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Abstract
A new modification of the N interaction model [5], which based on the

3-interactions model of Backhausz-Móri [1]. This is a growing model, what
evolves by weights. In every step N verticies will interact by form a star
graph. We can choose vertices uniformly or according to their weights (pref-
erential attachment). Our aim is to show asymptotic power-law distributions
of the weights. The proofs are based on discrete time martingale methods.
Numerical result is also presented.
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1. Introduction

Barabási and Albert [2] gave an explanation for the frequently observed phe-
nomenon that many real-life networks are scale free, i.e., they have power-law
degree distribution. To describe real-life networks such as the WWW, social and
biological networks, they introduced a random graph model. They defined an evolv-
ing graph using the preferential attachment rule, what leads to scale-free graphs.
Preferential attachment rule in a random graph model means, that when a new
vertex is born, then the probability that the new vertex will be connected to an
old vertex is proportional to the degree of the old vertex.
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In [4] a new network evolution model was introduced. In this paper, we shall
study the same model. Consider an increasing sequence of weighted undirected
graphs. The evolution of the graphs is based on creations of N -star subgraphs.
Throughout the paper we call a graph N -star graph if N vertices form a star, that
is it has one central vertex, what is connected with N − 1 peripheral vertices. We
start at time 0, and the initial graph is an N -star graph. This graph and all of
its (N − 1)-star subgraphs and all vertices have initial weights 1. Now we increase
the size of the graph as follows. At each step N vertices interact with each other.
It means that, we draw all non-existing edges between the peripheral vertices and
the center vertex, so that, the vertices will form an N -star graph and the weights
are increased by 1. The non-existing elements of the graph have weight 0.

We have two options in every step. On the one hand, with probability p, we
add a new vertex, and it interacts with N − 1 old vertices. On the other hand,
with probability 1− p, we do not add any new vertex, but N old vertices interact.
Here 0 < p ≤ 1 is fixed.

When a new vertex is born, we have two possibilities again. With probability
r, we choose an (N − 1)-star graph according to to their weights (i.e. preferential
attachment), and the new vertex is connected to its central vertex. Here preferential
attachment means that the probability that we choose an (N − 1)-star subgraph
is proportional to its weight. With probability 1− r, we choose N − 1 old vertices
uniformly at random and they will form an N -star graph with the new vertex, so
that, the new vertex will be the center. Here uniform choice means that all subsets
of vertices with cardinality N − 1, have the same chance. Here 0 ≤ r ≤ 1 is fixed.

In the other case, when we do not add any new vertex, we have two opportu-
nities again. On the one hand, with probability q, we choose an old N -star graph
according to their weights (i.e. preferential attachment). That is the chance of an
N -star subgraph is proportional to its weight. Then we increase the weights inside
the N -star subgraph chosen. On the other hand, with probability 1− q, we choose
uniformly N old vertices, and they form an N -star graph, so that, we choose the
center out of the chosen N vertices uniformly. Here 0 ≤ q ≤ 1 is fixed.

In [4] power law distribution of the weights of the vertices was shown. In
this paper Theorem 2.1 shows that the weights of the N -stars have power law
distribution. In the proof we use the Doob-Meyer decomposition and the method
of [3].

2. Power law distribution of the weights of N-stars

Let S(n,w) denote the number of N -stars with weight w, and let Sn denote the
number of all N -stars after n steps. Furthermore, Vn denotes the number of vertices
after n steps.

Theorem 2.1. Let 0 < p < 1 and 0 < q. For all w = 1, 2, . . . we have

S(n,w)

Sn
→ sw (2.1)
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almost surely as n → ∞, where sw, w = 1, 2, . . . are positive numbers satisfying
the recurrence relation

s1 =
1

h+ 1
, sw =

h(w − 1)

hw + 1
sw−1, if w > 1, (2.2)

where h = (1− p)q. Moreover,

sw ∼ Cw−(1+
1
h ) (2.3)

as w →∞, with C = 1
hΓ
(
1 + 1

h

)
.

Proof. First we show that
S(n,w)

n
→ kw (2.4)

almost surely as n→∞ for any fixed w. Here kw, w = 1, 2, . . . are fixed nonnega-
tive numbers.

We compute the conditional expectation of S(n,w) with respect to Fn−1 for
w ≥ 1. Let S(n, 0) = 0 for all n. For n,w ≥ 1 we have

E (S(n,w)|Fn−1) = p(n,w − 1)S(n− 1, w − 1) + (1− p(n,w))S(n− 1, w)+

+δ1,w

[
p+ (1− p)(1− q)

(
1− Sn−1(

Vn−1

N

)
N

)]
, (2.5)

where

p(n,w) = (1− p)
[
q
w

n
+ (1− q) 1(

Vn−1

N

)
N

]
. (2.6)

Let

c(n,w) =
n∏

i=1

(1− p(n,w))−1, w ≥ 1. (2.7)

It is easy to see that the above random variable is Fn−1 measurable. Applying the
Marcinkiewicz strong law of large numbers for the number of vertices, we have

Vn = pn+ o
(
n1/2+ε

)
(2.8)

almost surely, for any ε > 0.
Using (2.8) and the Taylor expansion for log(1 + x) we obtain

log c(n,w) = −
n∑

i=1

log

(
1− hw

i
− (1− p)(1− q)(

Vi−1

N

)
N

)
= hw

n∑

i=1

1

i
+O(1),

where the error term is convergent as n→∞. It means

c(n,w) ∼ hwnhw (2.9)
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almost surely as n→∞ and hw is a positive random variable.
Let us consider the following process:

Z(n,w) = c(n,w)S(n,w) for w ≥ 1.

Here {Z(n,w),Fn, n = 1, 2, . . . } is a nonnegative submartingale for any fixed
w ≥ 1. By the Doob-Meyer decomposition of Z(n,w), we can write

Z(n,w) =M(n,w) +A(n,w)

whereM(n,w) is a martingale and A(n,w) is a predictable increasing process. The
general form of A(n,w) is the following:

A(n,w) = EZ(1, w) +
n∑

i=2

[E (Z(i, w)|Fi−1)− Z(i− 1, w)] . (2.10)

Now from (2.5) and (2.10), we have

A(n,w) = EZ(1, w) +
n∑

i=2

c(i, w)

[
p(i, w − 1)S(i− 1, w − 1)+

+δ1,w

(
p+ (1− p)(1− q)

(
1− Si−1(

Vi−1

N

)
N

))]
. (2.11)

Let B(n,w) be the sum of the conditional variances of Z(n,w). In the following
we give an upper bound for B(n,w):

B(n,w) =
n∑

i=2

D2 (Z(i, w)|Fi−1) =
n∑

i=2

E{(Z(i, w)− E (Z(i, w)|Fi−1))
2 |Fi−1} =

=

n∑

i=2

c(i, w)2E{(S(i, w)− E (S(i, w)|Fi−1))
2 |Fi−1} ≤

≤
n∑

i=2

c(i, w)2E{(S(i, w)− S(i− 1, w))
2 |Fi−1} ≤

≤
n∑

i=2

c(i, w)2 = O
(
n2hw+1

)
. (2.12)

Above we used that c(n,w) is Fi−1 measurable, (2.5) and the fact that, at each
step only one N -star is involved in interaction.

We use induction on w. Let us consider the case when w = 1. From (2.9) and
(2.11), we have

A(n, 1) = EZ(1, 1) +
n∑

i=2

c(i, 1)

[
p+ (1− p)(1− q)

(
1− Si−1(

Vi−1

N

)
N

)]
∼

18 I. Fazekas, A. Perecsényi



∼
n∑

i=2

h1n
h

[
p+ (1− p)(1− q)

(
1− Si−1

iN

)]
∼ h1

nh+1(1− h)
h+ 1

(2.13)

as n→∞. Using (2.12), we have

B(n, 1) = O
(
n2h+1

)
,

so
B(n, 1)

1
2 logB(n, 1) = O (A(n, 1)) .

The conditions of Proposition VII-2-4 of [6] is fulfilled, so we have

Z(n, 1) ∼ A(n, 1) (2.14)

almost surely on the event {A(n, 1) → ∞} as n → ∞. So from (2.9), (2.13) and
(2.14), we obtain

S(n, 1)

n
=

Z(n, 1)

c(n, 1)n
∼ A(n, 1)

c(n, 1)n
∼ h1n

h+1(1− h)
h1nhn

=
1− h
1 + h

= k1 > 0, (2.15)

as n→∞.
Let w > 1. Suppose that (2.4) is true for all weight less than w. Now from

(2.8), (2.9) and (2.11), using the induction hypothesis, we obtain

A(n,w) = EZ(1, w) +
n∑

i=2

(c(i, w)p(i, w − 1)S(i− 1, w − 1)) ∼

∼
n∑

i=2

hwi
hwkw−1i

[
h
w − 1

i
+

(1− p)(1− q)
iN

]
∼ kw−1hwh(w − 1)

nwh+1

wh+ 1
(2.16)

almost surely as n → ∞. We see that the conditions of Proposition VII-2-4 are
true, so we have Z(n,w) ∼ A(n,w). Therefore, from (2.9) and (2.16), we have

S(n,w)

n
=

Z(n,w)

c(n,w)n
∼ A(n,w)

c(n,w)n
∼
kw−1hwh(w − 1)n

wh+1

wh+1

hwnwhn
=

= kw−1
h(w − 1)

wh+ 1
= kw. (2.17)

Now we show that
Sn

n
→ B, (2.18)

almost surely as n→∞ where B = 1− h.
First we compute the conditional expectation of Sn with respect to Fn−1. We

can see that the number of N -stars increases if and only if the number of N -stars
of weight 1 increases, so we have

E{Sn|Fn−1} = Sn−1+p+(1−p)(1− q)
(
1− Sn−1(

Vn−1

N

)
N

)
= γn−1Sn−1+B, (2.19)
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where
γn−1 = 1− (1− p)(1− q) 1(

Vn−1

N

)
N
.

Let

Gn =
n−1∏

i=1

(γi)
−1, n ≥ 1. (2.20)

Here Gn is an Fn−1 measurable random variable. Furthermore, let

Zn = GnSn for 1 ≤ n. (2.21)

From (2.19), we obtain

E{Zn|Fn−1} = Zn−1 +BGn. (2.22)

We can see that {Zn,Fn, n = 1, 2, . . . } is a nonnegative submartingale. Applying
again the Doob-Meyer decomposition for Zn, we have

Zn =Mn +An,

where Mn is a martingale and An is a predictable increasing process. From (2.10)
and (2.22), we obtain

An = EZ1 +B

n∑

i=2

Gi. (2.23)

By (2.8) and applying the Taylor expansion for log(1 + x), we can give lower and
upper bounds for Gi, so we obtain

C1n < An < C2n, (2.24)

where C1 and C2 appropriate positive constants. Let Bn be the sum of the condi-
tional variances of Zn. In the following we give an upper bound for Bn:

Bn =

n∑

i=2

D2(Zi|Fi−1) =
n∑

i=2

E{(Zi − E(Zi|Fi−1))
2|Fi−1} =

=

n∑

i=2

G2
iE{(Si − E(Si|Fi−1))

2|Fi−1} ≤
n∑

i=2

G2
iE{(Si − Si−1)

2|Fi−1} ≤

≤
n∑

i=2

G2
i ≤ C3n, (2.25)

where C3 is a positive constant. Above we used that Gi is Fi−1 measurable and
the fact that, at each step, at most one N -star can be born. Using (2.25), we
have B1/2

n logBn = O(An). From (2.24), we can see that An → ∞ as n → ∞, so
applying Proposition VII-2-4 of [6], we obtain

Zn ∼ An (2.26)
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almost surely as n→∞.
Using (2.26) and (2.23), we have

Kn

n
=

Zn

Gnn
∼ An

Gnn
=

EZ1

Gnn
+B

1

Gn

1

n

n∑

i=2

Gi → B (2.27)

almost surely.
Finally, from (2.4) and (2.18), we obtain

S(n,w)

Sn
=
S(n,w)

n

n

Sn
→ kw

B
= sw (2.28)

almost surely as n → ∞. By using (2.28) for (2.15) and (2.17), we have the
recurrence of sw (cf. (2.2)). Applying several times (2.2), we obtain

sw = s1

w∏

i=2

h(i− 1)

hi+ 1
=

1

h

(w − 1)!∏w
j=1

(
j + 1

h

) =
1

h

Γ (w)Γ
(
1 + 1

h

)

Γ
(
w + 1 + 1

h

) . (2.29)

Since
∑∞

w=1 sw = 1, the sequence s1, s2, . . . is a proper discrete probability distri-
bution.

Now applying Stirling’s formula for (2.29), we obtain the power law distribution
(2.3).

3. Numerical result

In this section we present a numerical result. The 4-star model was generated with
parameters p = 0.5, q = 0.5 and r = 0.5. We simulated n = 105 steps. To visualize
the power law distribution we used log-log scale. Figure 1 shows that the weight
distribution of 4-stars is indeed power law distribution.

Figure 1: The weight distribution of 4-stars
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