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A generalization of an approximation
problem concerning linear recurrences

BÉLA ZAY⋆

Abstract. Let {Gn} be a linear recursive sequence of order t(≥2) defined by Gn=

A1Gn−1+···+AtGn−t for n≥t, where A1,...,At and G0,...,Gt−1 are given rational integers.

Denote by α1,α2,...,αt the roots of the polynomial xt−A1xt−1−···−At and suppose that

|α1|>|αi| for 2≤i<t. It is known that lim
n→∞

Gn+s
Gn

=αs
1, where s is a positive integer.

The quality of the approximation of α1 by rational numbers
Gn+s

Gn
in the case s=1 was

investigated in several papers. Extending the earlier results we show that the inequality

∣

∣αs
1−

Gn+s
Gn

∣

∣< 1
cGr

n

holds for infinitely many positve integers n with some constant c if and only if

r≤1−
log|α2|

log|α1|
.

Let {Gn}
∞
n=1 be a kth order (k ≥ 2) linear recursive sequence defined

by
Gn = A1Gn−1 + A2Gn−2 + · · · + AkGn−k for n ≥ k,

where A1, . . . , Ak, and G1, . . . , Gk are given rational integers with Ak 6= 0
and G2

0 + · · · + G2
k−1 6= 0. Denote by α1, . . . , αt the distinct roots of the

characteristic polinomial

f(x) = xk − A1x
k−1 − · · · − Ak = (x − α1)

m1(x − α2)
m2 · · · (x − αt)

mt .

Using the well known explicite form of the terms of linear recursive sequen-
ces, Gn can be expressed by

(1) Gn =

t
∑

i=1





mi
∑

j=1

aijn
j−1



 αn
i =

t
∑

i=1

Pi(n)αn
i (n ≥ 0)
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where the coefficients aij of polinomials Pi(n) are elements of the algebraic
number field Q(α1, . . . , αt). We assume that the sequence G is a non dege-
nerate one, i.e. a11, a21, . . . , at1 are non zero algebraic numbers and αi/αj

is not a root of unity for any 1 ≤ i < j ≤ t. We can also assume that
Gn 6= 0 for n > 0 since the sequence have only finitely many zero terms
and after a movement of indices this condition will be fulfilled. If |αi| < α1

for i = 2, 3, . . . , t than from (1) it follows that lim
n→∞

Gn+1

Gn
= α1. In the case

k = 2 the quality of the approximation of α1 by rational numbers Gn+1/Gn

was investigated some earlier papers (e.g. set [2], [3], [4] and [5]). In the
general case P. Kiss ([1]) proved the following result. Let G be a tth order
linear recurrence with conditions |α1| > |α2| ≥ |α3| > · · · > |αt|, where
m1 = · · · = mt = 1). Then

∣

∣

∣

∣

α1 −
Gn+1

Gn

∣

∣

∣

∣

<
1

cGk
n

holds for infinitely many positive integers n with some constant c if and
only if k ≤ k0, where

k0 = 1 −
log |α2|

log |α1|
≤ 1 +

1

t − 1

and the equation k0 = 1+ 1
t−1

can be held only if |At| = 1 and |α1| > |α2| =
· · · = |αt|.

In [1] the following lemma was also proved.

Lemma. Let β and γ be complex algebraic numbers for which |β| =
|γ| = 1 and γ is not a root of unity. Then there are positive numbers δ and
n0 depending only on β and γ such that

|1 + βγn| > eδ log n

for any n > n0.

In the case |α1| > αi (2 ≤ i ≤ t) it is clear that lim
n→∞

Gn+s

Gn
= αs

1 for

any fixed positive integer s.
The purpose of this paper is the investigation of the quality of the

approximation of αs
1 by rational numbers Gn+s

Gn
and to prove an extension

of P. Kiss’s theorem.

Theorem. Let G be a non degenerate kth order linear recurrence
sequence with conditions:

|α1| > |α2| ≥ |α3| > |α4| ≥ · · · ≥ |αt| , m1 = m2 = 1,

t
∑

i=1

mi = k
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(where mi is the multiplicity of αi in the characteristic polinomial of G)
and Gn > 0 for n > 0. Then

(2)

∣

∣

∣

∣

αs
1 −

Gn+s

Gn

∣

∣

∣

∣

<
1

cGr
n

holds for infinitely many positive integers n with some positive constant c
if and only if

(3) r ≤ r0 = 1 −
log |α2|

log |α1|
.

We remark that in the case of s = 1, m1 = · · · = mt = 1 we get the
result of P. Kiss ([1]). In the next proof we shall use similar arguments wich
was used by P. Kiss.

Proof of the Theorem. Since m1 = m2 = 1 the polinomials P1(n)
and P2(n) are non zero constants (denoted by a11 and a21 respectively) and
so by (1) we have

∣

∣

∣

∣

αs
1 −

Gn+s

Gn

∣

∣

∣

∣

=

∣

∣

∣

∣

αs
1 −

P1(n + s)αn+s
1 + · · · + Pt(n + s)αn+s

t

P1(n)αn
1 + · · · + Pt(n)αn

t

∣

∣

∣

∣

=
∣

∣G−1
n

∣

∣

∣

∣

∣

∣

∣

a21(α
s
1 − αs

2)α
n
2 +

t
∑

i=3

(αs
1pi(n) − αs

i Pi(n + s))αn
i

∣

∣

∣

∣

∣

=
∣

∣G−1
n a21(α

s
1 − αs

2)α
n
2

∣

∣H3(n)

where

H3(n) =

∣

∣

∣

∣

∣

1 +
t

∑

i=3

(αs
1Pi(n) − αs

i Pi(n + s)) αn
i

a21(α
s
1 − αs

2)α
n
2

∣

∣

∣

∣

∣

.

Since Gn = a11α
n
1 (1 + dn), where lim

n→∞
dn = 0, (2) holds if and only if

c
∣

∣a21(α
s
1 − αs

2)α
n
2 Gr−1

n

∣

∣ H3(n)

= c
∣

∣ar−1
11 a21(α

s
1 − αs

2)(1 + dn)r−1
∣

∣

∣

∣α2α
r−1
1

∣

∣

n
H3(n) < 1.

Denoting the second and the third factors of the last product by H1(n) and
H2(n) respectively, (2) holds if and only if

(4) cH1(n)H2(n)H3(n) < 1.
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It is easy to see that

ec1 < H1(n) < ec2

holds with suitable real numbers c1, c2.
From this it follows that

(5) cehn+c1 < cH1(n)H2(n) < cehn+c2

where h = log α2 + (r − 1) log α1.
If we assume that |α2| > |α3| then lim

n→∞
cH1(n)H3(n) = cc0, where

c0 =
∣

∣ar−1
11 a21(α

s
1 − αs

2)
∣

∣.
Using the well known fact

lim
n→∞

H2(n) = lim
n→∞

∣

∣α1α
r−1
2

∣

∣

n
=







0, if r < r0 = 1 − log|α2|
log|α1|

1, if r = r0

∞, if r > r0

it is clear that (4) (and so (2), too) holds for infinitely many positive integers
n with some positive constant c (0 < c ≤ c−1

0 ) if and only if r ≤ r0. Now
we assume that

|α1| > |α2| = |α3| > |α4| ≥ · · · ≥ |αt| .

Since α1 is real and α3/α2 is not a root of unity α3 and α2 are (not real)
conjugate complex numbers and m2 = m3 (i.e. m1 = m2 = 1 = m3 and
P3(n) = P3(n + s) = a31). Furthermore a21 and a31 also are conjugate
numbers since they are solutions of the system of linear equations

Gn =
t

∑

i=1





mi
∑

j=1

aijn
j−1



 αn
i , 0 ≤ n ≤ k − 1.

Hence a3,1(αs
1−αs

3)
a2,1(α1−αs

2
)

and α3

α2
are algebraic numbers with absolute value 1

and so using the Lemma (proved by P. Kiss in [1]), we obtain the estimation

∣

∣

∣

∣

1 +
a31(α

s
1 − αs

3)

a21(αs
1 − αs

2)

(

α3

α2

)n∣

∣

∣

∣

> e−δ log n

with some positive real δ.
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But |αi| < |α2| for i ≥ 4, so by the last inequality

(6)

e−c3 log n <

∣

∣

∣

∣

1 +
a3(α

s
1 − αs

3)

(αs
1 − αs

2)

(

α3

α2

)n

+

t
∑

i=4

αs
1Pi(n) − αs

i Pi(n + s)

a21(αs
1 − αs

2)

(

αi

α2

)n
∣

∣

∣

∣

∣

= H3(n) < 3

with some c3 > 0 if n is large enough.
By (5) and (6) we have

(7) cehn−c3 log n+c1 < cH1(n)H2(n)H3(n) < cehn+c2+log 3.

(7) holds for infinitely many positive integers if and only if h ≤ 0, which
is equivalent to r ≤ r0.

This completes the proof of the theorem.
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