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Pure powers in recurrence sequences

KALMAN LIPTAT* and TIBOR TOMACS

Abstract. Let G be a linear recursive sequence of order k satisfying the recursion
Gn=A1Gpn_1++ArG,_r. In the case k=2 it is known that there are only finitely many
perfect powers in such a sequence.

Ribenboim and McDaniel proved for sequences with k=2, Go=0 and G;1=1 that in
general for a term G,, there are only finitely many terms G,, such that G, G,, is a perfect
square. P. Kiss proved that for any n there exists a number go, depending on G and
n, such that the equation G, G,=w? in positive integers x,w,q has no solution with z>n
and ¢>qo. We show that for any n there are only finitely many z;,zs,...,2x,2,w,q positive

integers such that GG, <Gy Gr=w and some conditions hold.

Let R = R(A, B, Ry, R1) be a second order linear recursive sequence
defined by

R, =AR,_, + BR,_» (n>1),

where A, B, Ry and R, are fixed rational integers. In the sequel we assume
that the sequence is not a degenerate one, i.e. a/f is not a root of unity,
where o and 3 denote the roots of the polynomial 22 — Az — B.

The special cases R(1,1,0,1) and R(2,1,0,1) of the sequence R is called
Fibonacci and Pell sequence, respectively.

Many results are known about relationship of the sequences R and
perfect powers. For the Fibonacci sequence Cohn [2] and Wylie [23] showed
that a Fibonacci number F), is a square only when n = 0,1,2 or 12. Peth6
[12], furthermore London and Finkelstein [9,10] proved that F;, is full cube
only if n = 0,1,2 or 6. From a result of Ljunggren [8] it follows that
a Pell number is a square only if n = 0,1 or 7 and Pethg [12] showed
that these are the only perfect powers in the Pell sequence. Similar, but
more general results was showed by McDaniel and Ribenboim [11], Robbins
[19,20] Cohn [3,4,5] and Pethé [15]. Shorey and Stewart [21] showed, that
any non degenerate binary recurrence sequence contains only finitely many
perfect powers which can be effictively determined. This results follows also
from a result of Pethd [14].
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Another type of problems was studied by Ribenboim and McDaniel.
For a sequence R we say that the terms R,,, R, are in the same square-
class if there exist non zero integers x,y such that

Rme = Rny27
or equivalently
R, R, =t

where t is a positive rational integer.

A square-class is called trivial if it contains only one element. Riben-
boim [16] proved that in the Fibonacci sequence the square-class of a Fi-
bonacci number £, is trivial, if m # 1,2,3,6 or 12 and for the Lucas
sequence L(1,1,2,1) the square-class of a Lucas number L,, is trivial if
m # 0,1,3 or 6. For more general sequences R(A, B,0,1), with (4, B) = 1,
Ribenboim and McDaniel [17]| obtained that each square class is finite and
its elements can be effectively computed (see also Ribenboim [18]).

Further on we shall study more general recursive sequences.

Let G = G(Ay,..., Ak, Go,...,Gr—1) be a k™ order linear recursive
sequence of rational integers defined by

Gn = A1Gn—1 + AQGn—Q + -+ Aan—k (7’L >k — 1)7

where Ay,..., A, and Go,...,Gr_1 are not all zero integers. Denote by
a = ai,Q9,...,q, the distinct zeros of the polynomial z¥ — AjzF~—1 —
AgaF=2 —...— A;. Assume that o, as, ..., o, has multiplicity 1,ma, ..., m
respectively and |a| > || for i = 2,...,s. In this case, as it is known, the

terms of the sequence can be written in the form
(1) G, =aa™ +ra(n)aly + -+ +rs(n)al (n>0),

where 7;(i = 2,...,s) are polynomials of degree m; — 1 and the coeffi-
cients of the polynomials and a are elements of the algebraic number field
Q(a, g, ..., ay). Shorey and Stewart [21] prowed that the sequence G does
not contain ¢*" powers if ¢ is large enough. This result follows also from [7]
and [22]|, where more general theorems where showed.

Kiss [6] generalized the square-class notion of Ribenboim and McDaniel.
For a sequence G we say that the terms G,, and G,, are in the same ¢'"-
power class if G,,G,, = w4, where w, ¢ rational integers and ¢ > 2.

In the above mentioned paper Kiss proved that for any term G,, of the
sequence G there is no terms G,, such that m > n and G,,, G,,, are elements
of the same ¢*"-power class if ¢ sufficiently large.
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The purpose of this paper to generalize this result. We show that the
under certain conditions the number of the solutions of equation

GnGa,Ga, -+ Gy, Gy = w1

where n is fixed, are finite.
We use a well known result of Baker [1].

Lemma. Let vy, ...,, be non-zero algebraic numbers. Let M, ..., M,
be upper bounds for the heights of 71, ... ,7,, respectively. We assume that
M, is at least 4. Further let by,...,b,_1 be rational integers with absolute
values at most B and let b, be a non-zero rational integer with absolute
value at most B’. We assume that B’ is at least three. Let L defined by

L =bylogy + -+ + by log ve,

where the logarithms are assumed to have their principal values. If L # 0,
then
|L| > exp(—C(log B'log M,, + B/B")),

where C' is an effectively computable positive number depending on only
the numbers My, ..., M,_1, Y1,...,7% and v (see Theorem 1 of [1] with
0=1/B").

Theorem. Let G be a k™ order linear recursive sequence satisfying
the above conditions. Assume that a # 0 and G; # aa® for i > ng. Then
for any positive integer n,k and K there exists a number qq, depending on
n,G, K and k, such that the equation

(2) GGy Gy -+ Gy Gy = w1 <z < <xp <)
in positive integer x1,xo,..., T, x,w,q has no solution with r; < Kn and
q > qo-

Proof of the theorem. We can assume, without loss of generality,
that the terms of the sequence G are positive. We can also suppose that
n > ng and n sufficiently large since otherwise our result follows from [20]
and [7].

Let 1,22, ..., 2, x,w, q positive integers satisfying (2) with the above
conditions. Let €, be defined by

Em 1= érg(m)(%>m+%r3(m)<%>m+~'-—i-%rs(m)(%)m (m >0).
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By (1) we have
k
1+e,)(1+e¢ 14 e,,) aFF2artatottae — a0
(1 ten el [0+en
1=1

from which

k

qlogw = (k + 2)loga + <n+:n+z:vi> loga + log (1 +¢,)
i=1

3) A
+log(1+¢;)+ Zlog(l +es,)
i=1

k
follows. It is obvious that z < n + = + Z x; < (k+ 2)z. Using that

log |1+ &,,| is bounded and mlgnoo %rl(m)(%) =0 (i =2...,5), we
have
(4) 61§<logw<62E

q q

where ¢; and ¢y are constants.
Let L be defined by

wq
GnGy,Gyy - Gy aa®

L := |log = |log (1 4+ €4)|.

By the definition of €, and the properties of logarithm function there exists
a constant cg that

(5) L < e %%,
On the other hand, by the Lemma with v = k + 4, My, 4 = w, B’ = ¢ and
B = x we obtain the estimation
k
(6) L=|qlogw—log G"_z log G, —loga—xloga >e~Cllogalogwtaz/q)

i=1

where C' depends on heights. By zp < Kn heights depend on G,,, ..., Gk,
i.e. on n, K,k and on the parameters of the recurrence. By (4), (5) and (6)
we have czx < C(logglogw + x/q) < cqlogqlogw, i.e.

(7) x < c5logqlogw
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with some cs, ¢y, c5. Using (4) and (7) we get cgqlogw < x < ¢5log qlog w,
i.e. ¢ < cylogq, where ¢g and c¢7 are constants. But this inequality does not
hold if ¢ > qo = qo(G, n, K, k), which proves the theorem.
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