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Abstract
Denote by FG the group algebra of a group G over a field F , by U(FG)

its group of units, and by dl(U(FG)) the derived length of U(FG). We know
very little about dl(U(FG)), especially when F has characteristic 2. In this
short note, it is shown that, if F is of characteristic 2, G′ is cyclic of order
2n and the nilpotency class of G is less than n+ 1, then dl(U(FG)) is equal
to n or n+ 1. In addition, if n > 1 and G′ = Syl2(G), then dl(U(FG)) = n.
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1. Introduction

Let FG be the group algebra of a group G over a field F of prime characteristic p,
and let U(FG) be the group of units of FG. It is determined in [4] when U(FG)
is solvable, however, we know very little about the derived length of U(FG).
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Assume first that p is an odd prime. For this case, the group algebras FG with
metabelian group of units are classified in [16], under restriction G is finite, and
this result is extended to torsion G in [6]. In [7, 8] the finite groups G are described,
such that U(FG) has derived length 3. According to [1], if G is a finite p-group
with cyclic commutator subgroup, then dl(U(FG)) = dlog2(|G′|+1)e, where d·e is
the upper integer part function. The aim of [2] and [10] is to extend this result,
and determine the value of dl(U(FG)) for arbitrary groups G with G′ is a cyclic p-
group, where p is still an odd prime. As it turned out, if G is nilpotent and torsion,
then the derived length of U(FG) remains dlog2(|G′| + 1)e, but for non-nilpotent
or non-torsion G it can be different. However, the description is not complete yet,
for the open cases we refer the reader to [10].

For p = 2 and finite group G, necessary and sufficient conditions for U(FG) to
be metabelian is given in [9], and independently, in [14]. This result is extended
in [6] as follows: if F is a field of characteristic 2, and G is a nilpotent torsion
group, then U(FG) is metabelian exactly when G′ is a central elementary abelian
group of order dividing 4. In [13], it is established that if G is a group of maximal
class of order 2n, then dl(U(FG)) is less or equal to n − 1. To the best of the
author’s knowledge, for p = 2 there is no other result concerning the derived length
of U(FG). The aim of this paper to draw the attention to this uncovered area by
sharing the author’s experience and an introductory result.

The group of units of a group algebra can be investigated via the Lie struc-
ture of the group algebra. For example, we can obtain an upper bound on the
derived length of U(FG), by the help of the strong Lie derived length of FG. Let
δ(0)(FG) = FG, and for i ≥ 1, denote by δ(i)(FG) the associative ideal generated
by all the Lie commutators [x, y] = xy − yx with x, y ∈ δ(i−1)(FG). FG is said to
be strongly Lie solvable, if there exists i, for which δ(i)(FG) = 0, and the first such
i is called the strong Lie derived length of FG, which will be denoted by dlL(FG).
For x, y ∈ U(FG) we have that the group commutator (x, y) = x−1y−1xy is equal
to 1 + x−1y−1[x, y], which implies that δi(U(FG)) ⊆ 1 + δ(i)(FG) for all i, where
δi(U(FG)) denotes the ith term of the derived series of U(FG). Therefore, if FG
is strongly Lie solvable, then dl(U(FG)) ≤ dlL(FG).

According to [15, Theorem 5.1], FG is strongly Lie solvable if and only if either
G is abelian, or G′ is a finite p-group and F is a field of characteristic p. By
[11, Proposition 1], if FG is strongly Lie solvable such that G is nilpotent and
γ3(G) ⊆ (G′)p, then dlL(FG) = dlog2(t(G′) + 1)e, where by t(G′) we mean the
nilpotency index of the augmentation ideal of the subalgebra FG′.

Assume now that G is a group with cyclic commutator subgroup of order 2n

and F is a field of characteristic 2. Then G is nilpotent with nilpotency class
cl(G) ≤ n+ 1, so we can apply the above formulas to get

dl(U(FG)) ≤ dlL(FG) = dlog2(2n + 1)e = n+ 1.

Hence, if n = 1, then dl(U(FG)) = 2. For the case when n > 1 and cl(G) ≤ n, we
are able to give a lower bound on dl(U(FG)) as well.
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Theorem 1.1. Let F be a field of characteristic 2, and let G be a group with cyclic
commutator subgroup of order 2n, where n > 1. Then dl(U(FG)) ≥ n, whenever
G has nilpotency class at most n.

According to [12, Theorem 1], under conditions of Theorem 1.1, U(FG) is
nilpotent and, by [5, Theorem 4.3], if G′ = Syl2(G), then cl(U(FG)) = 2n − 1.
Using the well-known relation δi(U(FG)) ⊆ γ2i(U(FG)) between terms of the
derived series and the lower central series of groups, we have the following assertion.

Corollary 1.2. Let F be a field of characteristic 2, and let G be a group with cyclic
commutator subgroup of order 2n, where n > 1. If G′ = Syl2(G) and cl(G) ≤ n,
then dl(U(FG)) = n.

For instance, if

G = 〈a, b, c | c2n = 1, b−1ab = ac, ac = ca, bc = cb〉,

with n > 1, and char(F ) = 2, then dl(U(FG)) = n. This example also witnesses
that for non-torsion G, U(FG) can be metabelian, even if G′ is cyclic of order 4.

The GAP system for computational discrete algebra [17] and its package, the
LAGUNA [3] open the door to compute the derived length of U(FG) for G of not
too large size. Computing dl(U(FG)) for some group G of order not greater than
512 and F of 2 elements, it seems that dl(U(FG)) will always be at least n, even
if cl(G) = n + 1. However, it would also be interesting to know when dl(U(FG))
is n or when it is n+ 1.

2. Proof of Theorem 1.1

We will use the following notations. For a normal subgroup H of G we denote by
I(H) the ideal in FG generated by all elements of the form h− 1 with h ∈ H. For
the subsets X,Y ⊆ FG by [X,Y ] we mean the additive subgroup of FG generated
by all Lie commutators [x, y] with x ∈ X and y ∈ Y .

Write G′ = 〈x | x2n = 1〉, and assume that n > 1. Then for any m > 1,
y ∈ γm(G) and g ∈ G we have g−1yg = yk, where k is odd, thus (y, g) = yk−1 ∈
γm(G)2. Hence, γm+1(G) ⊆ γm(G)2 for all m > 1, so G is nilpotent of class at
most n + 1. Evidently, if γ3(G) ⊆ (G′)4, then cl(G) cannot exceed n. We show
first the converse, that is, if cl(G) ≤ n, then

γ3(G) ⊆ (G′)4. (2.1)

This is clear, if n = 2. For n ≥ 3, it is well known that the automorphism group
of G′ is the direct product of the cyclic group 〈α〉 of order 2 and the cyclic group
〈β〉 of order 2n−2, where the action of these automorphisms on G′ is given by
α(x) = x−1, β(x) = x5. Consequently, for every g ∈ G there exists i ≥ 0, such
that either g−1xg = x5

i

or g−1xg = x−5
i

. Assume that there is a g ∈ G such that
g−1xg = x−5

i

for some i, and let y ∈ γm(G) with m > 1. Then (y, g) = y−1−5
i ∈
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γm+1(G), and as −1 − 5i ≡ 2 (mod 4), we have that γm+1(G) = (γm(G))2. This
means that cl(G) = n+1, which is a contradiction. Therefore, for any g ∈ G there
exists i such that g−1xg = x5

i

and (x, g) = x−1+5i = x4k for some integer k, which
forces 2.1.

Let F be a field of characteristic 2. The next step is to show by induction that

[ω(FG′)m, FG] ⊆ I(G′)m+3 (2.2)

for all m ≥ 1. Let y ∈ G′ and g ∈ G. Then, using that γ3(G) ⊆ (G′)4, we have

[y + 1, g] = [y, g] = gy((y, g) + 1) ∈ I(γ3(G)) ⊆ I(G′)4.

Since the Lie commutators of the form [y + 1, g] span the subspace [ω(FG′), FG],
(2.2) holds for m = 1. Assume now (2.2) for some m ≥ 1. Then,

[ω(FG′)m+1, FG] ⊆ ω(FG′)m[ω(FG′), FG] + [ω(FG′)m, FG]ω(FG′)

⊆ I(G′)m+4,

as desired. Furthermore, by using (2.2), for all k, l ≥ 1 we have

[I(G′)k,I(G′)l]

= [FGω(FG′)k, FGω(FG′)l]

⊆ FG[ω(FG′)k, FGω(FG′)l] + [FG,FGω(FG′)l]ω(FG′)k

⊆ FG[ω(FG′)k, FG]ω(FG′)l + FG[FG,ω(FG′)l]ω(FG′)k

+ [FG,FG]ω(FG′)k+l

⊆ I(G′)k+l+1.

(2.3)

At this stage, it may be worth mentioning that without the assumption cl(G) ≤
n we can only claim that γ3(G) ⊆ (G′)2 and [ω(FG′)m, FG] ⊆ ω(FG′)m+1 instead
of (2.1) and (2.2). Although those would be enough for (2.3), but not for what
follows.

Denote by S the set of those a ∈ G, for which there exists b ∈ G, such that
〈(a, b)〉 = G′. We are going to show that for all k ≥ 1 and a ∈ S, there exists
wk ∈ I(G′)3·2

k−1

, such that

1 + a(x+ 1)3·2
k−1−1 + wk ∈ δk(U(FG)). (2.4)

This implies that δk(U(FG)) contains non-identity element, while 3 ·2k−1−1 < 2n,
and then

dl(U(FG)) ≥
⌈
log2

(
2

3
(2n + 1)

)⌉
= n,

and the proof of Theorem 1.1 will be done.
Let a ∈ S. Then there exists b ∈ G such that (a, b) = xi, where i is odd. By

(2.2), [x+ 1, b] ∈ I(G′)4, and

u := (1 + a(x+ 1), b) = 1 + (1 + a(x+ 1))−1b−1[a(x+ 1), b]
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≡ 1 + (1 + a(x+ 1))−1b−1[a, b](x+ 1)

≡ 1 + (1 + a(x+ 1))−1a(xi + 1)(x+ 1) (mod I(G′)3).

Since 1 + a(x + 1) belongs to the normal subgroup 1 + I(G′), so does its inverse,
and

u ≡ 1 + a(xi + 1)(x+ 1) (mod I(G′)3).

Using that xi + 1 ≡ i(x+ 1) = x+ 1 (mod ω(FG′)2), we obtain that

u ≡ 1 + a(x+ 1)2 (mod I(G′)3),

and (2.4) is confirmed for k = 1. Assume, by induction, the truth of (2.4) for some
k ≥ 1, and let a ∈ S. Then there exists b ∈ G such that 〈(a, b)〉 = G′, and of
course, b also belongs to S. Moreover, b−1a ∈ S, because (b−1a, b) = (a, b). By the
inductive hypothesis, there exist wk, w

′
k ∈ I(G′)3·2

k−1

, such that

u := 1 + b−1a(x+ 1)3·2
k−1−1 + wk ∈ δk(U(FG))

and

v := 1 + b(x+ 1)3·2
k−1−1 + w′k ∈ δk(U(FG)).

According to (2.3),

[u, v] ≡ [b−1a(x+ 1)3·2
k−1−1, b(x+ 1)3·2

k−1−1] (mod I(G′)3·2
k

).

Applying (2.2), we have that [(x+ 1)3·2
k−1−1, b] and [b−1a, (x+ 1)3·2

k−1−1] belong
to I(G′)3·2

k−1+2, and

[u, v] ≡ b−1a[(x+ 1)3·2
k−1−1, b](x+ 1)3·2

k−1−1

+ b[b−1a, (x+ 1)3·2
k−1−1](x+ 1)3·2

k−1−1 + [b−1a, b](x+ 1)3·2
k−2

≡ a(xi + 1)(x+ 1)3·2
k−2 ≡ a(x+ 1)3·2

k−1 (mod I(G′)3·2
k

),

where i is not divisible by 2. Since u−1, v−1 ∈ 1 + I(G′), so

(u, v) = 1 + u−1v−1[u, v] ≡ 1 + a(x+ 1)3·2
k−1 (mod I(G′)3·2

k

)

and the induction is done.
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