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The asymptotic behavior of the real roots of
Fibonacci-like polynomials

FERENC MÁTYÁS⋆

Abstract. The Fibonacci-like polynomials Gn(x) are defined by the recursive

formula Gn(x)=xGn−1(x)+Gn−2(x) for n≥2, where G0(x) and G1(x) are given seed-

polynomials. In this paper the non-zero accumulation points of the set of the real roots of

Fibonacci-like polynomials are determined if either both of the seed-polynomials are con-

stants or G0(x)=−a and G1(x)=x±a (a∈R\{0}). The theorems generalize the results of G.

A. Moore and H. Prodinger who investigated this problem if G0(x)=−1 and G1(x)=x−1,

furthermore we extend a result of Hongquan Yu, Yi Wang and Mingfeng He.

Introduction

The Fibonacci-like polynomials Gn(x) are defined by the following man-
ner. For n ≥ 2

(1) Gn(x) = xGn−1(x) + Gn−2(x),

where G0(x) and G1(x) are fixed polynomials (so-called seed-polynomials)
with real coefficients. If it is necessary to denote the seed-polynomials, then
we will use the notation Gn(x) = Gn (G0(x), G1(x), x), too. The polyno-
mials Gn(0, 1, x) are the original Fibonacci polynomials and the numbers
Gn(0, 1, 1) are the well-known Fibonacci numbers.

Recently, G. A. Moore [5] investigated the maximal real roots g′n of the
polynomials Gn(−1, x− 1, x) and proved that g′n exists for every n ≥ 1 and
lim

n→∞
g′n = 3/2. (These numbers g′n are called as “golden numbers”. ) H.

Prodinger [6] gave the asymptotic formula g′n ∼ 3
2 +(−1)n 25

124−n. Hongquan
Yu, Yi Wang and Mingfeng He [3] investigated the limit of the maximal real
roots g′n of polynomials Gn(−a, x − a, x) if a ∈ R

+.
For brevity let us introduce the following notations. B denotes the set

of the real roots of polynomials Gn(x) (n = 0, 1, 2, . . .) and A denotes the
set of the the accumulation points of set B. In [4] we investigated these sets.
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Although, the main result of [4] is formulated for seed-polynomials with
integer coefficients but it is true for seed-polynomials with real coefficients,
too. Since we are going to apply it, therefore we cite it as a lemma.

Lemma 1. Let G0(x) and G1(x) be two fixed polynomials with real

coefficients, G0(0) · G1(0) 6= 0 and x0 ∈ R. x0 ∈ A if and only if one of the

following conditions holds:

(i) −G1(x0)
G0(x0) = 1

α(x0) and x0 > 0;

(ii) −G1(x0)
G0(x0) = 1

β(x0) and x0 < 0;

(iii) x0 = 0,
where

(2) α(x) =
x +

√
x2 + 4

2
and β(x) =

x −
√

x2 + 4

2
.

The purpose of this paper is to investigate the asymptotic behavior
of the elements of the set B in the cases of simple seed-polynomials. In
our discussion we are going to use the following explicit formulae for the
polynomial Gn(x) = Gn (G0(x), G1(x), x). It is known that

(3) Gn(x) = p(x)αn(x) − q(x)βn(x)

for n ≥ 0, where α(x) and β(x) are defined in (2), while

p(x) =
G1(x) − β(x)G0(x)

α(x) − β(x)
and q(x) =

G1(x) − α(x)G0(x)

α(x) − β(x)
.

These formulae can be obtained by standard methods or see in [2].
Since we want to investigate the roots of the polynomials Gn(x), there-

fore it is worth rephasing the expression Gn(x) = 0 as

p(x)

q(x)
=

(

β(x)

α(x)

)n

,

that is

(4)
G1(x) − β(x)G0(x)

G1(x) − α(x)G0(x)
=

(

x −
√

x2 + 4

x +
√

x2 + 4

)n

.

Let us consider the polynomial Gn (G0(x), G1(x), x). It is obvious that
Gn(0, 0, x) is identical to the zero polynomial for every n ≥ 0. Using (3)
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the identities Gn(0, G1(x), x) = G1(x) · Gn(0, 1, x) and Gn (G0(x), 0, x) =
G0(x) · Gn(1, 0, x) yield. But it is known from [2] and can be obtained
easily from (4) that neither the Fibonacci polynomials Gn(0, 1, x) nor the
polynomials Gn(1, 0, x) have real root x′ except x′ = 0 if n is even or
odd, respectively. Therefore investigating the asymptotic behavior of the
roots of polynomials Gn (G0(x), G1(x), x) we can assume that the seed-
polynomials differ from the zero polynomial and at least one of them is a
monic polynomial (since one can simplify the left-hand side of (4) with the
leading coefficient of the polynomial G1(x) or G0(x)).

Theorems and Proofs

First of all we need the following lemma, which deals with the properties
of the functions α(x) and β(x) defined in (2).

Lemma 2. (a) On the interval [0,∞) the function 1
α(x) is continuous

and strictly monotonically decreasing, its graph is convex and 1 ≥ 1
α(x) > 0.

(b) On the interval (−∞, 0] the function 1
β(x) is continuous and strictly

monotonically decreasing, its graph is concave and 0 > 1
β(x) ≥ −1.

Proof. By (2) it is obvious that the functions 1
α(x)

and 1
β(x)

are con-
tinuous on the above mentioned intervals. The rest of the statement can be
proved easily using the methods of differential calculus.

Further on we deal with the set A if G0(x) = 1 and G1(x) = a. In this
case, using Lemma 1, the set A can be determined in a very simple manner.

Theorem 1. Let a ∈ R \ {0} and Gn(1, a, x) be Fibonacci-like poli-

nomials. If 0 < |a| < 1 then A \ {0} =
{

a2−1
a

}

, while in the case |a| ≥ 1

A \ {0} = ∅.

Proof. According to Lemma 1 to get the elements of the set A \ {0}
we have to solve the equations

(5) −a =
2

x +
√

x2 + 4
for x > 0

and

(6) −a =
2

x −
√

x2 + 4
for x < 0.
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By Lemma 2 the functions 1
α(x) = 2

x+
√

x2+4
and 1

β(x) = 2
x−

√
x2+4

are con-

tinuous, 1 > 1
α(x)

> 0 for any x > 0 and 0 > 1
β(x)

> −1 for any x < 0,

therefore 0 < |a| < 1 is a necessary and sufficient condition for the solvability
of (5) and (6). Solving (5) and (6) we get that the single real root x0 is
x0 = a2−1

a
, where x0 > 0 if −1 < a < 0 and x0 < 0 if 0 < a < 1. This

completes the proof.

In the following theorems we prove asymptotic formulae for those real
roots gn of the polynomials Gn(−a, x ± a, x) which do not tend to 0 if n
tends to infinity.

Theorem 2. Let G0(x) = −a and G1(x) = x − a, where a ∈ R \ {0}.
If either a > 0 or a < −2 then A \ {0} =

{

a(a+2)
a+1

}

, while in the case

−2 ≤ a < 0 we have A \ {0} = ∅. Furthermore for large n

gn ∼ a(a + 2)

a + 1
+ (−1)n a(a2 + 2a + 2)2

(a + 1)2(a + 2)
(a + 1)−2n.

Proof. According to Lemma 1, x0 ∈ A \ {0} if and only if

(7)
x0 − a

a
=

2

x0 +
√

x2
0 + 4

and x0 > 0

or

(8)
x0 − a

a
=

2

x0 −
√

x2
0 + 4

and x0 < 0

holds. Using the statements of Lemma 2 one can verify that (7) has a
solution for x0 if and only if a > 0, while (8) has a solution for x0 if and
only if a < −2. Solving (7) and (8) we get that

x0 =
a(a + 2)

a + 1
.

To determine the asymptotic behavior of gn we apply (4), which in our case
has the following form

2(gn − a) + a
(

gn −
√

g2
n + 4

)

2(gn − a) + a
(

gn +
√

g2
n + 4

) =

(

gn −
√

g2
n + 4

gn +
√

g2
n + 4

)n

.
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This will be much nicer when we substitute

(9) gn = u − 1

u
.

Without loss of generality we can assume that u > 0 and we get the equality

(10)
(au + u + 1)(u − 1)

(a + 1 − u)(u + 1)
= −(−u2)n.

Since x0 = u − 1
u

holds for u = a + 1 and u = − 1
a+1 therefore it is plain to

see that, for large n, (9) can only hold if u is either close to a + 1 or − 1
a+1

.
In both cases this would mean that gn is close to x0.

Let us assume that u is close to a+1 and so a > 0 because of u > 0. It is
clear from (10) that the cases when n is even or odd have to be distinguished.

We start with n = 2m and rewrite (10) as

(11) a + 1 − u = − (au + u + 1)(u − 1)

u + 1
· u−4m.

We get the asymptotic behavior by a process known as “bootstrapping”
which is explained in [1]. First we insert u = a + 1 + δ1 into the left-hand
side of (11) and u = a + 1 into the right-hand side of (11). So we get an
approximation for δ1. Then we insert u = a + 1 + δ1 + δ2 into the left-hand
side of (11) and u = a + 1 + δ1 into the rihgt-hand side of (11) and get
an approximation for δ2. This procedure can be repeated to get better and
better estiamations for u. Now we determine only the number δ1. From
(11) we have

δ1 ∼ a(a2 + 2a + 2)

a + 2
(a + 1)−4m

and so

u = a + 1 + δ1 ∼ a + 1 +
a(a2 + 2a + 2)

a + 2
(a + 1)−4m.

Substituting u into (9) we get that

(12) g2m = a+1+δ1−
1

a + 1 + δ1
∼ a(a + 2)

a + 1
+

(a(a2 + 2a + 2)2

(a + 1)2(a + 2)
(a+1)−4m.

If n = 2m + 1 then (10) can be rewrite as

a + 1 − u =
(au + u + 1)(u − 1)

u2(u + 1)
u−4m.
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Using the “bootstrapping” method for u = a + 1 + δ′1 we get the estimation

δ′1 ∼ a(a2 + 2a + 2)

(a + 2)(a + 1)2
(a + 1)−4m,

which implies the following form:

(13)

g2m+1 = a + 1 + δ′1 −
1

a + 1 + δ′1

∼ a(a + 2)

a + 1
− a(a2 + 2a + 2)2

(a + 2)(a + 1)4
(a + 1)−4m.

Comparing (12) and (13) the desired approximation yields since a > 0.
One can verify in the same manner that the estimation for gn also holds

when a < −2. This completes the proof.

Remark. From our proof one can see that for large n gn = g′n if a > 0
while gn is the minimal real root if a < −2.

A similar result can be proved for the polynomials Gn(−a, x + a, x).

Theorem 3. Let G0(x) = −a and G1(x) = x + a where a ∈ R \ {0}.
If etiher a > 0 or a < −2 then A \ {0} =

{

−a(a+2)
a+1

}

, while A \ {0} = ∅ if

−2 ≤ a < 0. Furthermore for large n

gn ∼ −a(a + 2)

a + 1
+ (−1)n a(a2 + 2a + 2)2

(a + 1)2(a + 2)
(a + 1)−2n,

where Gn(gn) = 0 and lim
n→∞

gn 6= 0.

Proof. For a real number x0, by our Lemma 2, x0 ∈ A \ {0} if and
only if

(14)
x0 + a

a
=

2

x0 +
√

x2
0 + 4

and x0 > 0

or

(15)
x0 + a

a
=

2

x0 −
√

x2
0 + 4

and x0 < 0

holds. Substituting −x0 for x0 into (14) and (15) we get that

(16)
x0 − a

a
=

2

x0 −
√

x2
0 + 4

and x0 < 0
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and

(17)
x0 − a

a
=

2

x0 +
√

x2
0 + 4

and x0 > 0

Since (16) and (17) are identical to (8) and (7), respectively, therefore all
of the statements of our theorem follows from the Theorem 2. Thus the
theorem is proved.

Concluding Remarks

Using our Theorem 2 for a = 1 we get that gn = g′n ∼ 3
2 +(−1)n 25

124−n,
which matches perfectly with the result of H. Prodinger.

On the other hand it is quite likely that similar results can be obtained
for seed-polynomials G0(x) = x±a and G0(x) = a or for other polynomials.
This could be the subject of further research work.
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