = a b 2: a?+be bla+d) _ a2 + be br
c d cla+d) d®+be cr d*>+bc )’
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Substituting
r=0,a>+bc=d*+bc=0

to (30) we obtain that A% = 0, that is the matrix A is a nilpotent matrix
with nilpotency index two.

Now, we suppose that the matrix A is nilpotent matrix, i.e. A¥ = 0 for
some natural number k£ > 2. Then it is easy to see that (x) is satisfied for
all positive integers x,y, z, m > 2 such that mz > k,my > k,mz > k.

Suppose that the matrix A has an eigenvalue o = % Then it is

easy to check that a? = 71%“/5 = ¢ is a third root of unity. By an easy
calculation we obtain

1, if n =06k,

-2, if n=6k+1,

n__ )&, if n==6k+2,

(31) =N i n=6k43,

g2, if n==6k+4,

—¢, if n=~6k+5.

Applying (31) we obtain that (%) is satisfied if and only if the following
relations are satisfied

(32) mx =ri( mod 6), my=re( mod 6), mz=rs( mod 6),
where
<7"1,7"2,7"3> = <0727 1>7 <07475>7 <17372>7 <17570>7 <2747 3>7 <27071>7

(3,1,2),(3,5,4),(4,0,5),(4,2,3),(5,0,1), (5,3,4).
The proof of Theorem is complete.

From the proof of Theorem we get the following

Corollary. All soluitions of the equation(x) in natural numbers x,y, x
and m > 2, when the matrix A has an eigennvalue o = 1%‘/5 are given by
the congruence formulas (32) with the above restrictions on <7‘1, r9, 7‘3> and
if the matrix A is a nilpotent matrix with nilpotency index k > 2 then (%)
is satisfied by all positive integers x,y,z, m > 2 such that mx > k,my > k

and mz > k.

Remark. We note that Theorem with Corollary is equivalent to the
result presented by M. H. LE and CH. LI in [9], but our proof is given in
another way and it gives more information about the impossibility of the
solvability of (%) in the cases mentioned in Lemma 3, 4, 5.
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