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On a conjecture about the equation
Amx + Amy = Amz

ALEKSANDER GRYTCZUK

Abstract. Let A be a given integral 2×2 matrix. We prove that the equation

(⋆) Amx+Amy=Amz

has a solution in positive integers x,y,z and m>2 if and only if the matrix A is a nilpotent

matrix or the matrix A has an eigenvalue α= 1+i
√

3
2 .

1. Introduction

First we note that (⋆) is equivalent to the following Fermat’s equation

(1) Xm + Y m = Zm, m > 2,

where X = Ax, Y = Ay and Z = Az.
It has been recently proved by A. Wiles [12], R. Taylor and A.

Wiles [11] that (1) has no solution in nonzero integers X,Y,Z if m > 2.
But, in contrast to the classical case, the Fermat’s equation (1) has infinitely
many solutions in 2 × 2 integral matrices X,Y,Z for m = 4. This fact was
discovered by R. Z. Domiaty [2] in 1966. Namely, he proved that, if

X =

(

0 1
a 0

)

, Y =

(

0 1
b 0

)

and Z =

(

0 1
c 0

)

,

where a, b, c are integer solutions of the Pythagorean equation a2 + b2 = c2,
then

X4 + Y 4 = Z4.

Other results connected with Fermat’s equation in the set of matrices are
given in monograph [10] by P. Ribenboim. In these investigations it is
an important problem to give a necessary and sufficient condition for the
solvability of (1) in the set of matrices. Such type results were proved re-
cently by A. Khazanov [7], when the matrices X,Y,Z belong to SL2(Z),
SL3(Z) or GL3(Z). In particular, he proved that there are solutions of (1)
in X,Y,Z ∈ SL2(Z) if and only if m is not a multiple of 3 or 4. We proved
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in [4] a necessary condition for the solvability of (1) in 2×2 integral matrices
X,Y,Z having a determinant form. More precisely, we proved (see [4], Thm.
2) that the equation (⋆) does not hold in positive integers x, y, z and m ≥ 2,

if A =

(

0 1
1 1

)

. Another proof of this cited result was given by D. Frejman

[3].
M. H. Le and Ch. Li [8] proved the following generalization of our

result: Let A =

(

a c

b d

)

be a given integral matrix such that r = Tr A =

a + d > 0 and det A = ad − bc < 0, then (⋆) does not hold.
In their paper they posed the following
Conjecture. Let A be an integral 2 × 2 matrix. The equation (⋆) has

a solution in natural numbers x, y, z and m > 2 if and only if the matrix A

is a nilpotent matrix.
A corrected version of this Conjecture was proved by the same authors

in [9].
In the present paper we prove the following
Theorem. The equation (⋆) has a solution in positive integers x, y, z

and m > 2 if and only if the matrix A is a nilpotent matrix or the matrix

A has an eigenvalue α = 1+i
√

3
2

.

We note that the condition matrix A has an eigenvalue α = 1+i
√

3
2 is

equivalent to TrA = detA = 1 (cf. [9]). On the other hand it is easy to
see that the condition detA = 1 implies that the matrix A cannot be a
nilpotent matrix, thus the original Conjecture of M. H. Le and Ch. Li is
not true.

We also note that X. Chen [1] proved that if An is the companion
matrix for the polynomial f(x) = xn −xn−1 − . . .−x− 1 then the equation
(⋆) with A = An has no solution in positive integers x, y, z and m ≥ 2 for
any fixed integer n ≥ 2.

Futher result of this type is contained by [5]. Namely, we proved the
following:

Let A = (aij)n×n
be a matrix with at least one real eigenvalue α >

√
2.

If the equation

(2) Ar + As = At

has a solution in positive integers r, s and t then max{r − t, s − t} = −1.
From this cited result one can obtain the corresponding results of the

papers [1], [3], [4], [8] as particular cases.
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2. Basic Lemmas

Lemma 1. Let A =

(

a b

c d

)

be an integral matrix such that Tr A 6= 0

or det A 6= 0 and let

r = a + d = Tr A, s = − detA, A0 = r, A1 = rA0 + s

and
An = rAn−1 + sAn−2 if n ≥ 2.

Then for every natural number n ≥ 2, we have

An =

(

a b

c d

)n

=

(

aAn−2 + sAn−3 bAn−2

cAn−2 dAn−2 + sAn−3

)

,

where we put A−1 = 1.

The proof of this Lemma immediately follows from Theorem 1 of [6].

Lemma 2. Let A be an integral matrix satisfying the assumptions of
Lemma 1 and let An be the recurrence sequence associated with the matrix
A as in Lemma 1. Moreover, let ∆n be the discriminant of the characteristic
polynomial of An if n ≥ 2 and let ∆1 = ∆ = r2 +4s. Then for every natural
number n ≥ 2 we have ∆n = ∆A2

n−2.

The proof of Lemma 2 is given in [4].

Lemma 3. Let A =

(

a b

c d

)

be an integral matrix and let f(x) =

x2 − (Tr A)x + det A be the characteristic polynomial of A with the roots

α, β 6= 1+i
√

3
2

and the discriminant ∆ = r2 + 4s, where r = a + d = Tr A

and s = − det A. If s 6= 0 and ∆ 6= 0 then the equation (⋆) has no solutions
in natural numbers x, y, z and m > 2.

Proof. If x = z and (⋆) is satisfied then Amy = 0, thus detA = 0,
which contradicts to our assumption. Similarly we obtain a contradiction
when y = z. If x = y then by (⋆) it follows that 2Amx = Amz, hence
4(det A)mx = (detA)mz and so we obtain a contradiction, because the last
equality is impossible in natural numbers x, y, z and m > 2 with integer
detA 6= 0.

Further on we can assume that if (⋆) is satisfied, then x, y and z are
distinct natural numbers. Since s = − detA 6= 0, therefore there exists the
inverse matrix A−1 and from (⋆) we obtain

Am(x−z) + Am(y−z) = I, if min{x, y, z} = z(3)

Am(x−y) + I = Am(z−y), if min{x, y, z} = y,(4)

I + Am(y−x) = Am(z−x), if min{x, y, z} = x,(5)
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where I =

(

1 0
0 1

)

.

Let {An} be the recurrence sequence associated with the matrix A.
Then applying Lemma 1 to (3) we obtain

(6)

a
(

Am(x−z)−2 + Am(y−z)−2

)

− (det A)
(

Am(x−z)−3 + Am(y−z)−3

)

= 1,

b
(

Am(x−z)−2 + Am(y−z)−2

)

= 0,

c
(

Am(x−z)−2 + Am(y−z)−2

)

= 0,

d
(

Am(x−z)−2 + Am(y−z)−2

)

− (det A)
(

Am(x−z)−3 + Am(y−z)−3

)

= 1.

From Lemma 1, (4) and (5) we obtain similar formulae to (6).
Suppose that b 6= 0 or c 6= 0. Then from (6) we get det A = ±1. On the

other hand since ∆ 6= 0, therefore from Lemma 2 we can deduce that

(7) An−2 =
1√
∆

(αn − βn) .

Substituting (7) to (6) we obtain

(8) αm(x−z) + αm(y−z) = βm(x−z) + βm(y−z) = 1.

By (4) and (5) we similarly have

αm(z−y) − αm(x−y) = βm(z−y) − βm(x−y) = 1(9)

and

αm(z−x) − αm(y−x) = βm(z−x) − βm(y−x) = 1.(10)

From (8)–(10) it follows that in all cases

(11) αmx + αmy = αmz and βmx + βmy = βmz

for natural numbers x, y, z and m > 2, which can be written in the forms

(12) αm(x−z) + αm(y−z) = 1 and βm(x−z) + βm(y−z) = 1.

Since ∆ 6= 0, thus we consider two cases: ∆ > 0 or ∆ < 0. Let us suppose
that ∆ > 0. Since ∆ = r2 + 4s and s = − detA = ±1, so we have ∆ ≥ 5. If
r > 0 then we obtain

(13) α =
r +

√
∆

2
≥ 1 +

√
5

2
>

√
2 > 1.
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From (13) and (12) it follows that both exponents m(x − z) and m(y − z)
must be negative. On the other hand fom (13) we have α−2 < 1

2 and by
(12) it follows that it cannot happen that both exponents m(x − z) and
m(y − z) are ≤ −2. Therefore one of them must be equal to -1 and we
obtain m(x − z) = −1 or m(y − z) = −1. But this is impossible, because
m > 2 and x, y, z are positive integers.

After this we consider the case r ≤ 0. Let us suppose that r < 0 and
put r = −r′, where r′ > 0. Then we have

β =
r −

√
∆

2
= −r′ +

√
∆

2
= −β

and

β = r′ +

√

∆

2
≥ 1 +

√
5

2
>

√
2 > 1.

Substituting β = −β to the second equation of (12) we obtain

(14) (−1)m(x−z) (β′)
m(x−z)

+ (−1)m(y−z) (β′)
m(y−z)

= 1.

If m is even then as in our previous case we obtain a contradiction. So, we
can assume that m is an odd natural number greater than 2. If x − z and
y − z are odd then it is easy to see that (14) does not hold. Therefore one
of them must be even and from (14) we obtain

(15) (β′)
m(x−z) − (β′)

m(y−z)
= 1, if x− z is even and y − z is odd

and

(16) (β′)
m(y−z)− (β′)

m(x−z)
= 1, if y−z is even and x−z is odd.

Because of the symmetry, it is sufficient to consider one of these equations.
Let us suppose that (15) is satisfied. If x−z > 0 and y−z > 0 then, by(15),
it follows that x− z > y − z. On the other hand, (15) can be represented in
the form

(17) (β′)
m(y−z)

(

(β′)
m(x−z) − 1

)

= 1.

The condition x−z > y−z implies x > y and since β′ >
√

2,m > 2, x−z > 0
and y − z > 0, therefore (17) is impossible. Hence we get that one of the
differences x − z so y − z must be negative. Suppose that x − z < 0 and
y − z > 0. Then from (15)

(18) (β′)
m(x−z)

= (β′)
m(y−z)

+ 1
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follows. It is easy to see that (β′)
m(x−z)

=
(

(β′)
−2

)

m(z−x)
2

. On the other

hand we have (β′)
−2

< 1
2 and we obtain

(β′)
m(x−z)

=
(

(β′)
−2

)

m(z−x)
2

<

(

1

2

)

m(z−x)
2

<
1

2
,

because m(z−x)
2

> 1. Therefore from (18) we get

(β′)
m(y−z)

+ 1 = (β′)
m(x−z)

<
1

2
,

which is impossible. In a similar way we obtain a contradiction in the case
x−z > 0 and y−z < 0. It remains to consider the case when both differences
x − z and y − z are negative. From (15) we have

(19) 1 =
∣

∣

∣
(β′)

m(x−z) − (β′)
m(y−z)

∣

∣

∣
≤ (β′)

m(x−z)
+ (β′)

m(y−z)
.

On the other hand we have

(20) (β′)m(x−z) =
(

(β′)−2
)

m(z−x)
2 <

(

1

2

)

m(z−x)
2

<
1

2

and

(21) (β′)
m(y−z)

+
(

(β′)
−2

)

m(z−y)
2

<

(

1

2

)

m(z−y)
2

<
1

2
.

Hence, by (19)–(21), we get a contradiction.
Further on we have to consider the case r = 0. But in this case we have

α = 1, β = −1 and we can can observe that (12) is impossible.
Now, we can consider the case ∆ < 0. Since s = − detA = ±1 and

∆ = r2 + 4s < 0, therefore we have s = −1 and the inequality r2 − 4 < 0
implies −2 < r < 2, that is, r = −1, 0, 1.

The case r = 1 is impossble by the assumptions on the eigenvalues of
the matrix A.

If r = 0 then we obtain that α = i, β = −i and it is easy to check that
(12) does not hold.

If r = −1 then α = −1+i
√

3
2

is the third root of unity. Analyzing the
exponents m(x − z) and m(y − z) modulo 3 in (12) we get a contradiction.
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Summarizing, we obtain that in the case b 6= 0 or c 6= 0 the equation (⋆)
has no solution in positive integers x, y, z and m > 2. So, b = c = 0 and the

matrix A can be reduced to a diagonal matrix of the form A =

(

a 0
0 d

)

.

On the other hand for every natural number k we have

(22) Ak =

(

a 0
0 d

)k

=

(

ak 0
0 dk

)

.

If (⋆) is satisfied then, by (22), it follfows that

(23) amx + amy = amz, dmx + dmy = dmz.

From the assumption of Lemma 3 we have s = − det A 6= 0. This condition

implies ad 6= 0, because det A = det

(

a 0
0 d

)

= ad. Therefore (23) does not

hold.
Considering all of the cases the proof of Lemma 3 is complete.

Now, we can prove the following.

Lemma 4. Let A =

(

a 0
c d

)

be an integral matrix and let r =

Tr A, s = − detA and ∆ = r2 + 4s. If s 6= 0 and ∆ = 0, then (⋆) has
no solutions in positive integers x, y, z and m > 2.

Proof. Since s 6= 0, therefore using Lemma 1 in similar way as in the
proof of Lemma 3, for the case b 6= 0 or c 6= 0 we obtain s = − det A = ±1.
Since, ∆ = r2 + 4s = 0, thus s = −1 and consequently r2 − 4 = 0, so we
have r = ±2. Therefore we get α = β = r

2
= 1 if r = 2 and α = β = −1 if

r = −2. From the well-known theorem of Schur it follows that for any given
matrix A there is an unitary matrix P such that

(24) A = P ⋆TP,

where T is the upper triangular matrix having on the main diagonal the
eigenvalues of the matrix A.

Suppose that the matrix A =

(

a b

c d

)

with integer entries has the

eigenvalues α, β.
From (24) by easy induction we obtain

(25) Ak = P ⋆T kP
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for every natural number k, where T k is the upper triangular matrix with
the eigenvalues αk, βk on the main diagonal. If (⋆) is satisfied then, by (25),
it follows that

(26) T mx + T my = T mz

and from (26) we have

(27) αmx + αmy = αmz, βmx + βmy = βmz.

Since in our case α = β = ±1 so we can see that (27) does not hold.
Therefore we have b = c = 0 and we get a contradiction as we have got it in
the last step of the proof of Lemma 3. So the proof of Lemma 4 is complete.

Lemma 5. Let A =

(

a b

c d

)

be an itegral matrix and let r = Tr A, s =

− detA and ∆ = r2 + 4s. If s = 0 and ∆ 6= 0 then the equation (⋆) has no
solution in positive integers x, y, z and m > 2.

Proof. From the assumptions of Lemma 5 it follows that r 6= 0 and
therefore we can use Lemma 1. Since s = 0 so, by Lemma 1, it follows that

(28) Ak =

(

a b

c d

)k

=

(

ark−1 brk−1

crk−1 drk−1

)

= rk−1

(

a b

c d

)

= rk−1A.

If (⋆) is satisfied then from (28) we obtain

(29) rmx + rmy = rmz.

Being r 6= 0, it is easy to see that the equation (29) is impossible in positive
integers x, y, z and m > 2. This proves Lemma 5.

3. Proof of the Theorem

Suppose that the equation (⋆) has a solution in postive integers x, y, z

and m > 2. Then by Lemma 3, Lemma 4 and Lemma 5 it follows that
s = detA = 0 and r = TrA = 0 or the matrix A has an eigenvalue

α = 1+i
√

3
2 . In the case s = r = 0 we have a = −d and s = − detA =

−(ad − bc) = −
(

−d2 − bc
)

= d2 + bc = 0 and also putting d = −a we have
a2 + bc = 0. On the other hand we have

(30) A2 =

(

a b

c d

)2

=

(

a2 + bc b(a + d)
c(a + d) d2 + bc

)

=

(

a2 + bc br

cr d2 + bc

)

.
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Substituting
r = 0, a2 + bc = d2 + bc = 0

to (30) we obtain that A2 = 0, that is the matrix A is a nilpotent matrix
with nilpotency index two.

Now, we suppose that the matrix A is nilpotent matrix, i.e. Ak = 0 for
some natural number k ≥ 2. Then it is easy to see that (⋆) is satisfied for
all positive integers x, y, z,m > 2 such that mx ≥ k,my ≥ k,mz ≥ k.

Suppose that the matrix A has an eigenvalue α = 1+i
√

3
2 . Then it is

easy to check that α2 = −1+i
√

3
2

= ε is a third root of unity. By an easy
calculation we obtain

(31) αn =



























1, if n = 6k,

−ε2, if n = 6k + 1,
ε, if n = 6k + 2,
−1, if n = 6k + 3,
ε2, if n = 6k + 4,
−ε, if n = 6k + 5.

Applying (31) we obtain that (⋆) is satisfied if and only if the following
relations are satisfied

(32) mx ≡ r1( mod 6), my ≡ r2( mod 6), mz ≡ r3( mod 6),

where

〈

r1, r2, r3

〉

=
〈

0, 2, 1
〉

,
〈

0, 4, 5
〉

,
〈

1, 3, 2
〉

,
〈

1, 5, 0
〉

,
〈

2, 4, 3
〉

,
〈

2, 0, 1
〉

,

〈

3, 1, 2
〉

,
〈

3, 5, 4
〉

,
〈

4, 0, 5
〉

,
〈

4, 2, 3
〉

,
〈

5, 0, 1
〉

,
〈

5, 3, 4
〉

.

The proof of Theorem is complete.

From the proof of Theorem we get the following
Corollary. All soluitions of the equation(⋆) in natural numbers x, y, x

and m > 2, when the matrix A has an eigennvalue α = 1+i
√

3
2

are given by
the congruence formulas (32) with the above restrictions on

〈

r1, r2, r3

〉

and
if the matrix A is a nilpotent matrix with nilpotency index k ≥ 2 then (⋆)
is satisfied by all positive integers x, y, z,m > 2 such that mx ≥ k,my ≥ k

and mz ≥ k.

Remark. We note that Theorem with Corollary is equivalent to the
result presented by M. H. Le and Ch. Li in [9], but our proof is given in
another way and it gives more information about the impossibility of the
solvability of (⋆) in the cases mentioned in Lemma 3, 4, 5.



70 Aleksander Grytczuk

References

[1] X. Chen, On Fermat’s equation in the set of generalized Fibonacci matrices, Dis-

cuss. Math., Algebra and Stochastic Methods 17 (1997), 5–8.

[2] R. Z. Domiaty, Solutions of x4+y4=z4 in 2×2 integral matrices, Amer. Math.

Monthly. 73 (1966), 631.

[3] D. Frejman, On Fermat’s equation in the set of Fibonacci matrices, Discuss. Math.

13 (1993), 61–64.

[4] A. Grytczuk, On Fermat’s equation in the set of integral 2×2 matrices, Period.

Math. Hungar. 30 (1995), 67–72.

[5] A. Grytczuk, Note on Fermat’s type equation in the set of n×n matrices, Discuss.

Math., Algebra and Stochastic Methods, 17 (1997), 19–23.

[6] A. Grytczuk and K. Grytczuk, Functional recurrences Applications of Fibonacci

Numbers, Ed. G. E. Bergum et al., by Kluwer Acad. Publ., Dordrecht, 1990, 115–

121.

[7] A. Khazanov, Fermat’s equation in matrices, Serdica Math. J. 21 (1995), 19–40.

[8] M. H. Le and Ch. Li, A note on Fermat’s equation in integral 2×2 matrices,

Discuss. Math., Algebra and Stochastic Methods, 15 (1995), 135–136.

[9] M. H. Le and Ch. Li , On Fermat’s equation in integral 2×2 matrices, Period.

Math. Hungar. 31 (1995), 219–222.

[10] P.Ribenboim, 13 Lectures on Fermat’s Last Theorem, Springer Verlag, 1979.

[11] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras,

Annals of Math. 141 (1995), 553–572.

[12] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of Math.

141 (1995), 443–551.

Aleksander Grytczuk

Institute of Mathematics

Department of Algebra and Number Theory

T. Kotarbinski Pedagogical University

65-069 Zielona Góra, Poland


